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Abstract

Vaccines against Salmonella Typhi, the causative agent of typhoid fever, are commonly

used by travellers, however, there are few examples of national immunization programs in

endemic areas. There is therefore a paucity of data on the impact of typhoid immunization

programs on localised populations of S. Typhi. Here we have used whole genome sequenc-

ing (WGS) to characterise 44 historical bacterial isolates collected before and after a

national typhoid immunization program that was implemented in Thailand in 1977 in

response to a large outbreak; the program was highly effective in reducing typhoid case

numbers. Thai isolates were highly diverse, including 10 distinct phylogenetic lineages or

genotypes. Novel prophage and plasmids were also detected, including examples that were

previously only reported in Shigella sonnei and Escherichia coli. The majority of S. Typhi

genotypes observed prior to the immunization program were not observed following it. Post-

vaccine era isolates were more closely related to S. Typhi isolated from neighbouring coun-

tries than to earlier Thai isolates, providing no evidence for the local persistence of endemic

S. Typhi following the national immunization program. Rather, later cases of typhoid

appeared to be caused by the occasional importation of common genotypes from neigh-

bouring Vietnam, Laos, and Cambodia. These data show the value of WGS in understand-

ing the impacts of vaccination on pathogen populations and provide support for the proposal

that large-scale typhoid immunization programs in endemic areas could result in lasting

local disease elimination, although larger prospective studies are needed to test this

directly.

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005274 January 6, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Dyson ZA, Thanh DP, Bodhidatta L,

Mason CJ, Srijan A, Rabaa MA, et al. (2017) Whole

Genome Sequence Analysis of Salmonella Typhi

Isolated in Thailand before and after the

Introduction of a National Immunization Program.

PLoS Negl Trop Dis 11(1): e0005274. doi:10.1371/

journal.pntd.0005274

Editor: Edward T. Ryan, Massachusetts General

Hospital, UNITED STATES

Received: October 11, 2016

Accepted: December 20, 2016

Published: January 6, 2017

Copyright: © 2017 Dyson et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Raw sequence data

have been submitted to the European Nucleotide

Archive (ENA) under project PRJEB5281.

Funding: This project was funded by the Wellcome

Trust of Great Britain (106158/Z/14/Z); SB is a Sir

Henry Dale Fellow, jointly funded by the Wellcome

Trust and the Royal Society (100087/Z/12/Z) and

ZAD is funded by strategic award #106158. KEH is

supported by fellowship #1061409 from the

NHMRC of Australia. DTP is a leadership fellow

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005274&domain=pdf&date_stamp=2017-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005274&domain=pdf&date_stamp=2017-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005274&domain=pdf&date_stamp=2017-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005274&domain=pdf&date_stamp=2017-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005274&domain=pdf&date_stamp=2017-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005274&domain=pdf&date_stamp=2017-01-19
http://creativecommons.org/licenses/by/4.0/


Author Summary

Typhoid fever is a systemic infection caused by the bacterium Salmonella Typhi. Typhoid

fever is associated with inadequate hygiene in low-income settings and a lack of sanitation

infrastructure. A sustained outbreak of typhoid fever occurred in Thailand in the 1970s,

which peaked in 1975–1976. In response to this typhoid fever outbreak the government of

Thailand initiated an immunization program, which resulted in a dramatic reduction in

the number of typhoid cases in Thailand. To better understand the population of S. Typhi

circulating in Thailand at this time, as well as the impact of the immunization program on

the pathogen population, we sequenced the genomes of 44 S. Typhi obtained from hospi-

tals in Thailand before and after the immunization program. The genome sequences

showed that isolates of S. Typhi bacteria isolated from post-immunization era typhoid

cases were likely imported from neighbouring countries, rather than strains that have per-

sisted in Thailand throughout the immunization period. Our work provides the first his-

torical insights into S. Typhi in Thailand during the 1970s, and provides a model for the

impact of immunization on S. Typhi populations.

Introduction

Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) is a human restricted bacte-

rial pathogen and the etiological agent of typhoid fever. S. Typhi is transmitted faeco-orally

and can establish asymptomatic carriage in a small subset of an exposed population [1].

Recent estimates [2–4] place the global burden of typhoid fever at 25–30 million cases annu-

ally, of which 200,000 are associated with deaths. Typhoid fever occurs most commonly in

industrialising countries, specifically in locations with limited sanitation and related infra-

structure [5]; children and young adults are among the most vulnerable populations in these

settings [6–8]. Antimicrobial therapy together with water sanitation and hygiene (WASH)

interventions are the major mechanisms by which typhoid fever is controlled [9, 10]. How-

ever, none of these approaches are optimal and resistance against antimicrobials has become

increasingly common in S. Typhi since the 1970s [11–13]. A number of typhoid vaccines are

licenced for use [14–18], however, they are not widely used as a public health tools in

endemic areas, with the exception of controlling severe outbreaks such as those following

natural disasters [19–22].

A sustained typhoid fever outbreak occurred in Thailand in the 1970s. A sharp increase in

cases was observed in 1973–1974, which finally peaked in 1975–1976. In response, the gov-

ernment of Thailand established a national typhoid immunization program, which repre-

sented the first programmatic use of a typhoid vaccine in the country [14, 22, 23]. The

immunization program targeted over 5 million school aged children (7–12 years) each year

in Bangkok between 1977 and 1987 (80% of the eligible population). Thus, Thai school chil-

dren were eligible to receive a single locally produced heat/phenol-inactivated subcutaneous

dose of 2.5 x 108 S. Typhi organisms annually [14, 22, 23], before the program was halted in

the early 1990s because of high rates of adverse reactions caused by the vaccine [22]. To our

knowledge this is the only such programmatic use of a vaccine for controlling Typhoid fever

in children in Thailand. Data from four teaching hospitals in Bangkok showed a 93% reduc-

tion in blood culture confirmed infections with S. Typhi between 1976 (n = 2,000) and 1985

(n = 132) [14, 23]. Notably, no significant decline was observed in isolation rates of Salmo-
nella Paratyphi A (S. Paratyphi A), a Salmonella serovar distinct from S. Typhi that causes a

clinical syndrome indistinguishable from typhoid fever, but for which S. Typhi vaccines
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provide little or no cross-protection [14]. This observation suggests that the reduction in S.

Typhi infections was not attributable to improvements in infrastructure and hygiene prac-

tices only [5, 14, 20, 23]. While the inactivated S. Typhi vaccine was found to be highly effica-

cious [22, 23], it is no longer used as a consequence of being overly reactogenic [14, 16, 22,

23, 24]. A Vi capsular polysaccharide vaccine [15] and live-attenuated oral vaccine of strain

Ty21a [16] have since replaced this vaccine for travellers to endemic locations [5, 21, 24].

The typhoid immunization program in Thailand provided a unique opportunity to investi-

gate the impact of immunization on S. Typhi populations circulating within an endemic area.

Here we present an analysis of a historical collection of 44 S. Typhi isolates obtained from

patients in Thailand between 1973 and 1992 (before and during the immunization program).

As S. Typhi populations demonstrate little genetic diversity, we used whole genome sequenc-

ing (WGS) to characterise these isolates, and core genome phylogenetic approaches to com-

pare the historic isolates from Thailand to a recently published global S. Typhi genomic

framework [4].

Materials and Methods

Ethics statement

This is a retrospective study of bacterial isolates unlinked to patient information and was not

subject to IRB approval.

Bacterial isolation and antimicrobial susceptibility testing

Forty-four S. Typhi isolated from patients with suspected typhoid fever attending hospitals in

Bangkok, Nonthaburi, Loi, and Srakaew, in Thailand between 1973 and 1992 were available

for genome sequencing in this study (Fig 1 and S1 Table). At the time of original isolation, bac-

terial cultures were transferred on nutrient agar slants to the department of Enteric Diseases,

Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand for iden-

tification and antimicrobial susceptibility testing. At AFRIMS, bacterial isolates were subcul-

tured on Hektoen Enteric agar (HE) and identification was performed by biochemical testing

on Kligler iron agar slants, tryptone broth for indole, lysine decarboxylase medium, ornithine

decarboxylase medium, urease test, mannitol and motility media (Becker Dickenson, Thai-

land). Serological agglutination was performed using Salmonella O antisera and Salmonella Vi

antiserum (Difco, USA). Bacterial strains were stored frozen at -70˚C in 10% skimmed milk or

lyophilised in 10% skimmed milk; lyophilized ampoules were stored at 2–8˚C. Prior to DNA

extraction for sequencing, lyophilized bacteria were rehydrated with trypticase soy broth, inoc-

ulated on McConkey agar and incubated at 37˚C for 18–24 hours. If bacteria were stored fro-

zen in skimmed milk, organisms were inoculated directly onto McConkey agar after thawing

and then incubated at 37˚C for 18–24 hours.

Antimicrobial susceptibility testing against ampicillin, chloramphenicol, cephalothin, gen-

tamicin, kanamycin, neomycin, sulfisoxazole, trimethoprim/sulfamethoxazole, and tetracy-

cline was performed by disk diffusion according to Clinical and Laboratory Standards

Institute (CLSI) [25–28].

Genome sequencing and SNP analysis

Genomic DNA from the 44 S. Typhi from Thailand was extracted using the Wizard Genomic

DNA Extraction Kit (Promega, Wisconsin, USA). Two μg of genomic DNA was subjected to

indexed WGS on an Illumina Hiseq 2000 platform at the Wellcome Trust Sanger Institute, to

generate 100 bp paired-end reads. For analysis of SNPs, paired end Illumina reads were

S. Typhi in Thailand before and after Immunization
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mapped to the reference sequence of S. Typhi CT18 (accession no: AL513382) [29] using the

RedDog (v1.4) mapping pipeline, available at https://github.com/katholt/reddog. RedDog uses

Bowtie (v2.2.3) [30] to map reads to the reference sequence, then high quality SNPs called with

quality scores above 30 are extracted from the alignments using SAMtools (v0.1.19) [31]. SNPs

were filtered to exclude those with less than 5 reads mapped or with greater than 2.5 times the

average read depth (representing putative repeated sequences), or with ambiguous base calls.

For each SNP that passed these criteria in any one isolate, consensus base calls for the SNP

locus were extracted from all genomes (ambiguous base calls and those with phred quality

scores less than 20 were treated as unknowns and represented with a gap character). SNPs

with confident homozygous allele calls (i.e. phred score>20) in>95% of the S. Typhi genomes

(representing a ‘soft’ core genome of common S. Typhi sequences) were concatenated to pro-

duce an alignment of alleles at 45,893 variant sites. The resultant allele calls for 68 of these

SNPs were used to assign isolates to previously defined lineages according to an extended S.

Typhi genotyping framework [32] code available at https://github.com/katholt/genotyphi).

Fig 1. Genomic analysis of Thai S. Typhi. (A) Maximum likelihood phylogenetic tree (outgroup rooted). Strains are labelled with their three digit

name code, year of isolation (pink shading indicates post-vaccine isolates); source location (shaded by city, as indicated in panel B); and plasmid

content (any antibiotic resistance genes are indicated in italics). Branch lengths are indicative of the number of SNPs. (B) Locations from which S.

Typhi were isolated in Thailand. (C) Total number of positive blood cultures of S. Typhi (black) and Paratyphi A (grey) between 1970 and 1985;

immunization period is indicated in pink; reproduced using data from reference (14).

doi:10.1371/journal.pntd.0005274.g001
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SNPs called in phage regions, repetitive sequences (354 kb; ~7.4% of bases in the CT18 refer-

ence chromosome, as defined previously [33] or recombinant regions (~180kb; <4% of the

CT18 reference chromosome, identified using Gubbins (v1.4.4) [34]) were excluded, resulting

in a final set of 1,850 SNPs identified in an alignment length of 4,275,037 bp for the 44 isolates.

SNP alleles from Paratyphi A strain 12601 [35] were also included as an outgroup to root the

tree. For global context, raw read data [4] were also subjected to genotyping analysis and those

isolates sharing the genotypes that were observed in the Thai collection (n = 340; details in S2

Table) were subjected to the same SNP analyses, resulting in a final set of 9,700 SNPs for a total

of 386 isolates.

Phylogenetic and SNP analysis

Maximum likelihood (ML) phylogenetic trees (Figs 1 and 2) were constructed using the 1,850

and 9,700 bp SNP alignments, respectively, using RAxML (v 8.1.23) [36] with a generalized

time-reversible model and a gamma distribution to model site specific recombination

(GTR+Γ substitution model; GTRGAMMA in RAxML), with Felsenstein correction for ascer-

tainment bias. Support for ML phylogenies was assessed via 100 bootstrap pseudoanalyses of

the alignments. For the larger tree containing global isolates, clades containing only isolates

from only a single country were collapsed manually in R using the drop.tip() function in the

ape package [37]. Subtrees were extracted for each subclade, which are therefore each rooted

by the other subclades. Pairwise SNP distances between isolates were calculated from the SNP

alignments using the dist.gene() function in the ape package for R [37].

Accessory genome analysis

Acquired antimicrobial resistance (AMR) genes were detected, and their precise alleles deter-

mined, by mapping to the ARG-Annot database [38] of known AMR genes using SRST2

v0.1.5 [39]. Plasmid replicon sequences were identified using SRST2 to screen reads for repli-

cons in the PlasmidFinder database [40, 41]. Raw read data was assembled de novo with

SPAdes (v 3.5.0) [42] and circular contigs were identified visually and extracted using the

assembly graph viewer Bandage (v0.7.0) [43]. These putative plasmid sequences were anno-

tated using Prokka (v1.10) [44] followed by manual curation. Where IncHI1 plasmid replicons

were identified using SRST2, and their presence confirmed by visual inspection of the assem-

bly graphs, IncHI1 plasmid MLST (pMLST) sequence types were determined using SRST2

[13, 39, 45, 46]. Where resistance genes were detected from short read data, Bandage was used

to inspect their location in the corresponding de novo assembly graph in order to determine

whether they were encoded in the bacterial chromosome or on a plasmid. Assembled contigs

were concatenated and putative prophage genomes were identified with the PHAge Search

Tool (PHAST) [47], and their novelty determined by BLASTN analysis against the GenBank

database. Pairwise alignments between novel and known prophage sequences were visualised

using the genoPlotR package for R [48].

Nucleotide sequence and sequence read data accession numbers

Raw sequence data have been submitted to the European Nucleotide Archive (ENA) under

project PRJEB5281; individual sample accession numbers are listed in S1 and S2 Tables.

Assembled phage and protein sequences were deposited in GenBank, accession numbers are

listed in Table 1.

S. Typhi in Thailand before and after Immunization
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Fig 2. Zoomed in phylogenies showing relationships of Thai S. Typhi to global isolates. Maximum likelihood trees

including S. Typhi isolates from the Thai and global collections are shown, for each genotype that was observed amongst

the Thai isolates. (A) Genotype 2.0.0 tree. (B) Genotype 2.1.7 tree. (C) Genotype 2.2.0 tree. (D) Genotype 2.3.4. tree (E)

Genotype 2.4.0. tree (F) Genotype 3.0.0 tree (G) Genotype 3.1.2. tree (H) Genotype 3.2.1 tree. (I) Genotype 3.4.0 tree. (J)

Genotype 4.1.0 tree. Colored branches and nodes indicate country of origin, according to the inset legend. Year of isolation

is shown to the right; pink and red, Thai isolates obtained before and after the introduction of the immunization program;

S. Typhi in Thailand before and after Immunization
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Results

The population structure of S. Typhi in Thailand

All 44 S. Typhi isolates collected between 1973 and 1992 were subjected to WGS and SNP anal-

ysis. Genome-wide SNPs were used to construct a ML phylogeny and isolates were assigned to

previously defined genotypes [32] using a subset of SNPs (see Methods). These analyses subdi-

vided the population into ten distinct genotypes, each corresponding to a specific lineage in

the ML phylogeny (Fig 1). Genotype 3.2.1 (which includes the reference genome CT18, iso-

lated from Vietnam in 1993 [29]) was the most common (n = 14, 32%), followed by genotype

2.1.7 (n = 10, 23%). Genotypes 2.0 (n = 1, 2%) and 4.1 (n = 3, 7%) were observed only in 1973

(pre-vaccine period). Genotypes 2.1.7 (n = 10, 23%), 2.3.4 (n = 1, 2%), 3.4.0 (n = 2, 5%), 3.0.0

(n = 3, 7%), 3.1.2 (n = 2, 5%), were observed only after 1981 (post-vaccine period). Each of

these post-immunization genotypes was from a single location and time period (Fig 1), consis-

tent with short-term localised transmission. The only exceptions were the two S. Typhi 3.1.2

isolates, that were from Srakaew in 1989 and Bangkok in 1992 and separated by just 4 SNPs.

Genotypes 3.2.1 and 2.4.0 were observed amongst both pre- and post-vaccine isolates.

Thai S. Typhi in the context of a global genomic framework

Based on the Thai S. Typhi genotyping results we hypothesised that the post-immunization

typhoid infections in Thailand resulted from occasional re-introduction of S. Typhi from out-

side the country, as opposed to long-term persistence of S. Typhi lineages within Thailand. To

explore this possibility, and to provide a global context for our analysis, we examined 1,832 S.

Typhi genomes from a recently published global collection that included isolates from 63

grey and black, non-Thai isolates obtained before and after the introduction of the immunization program. Thai isolates are

also labelled to indicate their city of origin: L, Loi; B, Bangkok; S, Srakaew; N, Nonthaburi. SNP distances between isolates

as well as AMR plasmids are labelled, with any resistance genes indicated in italics. Branch lengths are indicative of the

number of SNPs.

doi:10.1371/journal.pntd.0005274.g002

Table 1. Summary of mobile genetic elements observed in S. Typhi isolates from Thailand.

Isolate Genotype Name Replicons detected and/or

attachment sites

Size (no. putative

genes)

Accession

number

Function

004 2.0.0 pTy004_01 FIB (pHCM2) 108, 998 bp (133) KX833209 Cryptic, Phage defence

(Rha protein)

pTy004_02 X1 38, 266 bp (49) KX833212 Phage defence (Abortive

Infection)

031 3.0.0 pTy031_01 N/A 40, 835 bp (53) KX833210 Phage defence (Restriction

Modification)042

049

036 3.2.1 pTy036_01 HI1 ~215 kbp N/A. AMR (sul1, catA1, tet(B),

aadA1)046

051

052

054 3.1.2 Prophage

STYP1

attL CAAGCTGGTCAG attR

CAAGCTGGTCAG

28,946 bp (39) KX833211 Cryptic

055

013 4.1.0 Prophage

STYP2

attL ATTCGTAATGCGAAGGTCGTAGGTTC

GACTCCTATTATCGGCACCAT attR

ATTCGTAATGCGAAGGTCGTAGGTT

CGACTCCTATTATCGGCACCA

34, 780 bp (50) KX833213 Cryptic

doi:10.1371/journal.pntd.0005274.t001
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countries [4]. Genome-wide SNP-based ML trees for each of these genotypes, showing the

relationships between Thai and global isolates, are shown in Fig 2. In general, post-vaccine

Thai isolates were closely related to recent isolates sourced from neighbouring countries

including Vietnam, Laos and Cambodia (Fig 2), consistent with regional endemic circulation.

In contrast, most pre-vaccine isolates had no close neighbours in the global collection, particu-

larly 2.0.0 strains (Fig 2A), suggesting they may have been Thailand-specific lineages that have

died out following the vaccine program. The S. Typhi genomes in the global collection were

mainly isolated 2–3 decades after the Thai isolates as we did not have access to contemporane-

ous isolates from these countries that could identify specific transfer events. However, all but

three of the post-vaccine Thai isolates shared shorter SNP distances with isolates from neigh-

bouring countries than they did with pre-vaccination Thai isolates (see Fig 3), consistent with

these cases being caused by occasional re-introduction of genotypes circulating in the region.

Notably, Thai S. Typhi 3.2.1 that were isolated in 1986–7 clustered separately from the 1973

pre-vaccine isolates (�60 SNPs apart), but closely with isolates from Vietnam and Cambodia

(differing by as few as 7 SNPs; Fig 2H). Post-vaccine Thai S. Typhi 2.4 formed two distinct

groups that were not consistent with direct descendance from earlier isolates (Fig 2E). These

data are therefore consistent with transfer of S. Typhi into Thailand from neighbouring coun-

tries during the post-immunization program era, although the long-term circulation of ances-

tral populations in Thailand remains an unlikely alternative explanation.

Acquired antimicrobial resistance

We identified acquired AMR genes in the genomes of four S. Typhi genotype 3.2.1 that were

isolated in Srakaew in 1986 (Fig 1, Table 1). These isolates shared the same four AMR genes:

Fig 3. SNP distances for Thai and global collection isolates. SNP distance between post-vaccine Thai

isolates and their closest pre-vaccine Thai and post-vaccine global collection relatives, colored points indicate

country of origin.

doi:10.1371/journal.pntd.0005274.g003
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sul1 (sulphonamides), catA1 (chloramphenicol), tet(B) (tetracyclines), and aadA1 (aminogly-

cosides) which were carried on near-identical plasmids of IncHI1 plasmid sequence type 2

(PST2). Although the presence of insertion sequences (IS) in these plasmids prevented the

complete sequences from being assembled, the regions of these plasmids encoding the AMR

genes were identical in all assemblies. This commonality suggests they are a single plasmid

(referred to as pTy036_01 in Fig 1 and Table 1) that was likely acquired in a common ancestor

of this clade. The chromosomal and IncHI1 plasmid sequences for these four isolates were

very closely related to those of a 1993 Vietnamese isolate (Viety1-60_1993) in the global S.

Typhi collection [4, 45], consistent with regional transfer.

Other plasmids and mobile genetic elements

We identified three non-AMR related plasmids amongst the Thai isolates (Fig 1, Table 1).

Ty004 (genotype 2.2) carried two novel plasmids that assembled into circular sequences,

pTy004_01 and pTy004_02. The largest, pTy004_01, was a novel variant of the cryptic plasmid

pHCM2 [29, 49] (Fig 4). Ty004 was isolated in Bangkok in 1973, making pTy004_01 the earli-

est example of a pHCM2-like plasmid reported to date. pTy004_01 was distant from other

pHCM2-like plasmids in the global S. Typhi genome collection, sharing 92% coverage and

99% nucleotide identity with the reference sequence pHCM2 of S. Typhi CT18 (genotype

3.2.1) which was isolated approximately 20 years later in Vietnam [29]. The pTy004_01

sequence (Fig 4) appears to be ~2 kbp larger than pHCM2, and encodes an additional

tRNA-Lys as well as an insertion of a hypothetical protein (orf17) into a putative DNA poly-

merase gene (HCM2.0015c in pHCM2, divided into orf16 and orf18 in pTy004_01). Plasmid

pTy004_02 was ~38 kbp in size and similar to E. coli plasmid pEQ2 (65% coverage, 98% nucle-

otide identity), encoding genes for conjugation, chromosomal partitioning, addiction systems

and an abortive infection protein (orf44). Three isolates (Ty031, Ty042, and Ty049) all of geno-

type 3.0.0 and obtained from Srakaew in 1986, carried a ~40 kbp cryptic plasmid that we

named pTy031_01. This plasmid was similar to that carried by Enterobacter hormaechei strain

CAV1176 (83% coverage, 96% identity) and encoded genes for chromosomal partitioning,

addiction systems, and a putative restriction modification system (orf33-orf34).

PHAST analysis revealed the presence of novel intact prophages in three Thai S. Typhi iso-

lates (Fig 1, Table 1). Two S. Typhi 3.1.2, isolated from Srakaew in 1989 and Bangkok in 1992,

Fig 4. Blast comparison of novel plasmid pTy004_01 with pHCM2 (AL513383). Shaded regions indicate areas of sequence homology, intensity of

shading indicates relative nucleotide similarity. Arrows represent protein coding genes, direction indicates coding strand.

doi:10.1371/journal.pntd.0005274.g004
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shared a novel phage STYP1 that was similar to fiAA91-ss infective for Shigella sonnei (Fig

5A). However, the S. Typhi phage lacked the cytolethal distending toxin cdt genes and the IS21
element found in phage fiAA91-ss [50]. This prophage sequence had a mosaic architecture,

incorporating a number of putative insertions of phage tail fiber genes that were not present in

the fiAA91-ss reference genome (Fig 5A). Additionally, a single isolate of genotype 4.1

obtained from Bangkok in 1973 contained a novel SfIV-like phage, here named STYP2, that

lacked the serotype conversion gene Gtr cluster and IS1 element of phage SfIV [51]. Again, the

novel Thai phage variant also encoded novel tail fiber genes not in the SfIV reference genome,

as well as a Dam methylase gene (orf37) (Fig 5B).

Discussion

These data provide a historical insight into the population structure of S. Typhi in Thailand in

1973 (pre-immunization program, n = 11) and 1981–1992 (post- immunization program,

n = 33). It has been reported that the national S. Typhi immunization program in Thailand,

which commenced in 1977, was highly effective in reducing the burden of typhoid fever [14].

Our data are consistent with the hypothesis that the vaccine program successfully depleted the

endemic S. Typhi population to the extent that most subsequent typhoid cases resulted from

sporadic introduction of non-indigenous S. Typhi, rather than long-term persistence of the

Fig 5. Blast comparison of novel phages observed in Thai S. Typhi isolates to nearest known phage sequences. (A) Novel phage STYP1

compared to Shigella sonnei phage fiAA91-ss (NC_022750). (B) Novel phage STYP2 compared to Shigella flexneri phage SfIV (NC_022749). Shaded

regions indicate areas of sequence homology, intensity of shading indicates relative nucleotide similarity. Arrows represent protein coding genes

(direction indicates coding strand), colored by encoded protein functions: red, DNA packaging module; orange, virion morphogenesis module; yellow,

cargo genes; blue, DNA replication and lysogenic cycle maintenance; green, lysis module.

doi:10.1371/journal.pntd.0005274.g005
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pre-vaccine era population. It is apparent that these introductions were sometimes accompa-

nied by limited local transmissions, resulting in small, localized outbreaks, but we found no

evidence to suggest that these result in the establishment of stable local source populations.

Notably, the post-immunization S. Typhi isolates from Loi (in the north of Thailand near the

border with Laos, from which it is separated by the Mekong river) were most closely related to

Laos isolates, whilst those from the capital Bangkok and nearby Nonthaburi and Srakaew dis-

tricts were closely related to other isolates from across Southeast Asia (Fig 2), suggesting there

may have been multiple routes of import into Thailand.

Our study is limited by the sample of isolates available for analysis, which was small and

reflects opportunistic sampling of sporadic local cases in the four sites and historical storage. A

larger collection of historical isolates from Thailand and neighboring countries in the 1970s

and 1980s would help to further elucidate the epidemiological patterns of S. Typhi before and

after the vaccination program. However, from our data, it is notable that the Thai isolates clus-

ter according to site, consistent with limited local transmission rather than dissemination of

lineages between locations. The only exception to this was two genotype 3.1.2 isolates, which

were collected from Srakaew in 1989 and Bangkok in 1992 and differed by only 4 SNPs. This is

consistent with either transfer between these cities in Thailand following an initial introduc-

tion into the country, or two independent transfers into Thailand from a common source. The

phylogenetic structure is most suggestive of the latter, but denser samples from Thailand and/

or potential source populations would be required to resolve this with confidence.

While our sample is small, this study is nevertheless the largest to date exploring genetic

diversity amongst S. Typhi from Thailand. An earlier global haplotyping study that included

seven Thai isolates [52] identified five distinct haplotypes in Thailand (H3, 1989; H42, 1990;

H50, 2002; Vi- H52, 1990; H79, 2002), three of which are related to genotypes that we identi-

fied amongst Thai strains in this study (H79, 2.3.4; H52, 3.4; H42, 3.1.2) [32]. Genotype 4.3.1

(H58) was not found amongst our historical Thai isolates. This is consistent with previously

published spatiotemporal analyses of the global isolate collection, which showed this rapidly

expanding clone only began spreading throughout Asia after 1990 [4]. To our knowledge the

only evidence to date of the presence of 4.3.1 (H58) in Thailand comes from the global study

[4], in which three isolates were identified from 2010–2011, most likely introduced from India.

Therefore, our genomic snapshot of the Thai S. Typhi population is consistent with previous

insights and is likely reasonably representative for the study period. In the years following the

vaccination program the prevalence of Typhoid fever in Thailand has continued to decline

[53, 54]. The vaccination program has been credited with reducing disease incidence in Thai-

land and was followed by increased economic development in the region as well as improve-

ments to both water and sanitation systems that have likely improved the control of such

outbreaks [53, 54]. Consequently, Typhoid fever is no longer considered a serious public

health threat in Thailand [53].

The presence of novel plasmids and prophages in the Thai isolates is also noteworthy.

While small plasmids of unknown function have been observed in S. Typhi previously [55],

they are infrequent compared to the IncHI1 MDR plasmid and the cryptic plasmid pHCM2

[33]. Presumably, such plasmids are ephemeral; possibly because their maintenance imposes a

fitness burden on the host cells so a strong selective advantage is required for retention [56,

57]. It is also possible that the lack of previous reports regarding the diversity of small plasmids

in S. Typhi reflects a technological complexity, however, this is bypassed with high-throughput

WGS and we detected negligible small plasmid content in the global collection of 1,832

genomes using the same screening approach [4, 32, 58]. Notably, few of the Thai plasmids

share nucleotide sequence homology with those previously described in S. Typhi, but were

closely related to those found in other Enterobacteriaceae. The novel pHCM2-like plasmid
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(pTy004_01) and two additional plasmids (pTy004_02 and pTy031_01) harbored genes associ-

ated with phage resistance, which could provide protection against phage predation [59–62].

We also observed two novel prophages integrated into Thai genomes, which both showed vari-

ation in their phage tail structural regions compared to close neighbors found in Shigella/E.

coli. These regions are typically responsible for binding of phage to host receptors [63–65],

thus the variation in these regions may be associated with recent adaptations to the S. Typhi

host. While genomic data from more recent S. Typhi collections shows limited evidence for

genetic exchange with other organisms [4], the detection amongst older Thai isolates of both

phage and plasmids that have been previously associated with E. coli/Shigella suggests that

genetic exchange may have been more common in the past or in certain localized populations.

Overall, these data provide valuable historical insights into the S. Typhi populations circu-

lating in Thailand during the 1970s and 1980s, and early examples of the two most common S.

Typhi plasmids, as well as other mobile elements identified within the S. Typhi population.

Importantly, while genomic epidemiology has been applied to study typhoid transmission,

antimicrobial resistance evolution and antibiotic treatment failure in various settings [66–68],

this study provides an important proof-of-principle demonstration that this approach can also

provide useful insights into the impact of typhoid vaccines on circulating bacterial popula-

tions. This should motivate the adoption of WGS methods to monitor S. Typhi populations

during future immunization programs and other large-scale interventions, which could poten-

tially identify differential impacts on distinct genotypes.
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