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Introduction: Thyroid hormones (THs) are especially important for brainmaturation and development during the
fetal period and childhood. Several epidemiological studies have assessed the possible association between expo-
sure to perfluoroalkyl substances (PFAS) and thyroid outcomes during the early stages of life. We aimed to re-
view this evidence.
Methods: We conducted a systematic review in compliance with the PRISMA Statement (search conducted in
PubMed and Embase, as well as in the citations of the selected articles). We chose studies if they dealt with
thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxin (T4), or thyroid dysfunctions, and
perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) or
perfluorononanoic acid (PFNA) measured in the blood of pregnant women and/or children up to 19 years old.
Results: We included in this review three cross-sectional, one case-control, and six cohort studies (publication:
2011–2015), focusing on prenatal life (n = 7), childhood (n = 2) or both periods (n = 1). We observed a
high degree of heterogeneity across studies in terms of sampling time (different gestational weeks, at birth, or
childhood), outcomes, adjustment for potential confounders, and statistical approach. We found some evidence
of a positive association between PFHxS and PFOS exposure and TSH levels measured in maternal blood, and
PFNA and TSH levels measured in the blood of boys aged ≥11 years.
Conclusion: Although there is a small number of studies with comparable data, we found some consistency of a
positive association betweenmaternal or teenage male exposure to some PFAS and TSH levels based on the cur-
rent literature. However, further studies are required to confirm these possible relationships.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Perfluoroalkyl substances (PFAS) are synthetic chemicals with
unique properties, such as insolubility in both organic solvents and
water, and the ability to repel oils and water. They have been
manufactured for industrial applications since the 1940s, and they
are found and used in many common industrial and consumer prod-
ucts such as fire-fighting foams, alkaline cleaners, floor polishes,
photographic films, shampoos, ant insecticides, soil- and stain-
resistant coatings for fabrics, carpets and leather, as well as in
grease- and oil-resistant coatings for paper products, among others
(OCDE, 2005; Renner, 2001; WHO, 2013). In the general population,
the main routes of exposure to these substances are via food, food
packaging and drinking water (Domingo et al., 2012; Vestergren
et al., 2008). Nearly all individuals, including pregnant women and
children, in the many populations studied worldwide (Fromme et al.,
2009; Kato et al., 2011; Manzano-Salgado et al., 2016; Mondal et al.,
2012; Mørck et al., 2015; Zhao et al., 2012), showed measurable blood
concentrations of four PFAS (perfluorohexane sulfonate [PFHxS],
perfluorooctanoic [PFOA], perfluorooctane sulfonate [PFOS], and
perfluorononanoic acid [PFNA]). Although there have been phase-out
agreements regarding the production of certain PFAS by the industry
in U.S. and Europe (WHO, 2013), due to their ubiquitous presence,
long half-life in humans (Bartell et al., 2010; Olsen et al., 2007), and a
tendency for bioaccumulation and biomagnification (WHO, 2013), ex-
posure to this class of compounds will persist for many years, thereby
making them a potential threat to humans.

Concern about exposure to PFAS has increased after the publication
of recent studies showing that these chemicals have endocrine-
disrupting properties and, among their possible health effects, PFAS
may have the ability to impair thyroid function (Jensen and Leffers,
2008). Our review focuses on PFAS and thyroid disruption during
the prenatal and childhood periods because thyroid hormones
(THs) are especially important during brain maturation and the de-
velopment of the fetus and children (Dussault and Ruel, 1987). THs
are involved in the processes of dendritric and axonal growth, synap-
togenesis, neurogenesis, and myelination during intrauterine life
(Bernal, 2007). After birth, they are still essential, since some of

these neurodevelopmental processes, such as myelination, are not
completed until adolescence (Rice and Barone, 2000; Schug et al.,
2015) and they also play a role in the behavior and cognitive func-
tions of the young and adolescent brain (Anderson, 2001). In fact,
disorders involving TH availability, even subclinical maternal hypo-
thyroidism (Haddow et al., 1999) or subtle changes in TH homeosta-
sis during the first years of life (Freire et al., 2010; Julvez et al., 2013)
may lead to delays in child neuropsychological development. Addi-
tionally, TH deficiency during infancy, childhood and puberty causes
growth delay and precocious puberty in both sexes, and hirsutism in
females (Papi et al., 2007). Finally, postnatal alterations of TH levels
are also correlated with a variety of adverse effects in the pulmonary
(Krude et al., 2002; Mendelson and Boggaram, 1991) and cardiovas-
cular (Asvold et al., 2007; Biondi et al., 2005; Osman et al., 2002) sys-
tems. Therefore, the possible effects of PFAS on thyroid function
during fetal and child life is a matter of public concern.

Prompted by the worldwide exposure to four PFAS (PFHxS, PFOA,
PFOS, and PFNA) and the essential role of the thyroid system in the de-
velopment and normal functioning of the body, we aimed to assess the
evidence of associations betweenexposure to PFAS and thyroid function
in pregnant women and children up to 19 years old.

2. Methods

We developed a protocol and performed a systematic review in ac-
cordance with the general principles recommended in the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement (Moher et al., 2010).

2.1. Eligibility criteria and search strategy

Studies selected for the reviewwere those carried out in populations
of pregnant women or children up to 19 years old, written in English or
Spanish, and published before the endof December 2015. In thisfirst se-
lection of articles, we did not impose any restrictions on outcomes if at
least oneof the four chemicals (PFHxS, PFOA, PFOS, PFNA) or the generic
PFC, PFAA, and PFAS were included (more details about search syntax
can be found in Supplementary data). We did not include other PFAS
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in our review since the current published literature on their possible as-
sociation with thyroid function is still too scarce. We also located some
relevant studies after reading citations from the selected articles.

2.2. Study selection criteria

We used the PICOS framework (Liberati et al., 2009) to establish the
criteria for selecting the studies to be included in this review, since it of-
fers a structured approach for framing questions usingfive components,
as follows. Participants: Pregnant women and children up to 19 years
old. Studies on general or occupational populations were also eligible
if results were stratified by sex (specifying the pregnant status of
women) or age of the children, and only those results were included
in this review. Exposures: Studies on directmeasurement of PFAS in a bi-
ological matrix or indirect exposure estimations. Comparators: Continu-
ous PFAS levels or groups categorized according to individual PFAS
levels. Outcomes: TH levels (thyroid-stimulating hormone [TSH], total
triiodothyronine [TT3], free T3 [FT3], thyroxin [T4], and free T4 [FT4])
or thyroid dysfunctions. Study design: Cross-sectional, case-control,
and cohort studies.

Two reviewers screened the titles and abstracts independently. Res-
olution in case of disagreement was achieved by discussion and consul-
tation with a third reviewer. Data were abstracted by one reviewer and
checked by the other two, and all of themalso assessed themethodolog-
ical quality of the articles that were finally included.

2.3. Assessment of the methodological quality of the articles

A validated tool to evaluate the methodological quality of observa-
tional studies is still lacking. As in some previous systematic reviews
(Olmos et al., 2008; Ricci-Cabello et al., 2010; González-Alzaga et al.,
2014; Rodríguez-Barranco et al., 2013), we assessed themethodological
quality of the studies using the nine items included in theMethods sec-
tion of the STROBE statement checklist (Strengthening the Reporting of
Observational Studies in Epidemiology Statement) (von Elm et al.,
2014). Studies with low scores according to the STROBE checklist
were excluded from the review. For more information about the
STROBE checklist items used, see Supplementary data, Table S1.

2.4. Data extraction and synthesis

Tables 1–5 and Fig. 1 summarize the data extracted from the select-
ed articles, which include information on design, location, sample size,
date, outcomes, PFAS, matrices, time of sample collection, statistical
analyses, covariates included in the models, and main findings (esti-
mates of the fully adjusted models are presented in tables). For all the
studies reviewed, the summarized information was based on results
presented in the original papers except for Tables 2 and 4 and Fig. 1,
since some data (sample size, percentiles, minimums and/or maxi-
mums) not included in the articles were provided by authors (see foot-
notes for further information). Publicly available data from the 2011–
2012 National Health and Nutrition Examination Survey (NHANES), a
nationally representative sample of non-institutionalized U.S. residents
(NHANES, 2015),was used to replicate the same database thatwas used
in Lewis et al. (2015). In that study the authors reported sex-stratified
PFAS concentrations in boys (n = 158) and girls (n = 145) aged 12–
19 years, while we present these values for all children (n = 303) in
Table 2 and Fig. 1.

3. Results

The database search identified 380 citations, and we identified
another 16 citations from additional searches in other sources. A
total of 319 citations were excluded at the title/abstract stage (unre-
lated to study topic or duplicates), leaving 77 articles for examina-
tion of the full text. Of these, 66 were later excluded because they

did not meet the inclusion criteria. Hence, altogether, we identified
eleven eligible studies from the searches (PRISMA flow diagram,
see Supplementary data, Figure S1). One of them (Inoue et al.,
2004) was a very preliminary and rather descriptive study on the as-
sociation between PFAS and THs and achieved a low quality score ac-
cording to the STROBE checklist. Therefore, this article was not
included in the review. All included studies (n = 10) achieved a
high score according to the STROBE checklist (Table 1).

Various design features (i.e., choice of population, outcomes, co-
variates, and analysis type) could all be important in generating dif-
ferences in results between studies, and these attributes are
summarized in the sections that follow. The articles have been
grouped by study populations and PFAS examined, and within each
group the differences in design features generally seem to be limited,
the most noticeable discrepancies being found in the mean expo-
sures by study for some PFAS and the inclusion of some of the
confounders.

3.1. Study population

A description of the epidemiologic studies is shown in Table 1. The
studies were conducted in Asia, Europe, and North America. Sample
size varied fromaround40 to N10,000 participants and theparticipation
rate, when provided (Lin et al., 2013; Lopez-Espinosa et al., 2012b;
Wang et al., 2013; Webster et al., 2011), ranged between 7.6 and 95%
(data not shown). The design of the studies was either cross-sectional
(n = 3), case-control (n = 1), or cohort (n = 6), although some of
the latter also performed cross-sectional analyses. Chan et al. (2011)
conducted a case-control study among women with or without
hypothyroxinemia, Lin et al. (2013) focused on adolescents and young
adults with abnormal urinalysis during childhood, and Lopez-Espinosa
et al. (2012b) conducted a study in pregnant mothers and children
from a community living near a fluoropolymer manufacturing facility.
The remaining studies focused on pregnant women and children from
general populations. Most authors adjusted the statistical analyses for
maternal or child age (n=9). The other variables of adjustment present
a greater variation among studies (Table 1).

3.2. PFAS

3.2.1. Blood compartments
Seven out of the ten studies used serum for contaminant analysis,

and the rest used plasma (Tables 1 and 2).

3.2.2. Time of sampling and analysis
During pregnancy, a total of six studies determined PFAS concentra-

tions in the second (n=4) or third (n=2) trimester, and one of these
studies also measured these chemicals in cord serum. In addition, one
study measured PFAS only in cord plasma, another used modeled ma-
ternal serum concentrations during the first trimester of pregnancy in
addition to serummeasures in children aged 1–17 years, and two stud-
ies measured these contaminants in the plasma or serum of children
aged 12–19 years (Tables 1 and 2). In all the studies, PFAS were mea-
sured using liquid chromatography separation coupledwithmass spec-
trometry (LC/MS). The ranges of the limits of detection (LODs) or
quantification (LOQs) were 0.05–0.5, 0.03–1.5, 0.04–0.5 and 0.04–
0.75 ng/mL, for PFHxS, PFOA, PFOS, and PFNA, respectively (data not
shown).

3.2.3. PFAS concentrations
PFOA and PFOSwere measured in all the studies, while PFHxS and

PFNA were determined in seven of them. PFOA levels were higher in
the population living in the vicinity of a Teflonmanufacturing facility
(child serum median: 29.3 ng/mL, modeled in utero serum:
11.5 ng/mL) (Lopez-Espinosa et al., 2012b) compared to the rest of
the populations (median range: 0.89–4.3 ng/mL). PFOS was the
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most commonly detected (N80–100%), with a greater variation in its
concentrations (median range: 1.3–20 ng/mL). Less variation was
observed for PFHxS (median range: 0.3–1.1 ng/mL) and PFNA (0.4–
1.5 ng/mL) among studies, and concentrations were lower compared
to the other PFAS (Table 2 and Fig. 1).

3.3. TH outcomes

3.3.1. Blood compartments
Eight, one and one studies used serum, plasma and blood for hor-

mone analysis, respectively (Tables 1 and S2).

Table 1
Description of epidemiological studies on prenatal and child PFAS exposure and thyroid function.

Study Design Location
(Date)

Population (n),
age

PFAS PFAS
matrix

TH TH matrix Statistical analysis Adjusted variables MQ

Lewis et al.
(2015)

C-S U.S.
(2011-12)

NHANES
children (303),
range: 12-19 yrs

PFHxS
PFOA
PFOS
PFNA

Child
serum

TSH Child serum Multiple linear regression models
between log2(PFAS) and log2(THs).
Sensitivity analysis with categorized
PFAS into quartiles

Child age, BMI, poverty
income ratio, race/ ethnicity,
and serum cotinine

H
TT4
FT4
TT3
FT3

Berg et al.,
2015

C(P) Norway
(2007-09)

Pregnant
women (391),
median (range):
32 (18-43) yrs

PFHxS
PFOA
PFOS
PFNA

Maternal
serum
(2nd T)

TSH Maternal
serum (2nd

T, 3 days,
and 6 wks
after birth)

Mixed effects models between PFAS
(in quartiles) and mean effect of three
repeated measurements of THs
(log-transformed)

Parity, maternal age, BMI,
and thyroxin binding
capacity

H
TT4
FT4
TT3
FT3

de Cock et al.,
2014

C(P) Zwolle,
Netherlands
(2011-13)

Pregnant
women (83),
mean (range):
32.6 (23-40) yrs;
neonates (83)

PFOA
PFOS

Cord
plasma

TT4 Infant
blood (4-7
days of age)

Multiple linear regression models
between PFAS (in quartiles) and TT4
stratified by sex (by means of an
interaction term included in models)

Maternal age, GWG, BMI,
smoking, alcohol intake,
thyroid problem, thyroid
medication, parity,
gestational age, and birth
weight

H

Wang et al.,
2014

C(P) Taiwan
(2000-01)

Pregnant
women (285),
mean: 28.8 yrs;
neonates (116)

PFHxS
PFOA
PFOS
PFNA

Maternal
serum
(3rd T)

TSH Maternal
serum (3rd

T)
Cord serum

Multiple linear regression models
between PFAS and THs

Maternal age, education,
previous children, neonatal
sex, and type of delivery

H
TT4
FT4
TT3

Webster et al.,
2014

C(P) Vancouver,
Canada
(2007-08)

Pregnant
women (152),
mean (range):
34 (25-43) yrs

PFHxS
PFOA
PFOS
PFNA

Maternal
serum
(2nd T)

TSH Maternal
serum
(twice in
2nd T)

Mixed effects linear regression
models between PFAS and THs with a
random intercept for subject.
Interaction between TPOAb status and
PFAS also included in models

Gestational age at blow
draw, time of day of
sampling, and TPOAb status

H
TT4
FT4

Lin et al., 2013 C-S Taipei,
Taiwan
(2006-08)

Children (212),
range: 12-19 yrs

PFOA
PFOS
PFNA

Child
plasma

TSH Child serum Multiple linear regression models
between categorizeda PFAS and
ln(TSH) or FT4 stratified by sex

Child age, sex, smoking and
drinking status

H
FT4

Wang et al.,
2013

C-S Norway
(2003-04)

Pregnant
women (903),
mean (range):
30 (18-44) yrs

PFHxS
PFOA
PFOS
PFNA

Maternal
plasma
(17-18
gws)

TSH Maternal
plasma
(17-18
gws)

Multiple linear regression models
between PFAS (continuous or
quartiles) and ln(TSH)
Logistic regression with
dichotomizedb TSH as the outcome

Maternal age, HDL levels,
total seafood intake, parity,
inter-pregnancy interval, and
gestational age at blood draw

H

Lopez-Espinosa
et al., 2012b

C(R) Mid-Ohio
Valley, U.S.
(1987-06)

Pregnant
women (4,713),
mean: 26 yrs;
children
(10,725), range:
1-17 yrs

PFOA
PFOS
PFNA

Modeled
serum
levels in
utero
(1st T)
Child
serum

TSH Child serum
(1-17 yrs)

Multiple linear regression models
between ln(PFAS) or PFAS in quartiles
and ln(TSH) or TT4. Same analyses
stratified by sex and age groups.
Logistic regression models with
reported thyroid diseasec and
subclinicald hypo/hyperthyroidism as
the outcomes

Child age, sex, and month of
sampling

H
TT4

Chan et al.,
2011

C-C Alberta,
Canada
(2005-06)

Pregnant
women (271),
mean (range):
31 (20-45) yrs

PFHxS
PFOA
PFOS

Maternal
serum
(15-16
gws)

TSH Maternal
serum
(15-16
gws)

Adjusted conditional logistic
regression models between ln(PFAS)
in maternal serum and
hypothyroxinemiae

Maternal age, weight, race,
and gestational age at blood
draw

H
FT4

Kim et al., 2011 C(P) Seoul,
Gumi,
Cheongju
South Korea
(2008-09)

Pregnant
women (44),
mean (range):
32 (22-44) yrs;
newborns (43)

PFHxS
PFOS
PFOAf

Maternal
serum
(3rd T)
Cord
serum

TSH Cord serum Pearson correlations between
ln(PFAS) and ln(THs) with- and
without adjustment for influential
covariates

Maternal age, BMI, and
gestational age at blood draw

H
TT4
TT3

BMI: body mass index; C-C: case-control; C(P): cohort (prospective); C(R): cohort (retrospective); C-S: cross-sectional; FT3: free triiodothyronine; FT4: free thyroxin; GWG: gestational
weight gain; gws: gestational weeks; H: high; HDL: high density lipoprotein; ln: natural log transformed; MQ: methodological quality; n: sample size; PFAS: perfluoroalkyl substances;
PFHxS: perfluorohexane sulfonate; PFNA: perfluorononanoic acid; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; T: trimester; TH: thyroidhormone; TPOAb: thyroid per-
oxidase antibody (dichotomized according to clinical guidelines, high: ≥9 IU/mL versus normal: b9 IU/mL); TSH: thyroid-stimulating hormone; TT4: total thyroxin; TT3: total triiodothy-
ronine; wks: weeks; yrs: years.
Some authors included adults in their articles (Lewis et al. and Lin et al.), this information has not been discussed in this review.

a Cut-off values: 50th, 75th and 90th percentiles for PFOA; 25th, 50th and 75th percentiles for PFOS, and 60th and 90th percentiles for PFNA.
b TSH above the 95th percentile (7.5 μIU/mL).
c For three categories of self-reported disease: any thyroid disease, hypothyroidism, and thyroid disease plus thyroid medication.
d TT4 within the normal reference range (4.5–12 μg/dL) and TSH N5.97, N4.84, N4.5 μIU/mL in children b6, 6–10, 11-17 years old for subclinical hypothyroidism and TSH b0.7, b0.6,

b0.45 μIU/mL in children b6, 6–10, 11-17 years old for subclinical hyperthyroidism. Children who self-reported thyroid disease and/or thyroid medication were excluded.
e Hypothyroxinemia: defined by authors as normalmaternal TSH levelswith no evidence of hyperthyroidism (0.15-≤4mU/L) andmaternal FT4 levels in the lowest 10th percentile (≤8.8

pmol/L) of the sample. Controls: normal TSH (0.15-≤4 mU/L), and FT4 between the 50th and 90th percentiles (12–14.1 pmol/L).
f Kim also measured PFNA but associations with THs were not studied and, therefore, it has not been included in this review. In this article, all samples were collected during the 3rd

trimester of pregnancy except seven of them collected at 20-25 weeks of gestation.
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3.3.2. Time of sampling and analysis
During pregnancy, THs were measured in the second (n = 4) or

third (n = 1) trimester, as well as in cord serum (n = 2). Berg et al.
(2015) collected two additional blood samples at 3 days and 6 weeks
after delivery andWebster et al. (2014)measured hormones twice dur-
ing the second trimester of pregnancy. Also after birth, THs were mea-
sured in newborn blood (n = 1) or child serum (n = 3) (Table 1). All
studies used different types of immunoassays to determine TH levels
(data not shown).

Four of the studies on TH levels excluded participants who reported
any thyroid disease and/or were taking thyroid medication
(Lopez-Espinosa et al., 2012b; Wang et al., 2013, 2014; Webster et al.,
2014), one of them (Webster et al., 2014) also excluded women with
other endocrine alterations, such as diabetes mellitus, which is known
to affect TH levels (data not shown), and another article (de Cock
et al., 2014) adjusted models for data on thyroid gland problems and
thyroid medication use (Table 1).

3.3.3. TH levels
TSHwas assessed in nine studies, TT4 in seven, FT4 in six, TT3 in four,

and FT3 in two (Tables 1 and S2). Median ranges of TSH and TT4 levels
were 0.65–6.65 mIU/L and 107.7–145 nmol/L, respectively, in both the
prenatal and at–birth studies. Respective data during childhood were
1.4–1.83 mIU/L and 95.2–99.1 nmol/L, and de Cock et al. (2014) found
mean levels of TT4 of 85.6 and 89.6 mIU/L in infant boys and girls,

respectively. Few studies measured other hormones (FT4, TT3 and
FT3) during these two periods to compare results. In the only study
measuring maternal levels during pregnancy and after birth (Berg
et al., 2015), levels of TSH, TT4, and TT3 decreased after birth, while
levels of the free hormones (FT4 and FT3) increased (Table S2).

3.3.4. Thyroid dysfunction outcomes
The outcome investigated by Chan et al. (2011) was

hypothyroxinemia in pregnant women. Lin et al. (2013) andWang et al.
(2013) investigated dichotomized TSH levels as the outcome, but the for-
mer did not stratify by age and the results are not included in this review.
Webster et al. (2014) assessed the effect of PFAS inwomenwith high thy-
roid peroxidase antibody (TPOAb) levels, which is a marker of autoim-
mune hypothyroidism, including the interaction between TPOAb status
and PFAS in the models. Berg et al. (2015) studied the association with
subclinical hypothyroidism based on TH levels. Lopez-Espinosa et al.
(2012b) investigated the association with self-reported thyroid disease,
thyroid medication plus thyroid disease, hypothyroidism, and subclinical
hypo/hyperthyroidism based on TH levels (Table 1).

3.4. Analysis of the relation between PFAS and THs

Seven studies examined the association between prenatal PFAS ex-
posure and TH levels measured during the prenatal, neonatal or child
periods (Table 3) and three cross-sectional studies between child PFAS
and TH levels (Table 4).

Table 2
Summary of PFAS concentrations (ng/mL).

Study Detected levelsa.
Statistics

Matrix PFHxS PFOA PFOS PFNA

Maternal PFAS

Berg et al., 2015 % NLOD Maternal serum 99 100 N80 100
Median (P25, P75) 0.44 (0.28, 0.66) 1.53 (0.99, 2.16) 8.03 (5.76, 11.01) 0.56 (0.43, 0.78)

Webster et al., 2014 % NLOD Maternal serum 84 99 100 62
Median (P25, P75) 1.0 (0.7, 1.7) 1.7 (1.0, 2.4) 4.8 (3.2, 6.5) 0.6 (b0.5, 0.8)

Wang et al., 2014 % NLOQ Maternal serum 78 87 100 96
Median (P25, P75) 0.81 (0.30, 1.35) 2.39 (1.54, 3.40) 12.73 (9.65, 17.48) 1.51 (0.85, 2.51)

Wang et al., 2013 % NLOQ Maternal plasma 99 100 100 99
Median (P25, P75) 0.60 (0.43, 0.84) 2.15 (1.57, 2.95) 12.81 (10.13, 16.49) 0.39 (0.28, 0.51)

Lopez-Espinosa et al.,
2012b

% NLOD Maternal serum (modeled
in utero)

- 100 - -
Median (P25, P75) - 11.5 (5.36, 37.2) - -

Chan et al., 2011 % NLOD Maternal serum in cases 94 89 99 -
Median (P25, P75) 0.99 (0.58, 2.28) 1.63 (0.74, 2.61) 7.75 (5.19, 11.44) -

Maternal serum in controls 93 93 100 -
0.94 (0.54, 1.96) 1.50 (0.89, 2.55) 8.22 (5.19, 11.91) -

Kim et al., 2011 % NLOD Maternal serum 100 100 100 -
Median (P25, P75) 0.55 (0.46, 0.85) 1.46 (1.15, 1.91) 2.93 (2.08, 4.36) -

Cord PFAS

de Cock et al., 2014 % NLOQ Cord plasma - 100 100 -
Median (P25, P75)b - 0.89 (0.59, 1.18) 1.6 (1.0, 2.08) -

Kim et al., 2011 % NLOD Cord serum 100 100 100 -
Median (P25, P75) 0.34 (0.27, 0.51) 1.15 (0.95, 1.86) 1.26 (0.81, 1.82) -

Child PFAS

Lewis et al., 2015 % NLOD Child serum 99 100 100 100
Median (P25, P75) 1.05 (0.66, 1.92) 1.71 (1.32, 2.35) 4.19 (2.71, 6.22) 0.75 (0.53, 1.16)

Lin et al., 2013 % NLOD Child plasmac - 61 98 42
Median (P25, P75) - 4.29 (0.75, 6.78) 8.0 (4.97, 11.43) 0.38 (0.38, 3.13)

Lopez-Espinosa et al.,
2012b

% NLOD Child serum - 100 99.8 99
Median (P25, P75) - 29.3 (13.1, 67.7) 20.0 (14.5, 27.8) 1.50 (1.20, 2.00)

- Not studied; LOD: limit of detection; LOQ: limit of quantification; P: percentile; PFAS: perfluoralkyl substances; PFHxS: perfluorohexane sulfonate; PFNA: perfluorononanoic acid; PFOA:
perfluorooctanoic acid; PFOS: perfluorooctane sulfonate.
Somedata not included in the articleswas provided by authors (percentiles: Berg et al. and deCock et al.; %NLOD,median andpercentiles for children aged 12-19 years: Lin et al.). Database
used in Lewis et al. has been replicated using publicly-available data from NHANES, 2011–2012 (NHANES, 2015), since Lewis et al. reported sex-stratified PFAS concentrations and we
present data for both girls and boys.

a Imputation of non-detected concentrations: based on expected values assuming a log-normal distribution in Wang et al. (2014); LOD/√2 in Berg et al., Webster et al., Kim et al., and
Lewis et al.; LOQ/√2 in de Cock et al. and Wang et al. (2013); and LOD/2 in Lin et al., Lopez-Espinosa et al., and Chan et al.

b n = 64.
c Matrix taken from the "Material and Methods" section of the article.

19V. Ballesteros et al. / Environment International 99 (2017) 15–28



Table 3
Summary of associations between prenatal PFAS exposure (ng/mL) and THs measured at different lifestages.

Study Expression of results TH matrix (units) n Associations between PFAS and THs

PFHxS PFOA PFOS PFNA

Maternal PFAS

Berg et al., 2015 Estimated mean differences in
THsa (95% CI) across PFAS Qs

Maternal TSH (mLU/L) 375 NS NS ↑: Q2: 0.18 (0.06, 0.31)a NS
↑*: Q3: 0.26 (0.13, 0.40)
↑*: Q4: 0.35 (0.21, 0.50)

Webster et al. (2014) β (95% CI) per IQRb ng/mL
increase in PFAS

Maternal TSH (mIU/L) 151 ↑: 0.01 (-0.05, 0.07) ↑: 0.1 (-0.05, 0.3) ↑: 0.1 (-0.03, 0.2) ↑*: 0.2 (0.01, 0.3)
Maternal TT4 (nmol/L) 151 ↓: -0.8 (-2, 0.6) ↓: -2 (-6, 2) ↓: -2 (-5, 1) ↓: -2 (-5, 2)
Maternal FT4 (pmol/L) 150 ↓: -0.02 (-0.1, 0.07) ↓: -0.06 (-0.3, 0.2) ↑: 0.03 (-0.2, 0.2) ↓: -0.03 (-0.2, 0.2)

Wang et al., 2014 β (95% CI) per 1 ng/mL increase
in PFAS

Maternal TSH (μIU/mL) 283 ↑*: 0.105 (0.002, 0.207) ↑: 0.011 (-0.057, 0.078) ↓: -0.005 (-0.024, 0.013) ↑: 0.033 (-0.046, 0.112)
Maternal TT4 (μg/dL) 274 ↓: -0.130 (-0.316, 0.057) ↑: 0.011 (-0.108, 0.130) ↑: 0.019 (-0.016, 0.053) ↓*: -0.189 (-0.333, -0.046)
Maternal FT4 (ng/dL) 285 ↓: -0.010 (-0.023, 0.003) ↓: -0.003 (-0.012, 0.005) ↑: 0.001 (-0.002, 0.003) ↓*: -0.019 (-0.028, -0.009)
Maternal TT3 (μg/dL) 276 ↓: -0.002 (-0.005, 0.001) ↓: -0.000 (-0.002, 0.009) ↑: 0.000 (-0.002, 0.001) ↓: -0.001 (-0.003, 0.002)
Cord TSH (μIU/mL) 114 ↑: 0.493 (-1.449, 2.434) ↓: -0.498 (-1.464, 0.468) ↓: -0.083 (-0.292, 0.127) ↓: -0.361 (-0.955, 0.234)
Cord TT4 (μg/dL) 116 ↑: 0.002 (-0.495, 0.500) ↑: 0.128 (-0.094, 0.350) ↑: 0.032 (-0.024, 0.087) ↓*: -0.213 (-0.384, -0.042)
Cord FT4 (ng/dL) 92 ↓: -0.030 (-0.098, 0.039) ↓: -0.029 (-0.062, 0.004) ↑: 0.001 (-0.006, 0.008) ↑: 0.001 (-0.021, 0.023)
Cord TT3 (μg/dL) 112 ↓: -0.001 (-0.007, 0.004) ↓: -0.001 (-0.004, 0.001) ↑: 0.000 (-0.000, 0.001) ↓*: -0.002 (-0.004, -0.001)

Wang et al., 2013 β (95% CI) per 1 ng/mL increase
in PFAS

Maternal lnTSH (μIU/mL) 903 ↑: 0.013 (-0.043, 0.070) ↓: -0.0001 ( -0.045, 0.44) ↑*: 0.008 (0.001, 0.016) ↑: 0.165 (-0.023, 0.353)

Lopez-Espinosa et al., 2012b % change (95% CI) in TH per IQRb

ng/mL increase in modeled in
utero PFOA

Child TSH (μIU/mL) 476 (1-5 yrs) - ↓: -3.4 (-8.8, 2.4) - -
1,405 (6-10 yrs) - ↓: -1.5 (-4.9, 2.1) - -
2,741 (11-17 yrs) - ↑: 0.1 (-2.2, 2.5) - -
4,622 (1-17 yrs) - ↓: -0.5 (-2.4, 1.5) - -

Child TT4 (μg/dL) 484 (1-5 yrs) - ↑*: 2.0 (0.1, 3.9) - -
1,410 (6-10 yrs) - ↑: 0.9 (-0.3, 2.1) - -
2,744 (11-17 yrs) - ↓: -0.7 (-1.5, 0.2) - -
4,638 (1-17 yrs) - ↓: -0.1 (-0.8, 0.6) - -

Kim et al., 2011 Pearson correlation coefficient
(r)

Cord TSH (μIU/mL) 29 ↑: 0.091 ↑*: 0.443 ↑: 0.109 -
Cord TT4 (μg/dL) 33 ↑: 0.030 ↓: -0.071 ↓: -0.181 -
Cord TT3 (ng/dL) 32 ↓: -0.261 ↓: -0.238 ↓*: -0.414 -

Cord PFAS

de Cock et al., 2014 β (95% CI) of each PFAS Q
compared to Q1, by sex

Newborn TT4 (nmol/L) 52 - ↑:Q2b: 7.9 (-18.04, 33.92) ↓:Q2b: -7.9 (-31.56, 15.74) -
52 ↓:Q3b: -2.1 (-20.94, 16.78) ↓:Q3b: -16.5 (-40.32, 7.34)
52 ↑:Q4b: 6.2 (-16.08, 28.50) ↓:Q4b: -9.6 (-32.57, 13.31)
52 ↓:Q2g: -5.9 (-26.75, 14.94) ↓:Q2g: -1.3 (-30.45, 27.94)
52 ↑:Q3g: 11.8 (-19.08, 42.72) ↑:Q3g: 4.5 (-25.95, 34.92)
52 ↑*:Q4g: 38.6 (13.34, 63.83 ↑:Q4g: 15.9 (-10.67, 42.40)

Kim et al., 2011 Pearson correlation coefficient
(r)

Cord TSH (μIU/mL) 31 ↓: -0.069 ↑: 0.089 ↓: -0.088 -
Cord TT4 (μg/dL) 35 ↓: -0.111 ↓: -0.157 ↓: -0.048 -
Cord TT3 (ng/dL) 34 ↓: -0.178 ↓: -0.240 ↓: -0.157 -

↑ Positive association; ↓ negative association; * pb0.05; - not studied; b: boys; CI: confidence interval; FT4: free thyroxin; g: girls; IQR: interquartile range; ln: natural log transformed; n: sample size; NS: non-significant; PFAS: perfluoroalkyl sub-
stances; PFHxS: perfluorohexane sulfonate; PFNA: perfluorononanoic acid; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; Q: quartile; TH: thyroid hormone; TSH: thyroid-stimulating hormone; TT4: total thyroxin; TT3: total triio-
dothyronine; yrs: years.
Some data not included in the articles were provided by authors (sample size of each model: Lopez-Espinosa et al.)

a Results for TSH but not for T3 or T4 are presented in Berg et al. p b0.05 for Q3 and Q4. Q1 is the reference group.
b IQRs (in ng/mL): 1.0(PFHxS), 0.4(PFNA), 1.4(PFOA) and 3.3(PFOS) in Webster et al.; 47.1, 38.5, 23.1, and 31.8 for 1-5, 6-10, 11-17, and 1-17 yrs groups (modeled in utero PFOA) in Lopez-Espinosa et al.
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Table 4
Summary of associations between child PFAS exposure (ng/mL) and THs.

Study Expression of results TH (units) n Associations between PFAS and THs

PFHxS PFOA PFOS PFNA

Lewis et al. (2015) % change (95% CI) in TH per
doubling in PFAS concentration

TSH (μIU/mL) 158 boys (12-19 yrs) ↑: 6.2 (-1.5, 14.5) ↑: 9.6 (-7.1, 29.4) ↑*: 12.3 (0.7, 25.2) ↑*: 16.3 (4.0, 30.2)
TT4 (μg/dL)a ↓: -2.1 (-4.4, 0.2) ↓: -1.6 (-6.6, 3.6) ↓: -1.1 (-4.4, 2.3) ↑: 0.6 (-2.9, 4.3)
FT4 (ng/dL) ↓: -1.5 (-3.5, 0.5) ↓: -0.6 (-4.9, 4.0) ↑: 0.6 (-2.4, 3.6) ↑: 2.6 (-0.5, 5.8)
TT3 (ng/dL) ↑: 0.2 (-1.9, 2.4) ↓: -1.9 (-6.4, 2.9) ↓: -1.6 (-4.7, 1.5) ↓: -1.1 (-4.2, 2.2)
FT3 (pg/mL) ↑: 0.0 (-1.4, 1.4) ↑: 0.8 (-2.2, 3.9) ↓: -0.3 (-2.3, 1.7) ↑: 0.3 (-1.8, 2.4)
TSH (μIU/mL) 145 girls (12-19 yrs) ↓: -4.1 (-11.8, 4.3) ↓*: -16.6 (-28.6, -2.6) ↓: -6.6 (-16.0, 3.8) ↑: 4.2 (-8.4, 18.5)
TT4 (μg/mL) ↓: -0.3 (-2.8, 2.1) ↑: 4.1 (-0.6, 8.9) ↓: -0.3 (-3.4, 2.8) ↓: -3.2 (-6.7, 0.5)
FT4 (ng/dL) ↑: 0.2 (-2.1, 2.6) ↑: 2.1 (-2.2, 6.7) ↑: 0.1 (-2.8, 3.1) ↓: -2.6 (-6.0, 8.9)
TT3 (ng/dL) ↓: -1.3 (-3.7, 1.1) ↑: 0.3 (-4.2, 5.1) ↓: -2.3 (-5.2, 0.8) ↓: -1.6 (-5.3, 2.2)
FT3 (pg/mL) ↓: -0.8 (-2.6, 1.1) ↑: 1.1 (-2.4, 4.7) ↓: -1.1 (-3.3, 1.3) ↓: -1.9 (-4.7, 0.9)

Lin et al. (2013) p for trendb lnTSH (μIU/L) 65 boys (12-19 yrs) - pN0.05 pN0.05 pN0.05
FT4 (ng/dL) - pN0.05 pN0.05 pN0.05
lnTSH (μIU/L) 144 girls (12-19 yrs) - pN0.05 pN0.05 pN0.05
FT4 (ng/dL) - pN0.05 pN0.05 pN0.05

Lopez-Espinosa et al., 2012b % change (95% CI) in TH per IQRc

ng/mL increase in PFAS
TSH (μIU/mL) 3,328 boys (11-17 yrs) - ↑: 1.6 (-1.1, 4.3) ↑: 1.1 (-1.0, 3.2) ↑*: 2.0 (0.0, 4.0)
TT4 (μg/dL) 3,334 boys (11-17 yrs) - ↑ : 0.5 (-0.5, 1.4) ↑* : 1.2 (0.5, 2.0) ↑* : 1.9 (1.2, 2.6)
TSH (μIU/mL) 3,062 girls (11-17 yrs) - ↑: 2.4 (-0.7, 5.7) ↑: 0.8 (-1.9, 3.5) ↑: 0.2 (-2.0, 2.4)
TT4 (μg/dL) 3,064 girls (11-17 yrs) - ↓ : -0.9 (-2.0, 0.2) ↑* : 1.1 (0.1, 2.0) ↑: 0.5 (-0.3, 1.3)
TSH (μIU/mL) 6,390 children (11-17 yrs) - ↑: 2.0 (-0.1, 4.1) ↑: 0.9 (-0.8, 2.7) ↑: 1.1 (-0.5, 2.8)
TT4 (μg/dL) 6,398 children (11-17 yrs) - ↓ : -0.3 (-1.1, 0.4) ↑* : 1.2 (0.6, 1.9) ↑* : 1.3 (0.7, 1.9)
TSH (μIU/mL) 1,586 boys (6-10 yrs) - ↓: -1.1 (-4.4, 2.3) ↓: -1.7 (-4.5, 1.2) ↓: -0.9 (-3.3, 1.6)
TT4 (μg/dL) 1,597 boys (6-10 yrs) - ↑: 0.1 (-1.1, 1.3) ↑: 0.4 (-0.7, 1.4) ↑: 0.5 (-0.4, 1.4)
TSH (μIU/mL) 1,475 girls (6-10 yrs) - ↑: 2.2 (-1.7, 6.3) ↑: 2.1 (-1.7, 5.7) ↑: 1.0 (-2.4, 4.4)
TT4 (μg/dL) 1,480 girls (6-10 yrs) - ↑: 1.9 (0.6, 3.2) ↑*: 1.5 (0.4, 2.7) ↑*: 1.4 (0.3, 2.5)
TSH (μIU/mL) 3,061 children (6-10 yrs) - ↑: 0.5 (-2.0, 3.1) ↑: 0.0 (-2.2, 2.3) ↑: 0.0 (-2.1, 2.1)
TT4 (μg/dL) 3,077 children (6-10 yrs) - ↑: 0.9 (0.0, 1.8) ↑*: 0.9 (0.2, 1.7) ↑*: 1.0 (0.3, 1.7)
TSH (μIU/mL) 471 boys (1-5 yrs) - ↓: -1.1 (-6.6, 4.7) ↑: 1.4 (-4.3, 7.5) ↓: -0.7 (-6.0, 4.8)
TT4 (μg/dL) 487 boys (1-5 yrs) - ↑: 1.3 (-0.7, 3.3) ↑: 0.4 (-1.7, 2.5) ↑: 1.1 (-0.8, 3.0)
TSH (μIU/mL) 500 girls (1-5 yrs) - ↓*: -7.7 (-13.2, -1.7) ↑: 4.7 (-0.9, 10.5) ↑: 1.5 (-3.8, 7.1)
TT4 (μg/dL) 510 girls (1-5 yrs) - ↓: -0.1 (-2.2, 2.0) ↑: 1.2 (-0.6, 3.0) ↑: 1.1 (-0.7, 2.9)
TSH (μIU/mL) 971 children (1-5 yrs) - ↓*: -4.3 (-8.2, -0.3) ↑: 3.1 (-0.9, 7.3) ↑: 0.2 (-3.5, 4.1)
TT4 (μg/dL) 997 children (1-5 yrs) - ↑: 0.7 (-0.7, 2.1) ↑: 0.8 (-0.6, 2.2) ↑: 1.1 (-0.2, 2.4)
TSH (μIU/mL) 5,385 boys (1-17 yrs) - ↑: 0.7 (-1.3, 2.7) ↑: 0.4 (-1.2, 2.1) ↑: 1.0 (-0.7, 2.6)
TT4 (μg/dL) 5,418 boys (1-17 yrs) - ↑: 0.4 (-0.3, 1.1) ↑*: 0.9 (0.3, 1.5) ↑*: 1.4 (0.9, 2.0)
TSH (μIU/mL) 5,037 girls (1-17 yrs) - ↑: 1.3 (-1.0, 3.8) ↑: 1.6 (-0.5, 3.6) ↑: 0.5 (-1.4, 2.5)
TT4 (μg/dL) 5,054 girls (1-17 yrs) - ↑: 0.0 (-0.8, 0.7) ↑*: 1.2 (0.5, 1.9) ↑*: 0.9 (0.2, 1.5)
TSH (μIU/mL) 10,422 children (1-17 yrs) - ↑: 1.0 (-0.5, 2.7) ↑: 1.0 (-0.3, 2.3) ↑: 0.8 (-0.4, 2.0)
TT4 (μg/dL) 10,472 children (1-17 yrs) - ↑: 0.1 (-0.5, 0.6) ↑*: 1.1 (0.6, 1.5) ↑*: 1.1 (0.7, 1.5)

↑ Positive association; ↓ negative association; * pb0.05; - not studied; CI: confidence interval; FT3: free triiodothyronine; FT4: free thyroxin; IQR: interquartile range; ln: natural log transformed; n: sample size; PFAS: perfluoroalkyl substances; PFHxS:
perfluorohexane sulfonate; PFNA: perfluorononanoic acid; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; TH: thyroid hormone; TSH: thyroid-stimulating hormone; TT4: total thyroxin; TT3: total triiodothyronine; yrs: years.
Some data not included in the articles were provided by authors (sample size of each model: Lopez-Espinosa et al.)

a Units for TT4 in Lewis et al. taken from: http://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/THYROD_G.htm#LBXTT4.
b Authors reported mean and standard error of natural log transformed TSH and FT4 across categories of PFAS concentrations in linear regression models. Although associations were not significant, mean levels of TSH increased across tertiles of

PFNA in boys.
c For the 1-5, 6-10, 11-17, and 1-17 years groups: 67.2, 63.4, 50.5, and 54.6 ng/mL (for PFOA), 12.9, 14.9, 12.6, and 13.3 ng/mL (for PFOS); and 0.8, 1.0, 0.8, and 0.8 ng/mL (for PFNA) in all children; 69.9, 63.1, 58.5, and 60.6 ng/mL (for PFOA), 13.0,

15.3, 12.9, and 13.7 ng/mL (for PFOS); and 0.8, 0.9, 0.7, and 0.8 ng/mL (for PFNA) in boys; and 64.6, 59.7, 41.2, and 48.4 ng/mL (for PFOA), 12.7, 14.1, 11.9, and 12.6 ng/mL (for PFOS); and 0.8, 1.1, 0.6, and 0.8 ng/mL (for PFNA) in girls.
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3.4.1. PFHxS and THs
Six papers analyzed the association between levels of PFHxS and

THs, five focusing on the prenatal (Table 3) and one on the postnatal
(Table 4) windows of exposure to this contaminant, respectively. Dur-
ing pregnancy, Wang et al. (2014) found statistically significant associ-
ations between maternal PFHxS and TSH andWebster et al. (2014) and
Wang et al. (2013) found non-significant increases in maternal TSH as-
sociated to maternal PFHxS. No significant associations with T3 or T4
were reported in any study.

3.4.2. PFOA and THs
Nine papers analyzed the association with this contaminant. Three

out of the seven studies focusing on prenatal PFOA exposure found sta-
tistically significant associationswith eithermaternal or child hormones
measured at different lifestages (Table 3). Specifically, significant posi-
tive associations between maternal PFOA and cord TSH (Kim et al.,
2011), PFOA modeled in utero and TT4 in children b6 years (Lopez-
Espinosa et al., 2012b), and cord PFOA and female newborn TT4 (de
Cock et al., 2014) were reported. Lopez-Espinosa et al. (2012b) also
stratified results by sex, finding similar but not significant results for
the association between PFOA and TT4 (% change [95% CI]: 1.7%
[−1.2, 4.6%] and 2.1% [−0.5, 4.8%] in TT4 associated with a sex-
specific IQR increment in modeled in utero PFOA [18 to 88 ng/mL for
boys and 14 to 78 for girls]) in boys and girls aged b6 years (data not
shown). During childhood (Table 4), two out of three studies reported
statistically significant associations between child PFOA and TSH
but at different ages during infancy. Only in the group of children aged
1–5 years, Lopez-Espinosa et al. (2012b) reported child serum PFOA
to be inversely associated with child TSH, this being significant in

girls but not in boys and Lewis et al. (2015) reported a significant in-
verse association between PFOA and TSH in girls aged 12–19 years.
The association in the group of girls aged 11–17 years, although not sig-
nificant, was positive in the much larger study of Lopez-Espinosa et al.
(2012b).

3.4.3. PFOS and THs
Nine papers analyzed the association with this contaminant. During

gestation (Table 3), Berg et al. (2015) andWang et al. (2013) found a pos-
itive significant association between maternal PFOS and TSH, Webster
et al. (2014) a non-significant positive association and Wang et al.
(2014) a negative but close to null association. In addition, Kim et al.
(2011) found a significant negative correlation between maternal PFOS
and cord TT3. Regarding child PFOS exposure (Table 4), Lopez-Espinosa
et al. (2012b) reported a positive association between PFOS and TT4 in
children aged 1–17 years. In this paper, this association remained signifi-
cant in boys aged 11–17 years and 6–17 year-old girls when analyses
were stratified by age groups and sex. Lewis et al. (2015) reported a sig-
nificant positive association between PFOS and TSH in boys aged 12–
19 years.

3.4.4. PFNA and THs
Seven papers analyzed the association between PFNA and THs,

four of them focused on the prenatal and three on the postnatal pe-
riods of exposure to this contaminant. During pregnancy (Table 3),
maternal PFNA concentrations were positively associated with ma-
ternal TSH in three out of four studies (Wang et al., 2013, 2014;
Webster et al., 2014), but statistical significance was only reached
in one of them (Webster et al., 2014). PFNA was also inversely

Table 5
Summary of associations between PFAS (ng/mL) and thyroid dysfunctions.

Study Expression of results Thyroid outcome n Associations between PFAS and thyroid dysfunction

PFHxS PFOA PFOS PFNA

Maternal PFAS

Berg et al., 2015 Number of women with
subclinical hypothyroidisma in
each PFAS quartile

Subclinical hypothyroidisma - - Q1: n=12 -
Q2: n=16
Q3: n=24
Q4: n=30

Webster et al. (2014) % change (95% CI) in THs per
IQRb ng/mL increase in PFAS
compared to the medianc THs, in
women with high TPOAbd

Maternal TSH (μIU/L) 14 2 (-45, 48) 54 (8, 100)* 69 (15, 123)* 46 (8, 85)*
Maternal TT4 (nmol/L) 14 -6 (-17, 5) -6 (-17, 5) -7 (-21, 6) -2 (-11, 6)
Maternal FT4 (pmol/L) 14 -5 (-15, 4) -4 (-14, 5) -7 (-18, 3) -3 (-11, 4)

Wang et al. (2013) OR (95% CI) TSH dichotomizede 5%c NS NS NS NS
Lopez-Espinosa et al., 2012b OR (95% CI) of thyroid disease in

children per IQRb increase in
modeled in utero PFOA

Reported thyroid disease 27 - 1.47 (0.95, 2.27) - -
Reported hypothyroidism 20 - 1.61 (0.96, 2.63) - -
Subclinical hypothyroidismf 155 - 0.94 (0.76, 1.16) - -
Subclinical hyperthyroidismf 31 - 1.10 (0.69, 1.74) - -

Chan et al. (2011) OR (95% CI) Hypothyroxinemiag 271 1.12 (0.89, 1.41) 0.94 (0.74, 1.18) 0.88 (0.63, 1.24) -

Child PFAS

Lopez-Espinosa et al., 2012b OR (95% CI) of thyroid disease in
children per IQRb increase in
PFAS

Reported thyroid disease 61 - 1.44 (1.02, 2.03)* 0.80 (0.62, 1.08) 1.05 (0.78, 1.41)
Reported hypothyroidism 39 - 1.54 (1.00, 2.37)* 0.91 (0.63, 1.31) 1.11 (0.77, 1.60)
Subclinical hypothyroidismf 365 - 0.98 (0.86, 1.15) 0.99 (0.86, 1.13) 0.99 (0.88, 1.12)
Subclinical hyperthyroidismf 78 - 0.81 (0.58, 1.15) 0.80 (0.62, 1.02) 0.78 (0.61,1.01)

* pb0.05; - not studied; CI: Confidence interval; FT4: free thyroxin; IQR: interquartile range; n: sample size of participants with thyroid dysfunction; NS: non-significant; OR: odds ratio;
PFAS: perfluoroalkyl substances; PFHxS: perfluorohexane sulfonate; PFNA: perfluorononanoic acid; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; TH: thyroid hormone;
TPOAb: thyroid peroxidase antibody (dichotomized according to clinical guidelines, high: ≥9 IU/mL versus normal: b9 IU/mL); TSH: thyroid stimulating-hormone; TT4: total thyroxin.

a Subclinical hypothyroidism: depleted supply of T4/FT4 and T3/FT3.
b IQRs (in ng/mL): 1.0(PFHxS), 0.4(PFNA), 1.4(PFOA) and 3.3(PFOS) in Webster et al.; 31.8 (modeled in utero PFOA), 54.6 (child PFOA), 13.3 (child PFOS), and 0.8 (child PFNA) for

children aged 1-17 years in Lopez-Espinosa et al.
c Medians in the whole study: 1.3 mIU/L at 15 weeks (TSH), 9.5 pmol/L at 15 weeks (FT4), and 126.4 nmol/L at 15 weeks (TT4).
d Webster et al. assessed the effect of PFAS in womenwith TPOAb levels including the interaction between TPOAb status and PFAS in the models. For PFHxS, PFOA, PFOS, and PFNA: p

interaction = 0.97, 0.05, 0.03, 0.05 (for TSH); 0.30, 0.37, 0.40, 0.82 (for TT4); and 0.23, 0.40, 0.15, 0.37 (for FT4).
e TSH N95th percentile (7.5 μIU/mL) or below.
f TT4 within the normal reference range (4.5–12 μg/dL) and TSH N5.97, N4.84, N4.5 μIU/mL in children b6, 6–10, 11-17 years of age for subclinical hypothyroidism and TSH b0.7, b0.6,

b0.45 μIU/mL in children b6, 6–10, 11-17 years of age for subclinical hyperthyroidism. Children who self-reported thyroid disease and/or thyroid medication were excluded.
g Hypothyroxinemia: defined by authors as normalmaternal TSH levelswith no evidence of hyperthyroidism (0.15-≤4mU/L) andmaternal FT4 levels in the lowest 10th percentile (≤8.8

pmol/L) of the sample.
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associated with TT4, FT4, or TT3 in one study (Wang et al., 2014). Re-
garding child exposure (Table 4), Lopez-Espinosa et al. (2012b) re-
ported an increase in TT4 concentrations associated to serum PFNA
exposure in children aged 1–17 years. Sex-subgroup analyses re-
vealed that the association reached statistical significance in 11–
17 year-old boys and girls aged 6–10 years. TSH levels also significantly
increasedwith PFNA concentrations (Lewis et al., 2015; Lopez-Espinosa
et al., 2012b) and mean levels of TSH increased non-significantly
across PFNA tertiles (Lin et al., 2013) in three studies of boys aged
11–19 years.

3.4.5. Direction of the associations
Tables 3 and 4 also show an arrow indicating the direction of the as-

sociation to allow evaluation of whether there is a tendency for effect
estimates to run in one direction, even if the effect is not statistically sig-
nificant or close to null. For the studies usingmaternal levels of contam-
inants and hormones (n = 4), a clearer consistent direction in the
association was found between maternal PFHxS, PFOS, or PFNA and
TSH (positive) or T4 (negative). During childhood, a consistent direction

of the association (positive) was found for PFNA and TSH in boys aged
11–19 years (n = 3 studies). T3 was not studied sufficiently to draw a
conclusion.

3.5. Analysis of the relation between PFAS and thyroid dysfunctions

The number of studies on thyroid dysfunction is low (n = 5) and
few studies found statistically significant associations (Table 5). Dur-
ing pregnancy, an increased proportion of women with subclinical
hypothyroidism for each PFOS quartile was reported (Berg et al.,
2015), and PFOA, PFOS, and PFNA were positively and statistically
significantly associated with TSH levels in pregnant women with
high TPOAb (n = 14) (Webster et al., 2014). During infancy, a posi-
tive significant association was found between reporting thyroid dis-
ease, mostly hypothyroidism, and serum PFOA concentrations in one
study. However, PFOA concentrations were not associated with sub-
clinical hypo/hyperthyroidism based on individual TH levels (Lopez-
Espinosa et al., 2012b).

Fig. 1. Box-plot of PFAS concentrations (ng/mL) in the different studies. PFAS: perfluoroalkyl substances; PFHxS: perfluorohexane sulfonate; PFNA: perfluorononanoic acid; PFOA:
perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; T: trimester; y: years. Some data not included in the articles were provided by authors (percentiles: Berg et al. and de Cock
et al.; minimums and/or maximums: Lopez-Espinosa et al., Kim et al., and Wang et al. [2013 and 2014]; and descriptive data for children aged 12–19 years: Lin et al.). For Lewis et al.,
data for all children (n = 303) have been calculated using the publicly-available data from NHANES, 2011–2012 (NHANES, 2015), since Lewis et al. reported sex-stratified PFAS
concentrations. Descriptive data for controls but not cases were represented for Chan et al.
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3.6. Dose-response relationship

To investigate the relation between PFAS and THs, different ap-
proaches have been used: log transforming, or not, of the exposure and
outcome variables and categorizing exposure into percentiles. Only two
studies fitted a linear relationship between PFAS and THs (Wang et al.,
2014; Webster et al., 2014). Wang et al. (2014) evaluated the possibility
of a non-monotonic relationship between each PFAS and each outcome
bymeans of generalized additivemodels and concluded therewas no ev-
idence of a departure from linearity. Finally, a linear relationship was
compared to ln-transformation of the THs with similar results (Wang
et al., 2014). Categorization of PFAS was conducted in six articles (Berg
et al., 2015; de Cock et al., 2014; Lewis et al., 2015; Lin et al., 2013;
Lopez-Espinosa et al., 2012b; Wang et al., 2013), but only one (Lin et al.,
2013) carried out a test for trend (p N 0.05 in all cases). The relationship
was apparently monotonic for maternal PFOS and TSH in Berg et al.
(2015) (Table 3) and for child PFOS (% change [95% CI]: Q2: 0.8% [−0.3,
1.8%], Q3: 0.9% [−0.2, 1.9%], Q4: 2.3% [1.2, 3.3%]) and PFNA (Q2: 0.8%
[−0.3, 1.8%], Q3: 1.7% [0.7, 2.8%], Q4: 2.7% [1.7, 3.8%]) in relation to
child TT4 (Lopez-Espinosa et al., 2012b). Finally, some studies reported
significant positive associations between PFOS and lnTSH (Berg et al.,
2015; Lopez-Espinosa et al., 2012b; Wang et al., 2013), PFOA and TT4
(de Cock et al., 2014), and PFOS or PFNA and TT4 (Lopez-Espinosa et al.,
2012b) when comparing the third and/or fourth quartiles with the first
one.

Some of the six studies using PFAS categorization considered at least
one other approach to assess the dose-response relationship. Lewis et al.
(2015) considered a linear relationship between log2-PFAS and log2-
THs, but also carried out a sensitivity analysiswith PFAS in quartiles to ex-
plore potential non-linearity of the relationships, and resultswere similar.
In de Cock et al. (2014), none of the contaminants showed a linear rela-
tionship with T4, and a PFAS categorization in quartiles was used in the
final statistical models. Lastly, Lopez-Espinosa et al. (2012b) conducted
regressionmodels between lnPFAS or quartiles of PFAS and lnTSH or TT4.

4. Discussion

The literature (n= 77 articles retrieved) showed growing interest in
the role played by exposure to PFAS in thyroid outcomes. However, we
found very few relevant papers (n = 10) on this specific subject when
it comes to pregnant women, newborns, and children up to 19 years
old. In sum, therewere insufficient numbers of studies in each population
group to make comparisons except in two cases: mothers (n = 4) and
11–19-year-old children (n=3). In both cases, no consistent associations
between four PFAS andTHs or thyroiddysfunctionswere foundexcept for
TSH levels. There was some evidence of a positive association between
PFHxS and PFOS exposure and levels of TSH measured in the blood of
mothers, aswell as PFNA and TSH levelsmeasured in the blood of teenage
boys. Differences in the expression of the results and/or effect estimates,
as well as the treatment of the outcome and exposure variables (e.g., log
transforming or not of data, continuous or categorical PFAS, etc.), prevented
us fromcombining effect estimates in ameta-analysis. Therefore, due to the
small number of studieswith comparable data, further studies arewarrant-
ed to confirm the possible relationships outlined above.

In order to draw our conclusion, we have assessed the evidence of a
possible association between PFAS and thyroid function impairment by
assessing the exposure and outcomes, and, by using the Bradford-Hill
Criteria of consistency and coherence, strength of the association, tem-
porality, biological gradient, and biological plausibility (Hill, 1965).
The specific elements of the analysis for drawing our conclusion are ex-
plained in the following subsections.

4.1. PFAS assessment

There are no differences in the method of chemical analysis
employed to determine PFAS (LC/MS in all studies) and studies did

not differ markedly in the LOD or LOQ in spite of beingmeasured in dif-
ferent laboratories worldwide. However, there are differences in how
concentrations below these limits were handled: replacement by LOD
or LOQ/√2, LOD/2, or imputation based on expected data. Nevertheless,
the percentages of samples bLODor LOQwere small inmost of the stud-
ies, except for PFNA in some cases.

The articles also differ in the blood compartments used to determine
PFAS concentrations. Across-compartment comparisons have previous-
ly been assessed in two studies, showing a 1:1 PFAS concentration ratio
between plasma and serum in pregnant women (Manzano-Salgado
et al., 2015) and workers occupationally exposed to PFAS (Ehresman
et al., 2007). Therefore, determination in either compartment seems to
be a good proxy with which to estimate PFAS body burden, and these
differences might not influence the comparability of the exposure
results.

4.2. Hormone assessment

The studies do differ in the THsmeasured to assess effects, since, ex-
cept for TSH, which was measured in all but one article, the rest of the
hormones were determined in a lower number of studies. Therefore,
not all studies had information available on free THs, which reflect the
levels of biologically active hormones that are available to the tissues
and might have yielded more comprehensive information concerning
the thyroid regulatory system.

Differences in themethods used to analyze THsmight also be impor-
tant. Studies used different types of immunoassay methods for hor-
mone determination. However, some animal studies have criticized
the use of these techniques for the assessment of FT4. These researchers
hypothesized that the reduction in FT4 in the presence of PFOS could
have been due to negative bias in analog techniques, resulting from
competitive displacement of FT4 and the labeled FT4 analog from
serum and assay binding proteins in the presence of this contaminant
(Chang et al., 2007; Luebker et al., 2005). This concern prompted a
study of potential bias from the presence of PFAS in a human population
with typical U.S. serum PFOS concentrations but higher PFOA concen-
trations due to their proximity to a Teflon factory (Lopez-Espinosa
et al., 2012a). Such bias from theuse of an analogwith respect to dialysis
methods in experimental studies (Chang et al., 2007; Luebker et al.,
2005) was not observed in this human population (Lopez-Espinosa
et al., 2012a). According to the authors, possible differences in the re-
sults between animal and human studies could be due to the differences
in levels of exposure to PFAS (higher in rats than in humans) and also
the inter-species differences in the principal proteins that bind T4 (in
rats: albumin and transthyretin [TTR], and in humans: thyroxine-
binding globulin [TBG], while albumin and TTR play comparatively
less important roles), and their interaction with PFAS (Lopez-Espinosa
et al., 2012a).

4.3. Consistency and coherence

Comparisons across studieswere hampered by the differences in the
lifestages considered: prenatal life, childhood, or both periods. Maternal
THs were measured during the second or third trimester of pregnancy
and after giving birth, and child THs were determined at birth, during
the first days of life, and throughout childhood. Divergences also exist
in sampling time of PFAS (maternal, cord, or child samples).

Bearing in mind the sample size and the direction, magnitude, and
significance of the associations, there is some consistency of a positive
association between maternal exposure to some PFAS and maternal
TSH levels. The evidence seems to be stronger for PFOS and PFHxS, the
direction of the association being positive in all studies except in one
case (but the association was close to null). In all cases, PFAS and THs
were measured in either the second or third trimester of pregnancy ex-
cept for Berg et al. (2015), which measured THs during the second tri-
mester and twice after birth. The same group has recently published a
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multipollutant approach on exposure to maternal PFAS and other per-
sistent organic pollutants and alterations in TH levels in the same pop-
ulation, but this time relating exposure to these contaminants with
hormones measured in samples collected in the second trimester of
pregnancy (Berg et al., 2016, not included in this review since the date
of publication is later than December 2015) and results are coherent
with those reported in the first article (Berg et al., 2015).

All the cross-sectional studies on infancy examined children in sim-
ilar age ranges, between 11 and 19 years old, thus enabling us to com-
pare them. Consistency in direction (positive in the three studies) and
statistically significant associations (in two cases) were found for
PFNA and TSH in boys aged ≥11 years. In girls, there was little evidence
of any association.

Concerning longitudinal studies on prenatal PFAS exposure and cord
or child THs levels, there were few articles with comparable data, and
their results showed little or no evidence of an effect.

Some studies also addressed the question of whether there was any
health effect associated with hormonal changes, which is essential for
understanding the clinical implication of the observed results. For that
reason, several thyroid diseases were investigated. The evidence of an
association is not clear, due to the few studies focused on thyroid dys-
functions, the small number of cases with these types of dysfunctions,
the discrepancy in the outcomes studied, differences in lifestages stud-
ied, and the few studies with statistically significant associations. How-
ever, coherence was found in a study which reported an increased
proportion of mothers with subclinical hypothyroidism for each PFOS
quartile and an inverse relationship between PFOS and TSH (Berg
et al., 2015). In addition, higher PFAS concentrations were found in
pregnant women with additional thyroid stressors (high TPOAb)
(Webster et al., 2014). These findings are coherentwith results showing
an association with some PFAS found in U.S. adults with low iodine and
high TPOAb, both of which are stressors to the thyroid system (Webster
et al., 2015). During childhood, although higher odds of self-reported
thyroid disease, mostly hypothyroidism, associated to increased PFOA
concentrations were reported in one study, these results were not con-
sistent with an association between PFOA and TH levels for all children
combined or with the associations for the categories of sub-clinical
hypo/hyperthyroidism which were created using hormonal levels at
the time of the survey (Lopez-Espinosa et al., 2012b).

4.4. Strength of the association

Several aspects make it difficult to assess the strength of the associ-
ation across studies. There is a substantial variation among the studies
in the estimates of the association (regression coefficients, % change, es-
timated mean differences, Pearson correlation coefficient, and p for
trend). Although PFAS concentrations were measured in the same
units (ng/mL), contaminantswere not treated in the sameway (contin-
uous or categorical) in the statistical analyses, which also hampers com-
parison among studies.

Another important issuewhen discussing the strength of association
is the control for confounding variables, and there was heterogeneity
across studies in this respect. Several variables known to influence thy-
roid status and PFAS, such as BMI, are not addressed in all the studies.
Some studies adjusted models for this variable (Berg et al., 2015; de
Cock et al., 2014; Kim et al., 2011; Lewis et al., 2015), others checked
whether it was a possible confounder but finally it was not included
(Lopez-Espinosa et al., 2012b; Wang et al., 2013, 2014) and the rest
did not include it in the statistical analysis. The adjustment of models
for BMI is under debate, since BMI might be causally “downstream” of
both exposure (PFAS) and outcome (THs) variables (Webster et al.,
2014). Most studies did not measure other important biomarkers
whichmight affect TH levels, such as iodine status or thyroid antibodies.
Some studies (Lopez-Espinosa et al., 2012b; Wang et al., 2013, 2014;
Webster et al., 2014) excluded people with thyroid diseases or thyroid
treatments, as they receive medication prescribed to adjust hormones

to normal levels. However, some studies did not make such exclusions
and the medications could thus obscure the association, if present, for
those individuals.

Study populations are likely to be exposed tomultiple chemical con-
taminants at the same time and, therefore, multipollutant analyses in-
cluding other PFAS were conducted in some of the studies reviewed
(Berg et al., 2015; Chan et al., 2011; Lin et al., 2013; Lopez-Espinosa
et al., 2012b). The magnitude of the associations was similar across
studies except for Berg et al. (2015), where the associations between
PFHxS or PFOA and TSH were no longer significant after including
PFOS, but results were not reported in the article and have not been
discussed in this review.While the combined thyroid effects of chemical
mixtures are certainly possible, since other chemical substances with
endocrine-disrupting properties and with similar sources of exposure
such as diet have been associated with alterations of TH levels in some
previous studies (Boas et al., 2012), it is important to mention the low
correlation between human serum levels of PFAS and other chemicals
measured in blood or urine, such as polybrominated diphenyl ethers,
organochlorine compounds, polychlorinated biphenyls, bisphenols,
and phtalates (Fisher et al., 2016; Robinson et al., 2015). This low corre-
lation gives some reassurance that PFAS, and not other TH disruptors,
are likely to be driving the associations seen in these studies.

Regardless of all the above limitations, significant changes in TH
levels due to PFAS exposure seem to be, in general, small (except a β
of 38.6 nmol/L in female newborn TT4 when comparing the highest
and the lowest cord PFOA quartiles in de Cock et al. (2014)). Neverthe-
less, it is important to take into account that associations of a smallmag-
nitude can also be important in critical windows of exposure, such as
gestation or childhood, when even small shifts in THs could have irre-
versible consequences in brain development (de Escobar et al., 2004).

4.5. Temporality

Studies varied in the epidemiological design: cross-sectional, case-
control, or cohort. Cross-sectional studies are unable to establish a tem-
poral sequence due to the simultaneous measurement of exposure and
outcome. For example, there is some literature showing that THs can af-
fect kidney function (Chonchol et al., 2008), and excretion rates and
serum PFAS levels can depend on kidney function (Watkins et al.,
2013). Therefore, this factor associated with THs could be affecting the
cross-sectional relationship. In addition, effects may occur some time
after exposure and thus they could not be observed at the time of the
cross-sectional study.

Most of the longitudinal studies reported a single exposure mea-
sure. When using biomarkers, reliance on an exposure measurement
at only one time-point is not ideal. However, PFAS have a long half-
life (Bartell et al., 2010; Olsen et al., 2007), and published intraclass
coefficients between the first and third trimester measurements
are quite high (0.64–0.83) (Fisher et al., 2016). Thus, these measure-
ments can be considered as being reasonably representative of
serum levels during pregnancy, even if they do not allow the charac-
terization of cumulative exposure, exposure trajectory over time, or
windows of susceptibility to the contaminants. When information
was provided, maternal serum concentrations were slightly higher
than cord serum (Kim et al., 2011).

Concerning THs, it is preferable to compare effects across studies at
the same lifestage, since TH levels change quickly during the different
trimesters of pregnancy (Kapelari et al., 2008) and infancy (Hume
et al., 2004), and, therefore, differences across lifestages are to be
expected.

4.6. Biological gradient (dose-response relationship)

The shape of a possible dose-response relationship is not yet known.
Some studies have fitted untransformed and others log-transformed
data for both PFAS and THs. For PFHxS and PFNA, the range of exposures
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is quite narrow and pretty similar among all studies reporting serum
levels. Therefore, they are uninformative for exploring the shape of
any relationship over a wider range. For PFOA and PFOS, the range of
the median values is wider, although the data we have are too sparse
to reach conclusions about the overall shape of the relationship, since
the assessment of whether the relationship varied by exposure range
would require more studies within each study type (maternal, cord,
and child) and the results with stronger associations are not consistent-
ly in the high or low serum level studies.

4.7. Biological plausibility

Interactions between the hypothalamic–pituitary–thyroid axis
can be inhibited or stimulated by natural physiological responses
or by exposure to chemical pollutants with endocrine disrupting
properties, such as PFAS (Jensen and Leffers, 2008). Although further
investigation is warranted, it has been proposed that PFASmay inter-
fere with thyroid homeostasis through various mechanisms, includ-
ing regulation of hepatic glucuronidation enzymes and deiodinases
in the thyroid gland, as reported in studies of exposed rat tissues
(Yu et al., 2009), by competition with T4 for binding to protein TTR
as seen in studies of exposed rat tissues (Weiss et al., 2009), by alter-
ing the expression of genes involved in TH signaling, as reported in
salmon embryos and larvae (Spachmo and Arukwe, 2012), or by al-
tering the function of nuclear hormone receptors, as reported in
zebrafish embryos (Du et al., 2013).

Leaving aside the inter-species diversity due to differences in
modes of action and the generally high exposure in the experimental
studies, some animal evidence on the interference of these sub-
stances with the thyroid system exists. For example, decreased T3
and T4 levels after short-term or long-term PFOS/PFOA exposure
were found in animal studies (Boas et al., 2012). Experimental stud-
ies on PFHxS and PFNA exposure are scarcer, although both altered
TH function in in vitro tests (Long et al., 2013), PFHxS reduced plasma
TH levels in a concentration-dependent manner in an in ovo study
(Cassone et al., 2012), and long-term PFNA exposure raised T3 levels
in zebrafish (Liu et al., 2011).

According to the existing scientific understanding of the functioning
of the hypothalamic–pituitary–thyroid axis, TSH levels should be in-
versely proportional to T4 and T3 levels at the same lifestage. TSH regu-
lates the synthesis and secretion of THs by the thyroid gland. In turn,
THs negatively influence TSH secretion from the anterior pituitary
gland through a negative feedback loop (Dietrich et al., 2012). However,
this relationship between these hormone levels was not observed con-
sistently in the epidemiological studies reviewed, since an increase in
TSH was not always associated with a reduction in T4 and/or T3 levels
or vice versa, when data were available.

5. Conclusion

In conclusion, heterogeneity was found across studies in terms of
study design, study setting, timing of PFAS exposure assessment,
timing and type of thyroid-related outcome assessment, adjustment
for potential confounders, and statistical approach. As a conse-
quence, there were insufficient numbers of comparable studies in
each population group except for two cases: mothers and 11–19-
year-old children. Based on the current literature, we found some
consistency of a positive association between PFHxS and PFOS in re-
lation to TSH levels measured in maternal blood and PFNA and TSH
levels measured in the blood of boys aged ≥11 years. However, fur-
ther studies are warranted to confirm these possible relationships.
Future studies should measure FT4 as well as TSH in order to yield
more comprehensive information concerning any effects on the
functioning of the hypothalamic-pituitary-thyroid axis. They should
preferably be longitudinal, and should include, if possible, repeated

measures of PFAS and thyroid outcomes in order to identify any pe-
riods of extra vulnerability.
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