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Determining role of Krein signature for three-dimensional Arnold tongues of oscillatory dynamos
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Using a homotopic family of boundary eigenvalue problems for the mean-field �2 dynamo with helical
turbulence parameter ��r�=�0+����r� and homotopy parameter �� �0,1�, we show that the underlying
network of diabolical points for Dirichlet �idealized, �=0� boundary conditions substantially determines the
choreography of eigenvalues and thus the character of the dynamo instability for Robin �physically realistic,
�=1� boundary conditions. In the ��0 ,� ,�� space the Arnold tongues of oscillatory solutions at �=1 end up
at the diabolical points for �=0. In the vicinity of the diabolical points the space orientation of the three-
dimensional tongues, which are cones in first-order approximation, is determined by the Krein signature of the
modes involved in the diabolical crossings at the apexes of the cones. The Krein space-induced geometry of the
resonance zones explains the subtleties in finding � profiles leading to spectral exceptional points, which are
important ingredients in recent theories of polarity reversals of the geomagnetic field.

DOI: 10.1103/PhysRevE.79.016205 PACS number�s�: 05.45.�a, 91.25.Mf, 02.30.Tb, 02.40.Xx

I. INTRODUCTION

Polarity reversals of the Earth’s magnetic field have fas-
cinated geophysicists since their discovery by David and
Brunhes �1� a century ago. While the last reversal occurred
approximately 780 000 years ago, the mean reversal rate �av-
eraged over the last few million years� is approximately 4 per
million years. At least two, but very likely three �2�, super-
chrons have been identified as “quiet” periods of some tens
of millions of years showing no reversal at all.

The reality of reversals is quite complex and there is little
hope to understand all their details within a simple model.
Recent computer simulations of the geodynamo, in general
and of reversals, in particular �3–5�, have progressed much
since the first fully coupled three-dimensional �3D� simula-
tions of a reversal by Glatzmaier and Roberts in 1995 �6�.
Most interestingly, polarity reversals were also observed in
one �7� of the recent liquid sodium dynamo experiments,
which have flourished during the last decade �8,9�.

However, it is important to note that neither in simulations
nor in experiments is it possible to accommodate all dimen-
sionless parameters of the geodynamo �10�, and many of
them are not even well known �11�. In an interesting attempt
to bridge the gap of several orders of magnitude between
realistic and numerically achievable parameters, Christensen
and Aubert �12� were able to identify remarkable scaling
laws for some appropriate nondimensional numbers.

The use of appropriate simplified models �13–16� repre-
sents another attempt to understand better the basic principle
and the typical features of reversals. Most prominent among
those features are the distinct asymmetry �with a slow decay
and a fast recovery phase� �17�, the clustering property of
reversal events �18�, and the appearance of several maxima
�at multiples of 95 000 years� of the residence time distribu-

tion, which has been explained in terms of a stochastic reso-
nance phenonemon with the Milankovic cycle of the Earth’s
orbit eccentricity �19,20�.

One of the simplest reversal models, which seems capable
of explaining all those three reversal features in a consistent
manner �21,22�, relies basically on the existence of an excep-
tional point in the spectrum of the non-self-adjoint dynamo
operator, where two real eigenvalues coalesce and continue
as a complex conjugated pair of eigenvalues. The importance
of the specific interplay between oscillatory and nonoscilla-
tory modes for the reversal mechanism had been earlier ex-
pressed by Yoshimura �23�, Sarson and Jones �24�, and Gub-
bins and Gibbons �25�. In the framework of a simple mean-
field �2 dynamo with a spherically symmetric helical
turbulence parameter � it was possible to identify reversals
as noise-triggered relaxation oscillations in the vicinity of an
exceptional point �26–28�. The key point is that the excep-
tional point is associated with a nearby local maximum of
the growth rate situated at a slightly lower magnetic Rey-
nolds number. It is the negative slope of the growth rate
curve between this local maximum and the exceptional point
that makes stationary dynamos vulnerable to noise. Then, the
instantaneous eigenvalue is driven toward the exceptional
point and beyond into the oscillatory branch where the sign
change of the dipole polarity happens. Therefore, the exis-
tence of an exceptional point is an essential ingredient for
reversals, although nonlinear dynamics and the influence of
noise must be invoked for a more detailed understanding of
those events.

From the spectral point of view, the reversal phenomenon
of the geomagnetic field is strongly linked to other fields of
physics, such as van der Pol-like oscillators �29�, geometric
phases �30�, PT-symmetric quantum mechanics �31,32�,
PT-symmetric optical waveguides �33�, microwave resona-
tors �34�, and dissipation-induced instabilities �35–37�.

A particular problem of all those systems in which excep-
tional points are involved is a strong sensitivity of the eigen-
values on boundary conditions �BCs�. As for the geodynamo,
the periodic occurrence of so-called superchrons is usually
attributed to the changing thermal BCs at the core-mantle
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boundary �2�, but the growth of the inner core may also play
a role �28� by virtue of a spectral resonance phenomenon
�38�.

In this context it is worthwhile to note that important fea-
tures of dynamos are most easily understandable when
treated with idealized �i.e., nonphysical� boundary condi-
tions. This was the case for explaining the famous eigenvalue
symmetry between dipole and quadrupole modes as it was
done by Proctor in 1977 �39,40�.

Standing in this tradition, the present paper is devoted to a
better understanding of the interplay of BCs, the spectral
resonance phenomenon, and oscillatory regimes in dynamos.

II. MATHEMATICAL SETTING

The mean-field magnetohydrodynamic �MHD� �2 dy-
namo �41� in its kinematic regime is described by a linear

induction equation for the magnetic field. For spherically
symmetric � profiles ��r� the vector of the magnetic field is
decomposed into poloidal and toroidal components and ex-
panded in spherical harmonics with degree l and order m.
After additional time separation, the induction equation re-
duces to a set of l-decoupled boundary eigenvalue problems
�38�, which we write in a matrix form, convenient for the
implementation of the perturbation theory �42,43�

Lf ª l0�r
2f + l1�rf + l2f = 0, Uf = 0. �1�

The matrices in the differential expression L are

l0 = � 1 0

− ��r� 1
�, l1 = �rl0,

l2 =�−
l�l + 1�

r2 − � ��r�

��r�
l�l + 1�

r2 −
l�l + 1�

r2 − �� , �2�

and Uª �A ,B��C
4�8 in the BCs consists of the blocks

A =�
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0
�, B =�

0 0 0 0

0 0 0 0

�l + 1 − � 0 � 0

0 1 0 0
� .

�3�

The vector function f�H̃=L2�0,1� � L2�0,1� lives in the

Hilbert space (H̃ , � , �) with inner product �f ,g�=	0
1ḡTfdr,

where the overbar denotes complex conjugation, and the
boundary vector f is given as

fT
ª �fT�0�,�rf

T�0�,fT�1�,�rf
T�1�� � C

8. �4�

We assume that ��r�ª�0+����r�, where ���r� is a
smooth real function with 	0

1���r�dr=0. For a fixed ���r�
the differential expression L depends on the parameters �0

and �, while � interpolates between idealized ��=0� BCs,
corresponding to an infinitely conducting exterior, and physi-
cally realistic ones ��=1� corresponding to a nonconducting
exterior of the dynamo region �41�.

The spectral problem �1� is not self-adjoint in a Hilbert
space, but in the case of idealized BCs ��=0� the fundamen-
tal symmetry of the differential expression �38,44�

L0 ª L�� = 0� = JL0
†J, J = �0 1

1 0
� �5�

makes L0 self-adjoint in a Krein space �K , � , �� �45� with
indefinite inner product � , �= �J , �:

�L0f,g� = �f,L0g�, f,g � K . �6�

For ��0 the operator L0 is not self-adjoint even in a Krein
space.

III. FROM DIABOLIC TO EXCEPTIONAL POINTS

In the case of constant � profiles ��r�
�0=const and �
=0 the spectrum and the eigenvectors of the operator matrix
L0 are �38�

�n
� = �n

���0� = − 	n + ��0
�	n � R, � = 
 ,

fn
� = � 1

��	n

� fn � R
2

� L2�0,1�, n � Z
+, �7�

with fn�r� being normalized Riccati-Bessel functions

fn�r� =
�2r�1/2Jl+�1/2���	nr�

�Jl+�3/2���	n��
, �fn�

, fn� = �n�n, �8�

and 	n�0 the squares of Bessel function zeros

Jl+�1/2���	n� = 0, 0  �	1  �	2  ¯ . �9�

The eigenvectors fn
+ , fn

−
�K
�K correspond to Krein space

states of positive and negative signature �=
,

�f
n�


 ,fn

� = 
 2�	n�n�n, �f

n�


 ,fn
�� = 0. �10�

The spectral branches �n

 are real-valued linear functions of

the parameter �0 with signature-defined slopes 
�	n and
form for all l=0,1 ,2 , . . . a meshlike structure in the
��0 ,Re �� plane. Spectral meshes for neighboring mode
numbers l and l+1 have only slightly different slopes of their
branches and behave qualitatively similar under perturba-
tions �38�. Therefore basic spectral structures for l=1,2 di-
pole and quadrupole modes can be illustrated by the simpler
but unphysical l=0 monopole modes, which are given in
terms of trigonometric functions. The �l=0� mesh built from
	n=�2n2 is depicted as pink lines in Fig. 1.

The intersection of two branches �
n�

� ,�n
� with n�n�

occurs at points ��0
��� ,����� with

�0
���

ª ��	n + ��	n�
, ����

ª �����	n	n�
, ����

ª �� ,

�11�

and corresponds to double eigenvalues ����=�n
�=�

n�

� with

two linearly independent eigenvectors fn
� and f

n�

� , i.e., to so-
called semisimple eigenvalues �diabolical points �DPs�� of
algebraic and geometric multiplicity two �38,43�.
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For the �l=0� mesh the diabolical crossings of the ��n�th
and ��n+ j�th modes with the same fixed �j��Z

+ are located
on a parabolic curve �38�

���0� =
1

4
��0

2 − �2j2� , �12�

where �0=�0
���=��2n�+ j� and ����=���0

����=�2n�n+�j�.
Open circles in Figs. 1�a� and 1�b� indicate DPs on the pa-
rabolas �j�=2 and �j�=4. The Krein signatures �46� of the
intersecting branches define the intersection index ����=��
=sgn������ in Eqs. �11�. Branches of different signature �
�� intersect for both signs of �0 at ����0 �green circles in
Fig. 1�, whereas intersections at �����0 are induced by spec-
tral branches of coinciding signatures: for �=�=+ at �0�0,
and for �=�=− at �00 �blue circles in Fig. 1�.

For �=0 and constant ��r�=�0, the spectrum remains
purely real on the full homotopic family �� �0,1� and
passes smoothly in the ��0 ,Re �� plane from the spectral
mesh at �=0 to nonintersecting branches of simple real ei-
genvalues for models with physically realistic BCs at �=1.
For the monopole model l=0 the full spectral homotopy is
described by the characteristic equation �1−����cos���
−cos��0��+2�� sin���=0, where ���0 ,��=��0

2−4�, which
for physically realistic BCs ��=1� leads to a spectrum con-
sisting of the countably infinite set of parabolas �12� labeled
by the index j�Z

+ and depicted in Fig. 1 as dashed lines.
The reason for the ��=0� DPs �11� to be located on the
��=1� parabolas �12� is that the loci of the DPs are fixed
points of the homotopy ∀ �� �0,1�—a phenomenon that is
indicating on their “deep imprint” in the boundary eigen-
value problem �1�.

The eigenvalue branches with Re ��0, Im ��0 �impor-
tant for the reversal mechanism �26,28�� can be induced by
deforming the constant � profile into an inhomogeneous one,
��r�=�0+����r�, with simultaneous variation of the BCs.
This process is governed by a strong resonant correlation
between the Fourier mode number of the inhomogeneous
���r� and the parabola index �j�. This is numerically dem-
onstrated in Fig. 1 �black branches� for ���r�=cos�2�kr�,
which highly selectively induces complex eigenvalue seg-
ments in the vicinity of DPs located on the parabola �12�
with index j=2k.

The underlying influence of “hidden” DPs on real-to-
complex transitions of the spectral branches can be made
transparent by analyzing the perturbative unfolding of the
DPs �43� at the mesh nodes ��0

��� ,����� under variation of the
parameters �0, �, and �. In first-order approximation this
gives for the �l=0� model

� = ���� − ����� +
�0

���

2
��0 − �0

���� 

�

2
�D , �13�

where �0
���=���n+�n��, ����=���2n�n, and

D ª ���n − �n����0 − �0
�����2 + n�n���1 + �1��A

− �− 1�n+n��n + n�����2 − n�n���1 − �1��A

− �− 1�n−n��n − n�����2, �14�

with Aª	0
1���r�cos���n−�n���r�dr.

For �=0 it holds D�0, confirming that the eigenvalues
remain real under variation of the parameters �0 and � only.
If, additionally, �0=�0

�, then one of the two simple eigenval-
ues �13� remains fixed under first-order perturbations with
respect to �: �=���� in full accordance with the fixed point
nature of the DP loci under the � homotopy. The sign of the
first-order increment of the other eigenvalue �=����−2�����
depends on the sign of ���� and, therefore, via Eqs. �11� di-
rectly on the Krein signature of the modes involved in the
crossing ��0

��� ,�����.
In general, there exist parameter combinations yielding

D0 and thus creating complex eigenvalues. Equation �14�
implies that in first-order approximation the domain of oscil-
latory solutions with Re ��0 and Im ��0 in the ��0 ,� ,��
space is bounded by the conical surfaces D=0 with apexes at
the DPs ��0

��� ,0 ,0�, as shown in Fig. 2. Such domains, espe-
cially in the case of r-periodic � profiles, are in fact Arnold
tongues corresponding to zones of parametric resonance �46�
in Mathieu-type equations whose analysis in �47� was moti-
vated just by Zeldovich’s studies on MHD dynamos.

At the boundary D=0 the eigenvalues are twofold degen-
erate and nonderogatory; that is, they have Jordan chains
consisting of an eigenvector and an associated vector. Thus,
DPs in the ��0 ,� ,�� space unfold into 3D conical surfaces
consisting of exceptional points �EPs�.

The conical zones develop according to resonance selec-
tion rules similar to those discovered in �38� for the case �
=0. For example, with ���r�=cos�2�kr�, k�Z, the constant
A in Eq. �14� yields

A = 1/2, 2k = �n − �n�,

0, 2k � �n − �n�,
� �15�

so that in first-order approximation only DPs located on the
�j=2�k�� parabola �12� show a DP-EP unfolding �in accor-
dance with numerical results in Fig. 1�. The cone apexes
correspond to 2�k�−1 DPs with negative intersection index
�11� ����=− and countably infinite DPs with ����=+. The two
groups are shown in Fig. 2 in green and blue, respectively.

The real parts of the perturbed eigenvalues are given by
Re �=�����1−��+�0

�����0−�0
���� /2 and for fixed �0 and in-

creasing � they are shifted �for both groups� away from the
original DP positions toward the �Re �=0� axis �cf. the nu-
merical results in Fig. 1�—an effect that is similar to the
self-tuning mechanism of field reversals uncovered in �26�.

Apart from this similarity, the eigenvalues of the two cone
groups show significant differences. The 2�k�−1 cones of the
first group have nontrivial intersection with the plane �=0.
In this ��0 ,�� plane the zones of decaying oscillatory modes
are �⇋−� symmetric and defined by the inequality

��0 
 2��n − �k���2 
�2

4
�1 − �n − �k�

�k�
�2� , �16�

where n=1,2 , . . . , �k�. For k=2 there are three primary Ar-
nold tongues: 4�0

2�2 and 16��0
2��23�2.
The cones of the second group meet the plane �=0 only

at the apexes, having their skirts located in the sectors ��
�0,� sgn��0��0� and ��0,� sgn��0�0� �cf. Fig. 2�b��.
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FIG. 1. �Color� l=0: �Pink� Spectral mesh
�11� for �=0, �=0; �dashed� eigenvalue parabo-
las �12� for �=0, �=1; �black� eigenvalue
branches for �=0.3, ���r�=cos�2�kr�, and �a�
k=1, �=2.5, �b� k=2, �=3, with resonant over-
laps near the locations of the diabolically crossed
modes having �blue� the same and �green� differ-
ent Krein signature.

FIG. 2. �Color� l=0, ���r�=cos�4�r�: �a�
Linear approximation of the 3D Arnold tongues
and �b� their projection onto the ��0 ,�� plane in-
dicating the influence of the intersection index
���� on the inclination of the cones.

FIG. 3. �Color� l=0: Numerically calculated
Arnold tongues for ���r�=cos�2�kr�, k=2, and
����0 �green� or �����0 �blue� and their ap-
proximations �dashed lines� �a� in the ��0 ,��
plane and �b� in the �� ,�� plane.
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Therefore, in models with idealized BCs ��=0� complex ei-
genvalues occur only in zones �16� in the ��0 ,�� plane.

The different oscillatory behavior induced by the two
cone groups has its origin in the different Krein-signature-
defined inclination of the �D0� cones with respect to the
��=0� plane.

Passing from �=0 to a parallel ���0� plane, the �D
0� tongues �16�, corresponding to ����0, deform into
cross sections bounded by hyperbolic curves �black dashed
lines in Fig. 3�a��

− 4k2��0 
 2��n − �k���2 + n�2�k� − n��� 
 2��n − �k����2

� n�2�k� − n�4�2�2k2, �17�

with n=1,2 , . . . , �k�. Since n� �k�, the lines �= 
2�n� and
�= 
2��n−2�k���, bounding the cross sections of the 3D
cones by the plane �0= 
2��n− �k��, always have the slopes
of different sign. This allows decaying oscillatory modes for
�=0 due to variation of � only.

The ���0� cross sections of the cones with ������0�
apexes have the form of ellipses �white dashed lines in Fig.
3�a��

4k2��0 
 2��n + �k���2 + n�2�k� + n��� 
 2��n + �k����2

 n�2�k� + n�4�2�2k2, �18�

where n=1,2 , . . .. In the ���0� plane the ellipses are located
inside the stripe with boundaries �= ��0
2��k��� �pink
lines in Fig. 3�a��, while the hyperbolas lie outside this stripe.
Moreover, since in the plane �0= 
2��n+ �k��the boundary

lines �= 
2�n� and �= 
2��n+2�k��� have slopes of the
same sign, the � axis does not belong to the instability do-
mains, showing that for growing oscillatory modes the pa-
rameters � and � have to be taken in a prescribed proportion
�see Fig. 3�b��.

The amplitude � of the inhomogeneous perturbation of
the � profile ����r� is limited both from below and from
above in the vicinity of the DPs with �����0. However,
numerical calculations indicate that this property can persist
on the whole interval �� �0,1� �see Fig. 3�b��, in agreement
with the earlier findings of �48�.

IV. CONCLUSIONS

In summary, we have found that the underlying network
of DPs and their intersection indices for �=0 substantially
determine the choreography of eigenvalues for �=1 and, in
particular, the loci of EPs, which are important to explain the
reversals of the geomagnetic field. Although this has been
exemplified for the unphysical monopole �l=0� mode of a
simplified spherically symmetric �2 dynamo model, the gen-
eral idea is well generalizable to physical modes and to more
realistic dynamo models. Work in this direction is in
progress.
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