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ABSTRACT

The magnetorotational instability (MRI) plays a crucial role for cosmic structure formation by enabling
turbulence in Keplerian disks which would be otherwise hydrodynamically stable. With particular focus on
MRI experiments with liquid metals, which have small magnetic Prandtl numbers, it has been shown that
the helical version of this instability (HMRI) has a scaling behavior that is quite different from that of the
standard MRI (SMRI). We discuss the relation of HMRI to SMRI by exploring various parameter dependencies.
We identify the mechanism of transfer of instability between modes through a spectral exceptional point that
explains both the transition from a stationary instability (SMRI) to an unstable traveling wave (HMRI) and the
excitation of HMRI in the inductionless limit. For certain parameter regions, we find new islands of the HMRI.
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1. INTRODUCTION

The magnetorotational instability (MRI; Balbus 2009) is
considered as the main candidate to solve the long-standing
puzzle of how stars and black holes are fed by the accretion disks
surrounding them. The central problem is that these accretion
disks typically rotate according to Kepler’s law, Q(r) ~ r=3/2,
which results in an angular momentum r>Q(r) ~ r'/2. Hence,
they fulfill Rayleigh’s criterion stating that rotating flows with
radially increasing angular momentum are hydrodynamically
stable, at least in the linear sense. Such stable, non-turbulent
disks would not allow the outward directed angular momentum
transport that is necessary for the infalling disk matter to accrete
into the central object.

In their seminal paper, Balbus & Hawley (1991) had high-
lighted the key role of the MRI in explaining turbulence and an-
gular momentum transport in accretion disks around stars and
black holes. They had shown that a weak, externally applied
magnetic field serves only as a trigger for the instability that
actually taps into the rotational energy of the flow. This is quite
in contrast to current-induced instabilities, e.g., the Tayler in-
stability (Tayler 1973), which draw their energy (at least partly)
from the electric currents in the fluid.

Soon after the paper by Balbus & Hawley, it became clear that
the principle mechanism of the MRI had already been revealed
three decades earlier by Velikhov (1959) and Chandrasekhar
(1960). Actually, they had investigated the destabilizing action
of an external magnetic field for the classical Taylor—Couette
(TC) flow between two concentric, rotating cylinders rather
than for Keplerian rotation profile. This is, however, not a crucial
difference since a TC flow can be made very close to a Keplerian
one simply by adjusting the ratio of rotation rates of the inner
and the outer cylinder.

The MRI in flows between rotating walls has attracted
renewed interest during the last decade, mainly motivated by the
increasing efforts to investigate MRI in the laboratory (Rosner
et al. 2004; Stefani et al. 2008a). A first interesting experimental
result was obtained in a spherical Couette flow of liquid sodium
(Sisan et al. 2004). The authors observed correlated modes of
velocity and magnetic field perturbation in a parameter region
which is quite typical for MRI. It must be noted, however,
that the background state in this spherical Couette experiment
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was already fully turbulent, so that the original goal that the
MRI would destabilize an otherwise stable flow was not met.
At Princeton University, work is going on to identify MRI in
a TC experiment with liquid gallium, and first encouraging
results, including the observation of nonaxisymmetric magneto—
Coriolis (MC) waves, have been obtained (Nornberg 2008;
Nornberg et al. 2010).

Both experiments had been designed to investigate the stan-
dard version of MRI (SMRI) with only a vertical magnetic field
being applied. In this case, the azimuthal magnetic field (which
is an essential ingredient of the MRI mode) must be produced
from the vertical field by induction effects, which are propor-
tional to the magnetic Reynolds number (Rm) of the flow. Rm,
in turn, is proportional to the hydrodynamic Reynolds number
according to Rm = PmRe, where the magnetic Prandtl number
Pm = v/pn is the ratio of viscosity v to magnetic diffusivity
n = 1/ppo. For liquid metals Pm is typically in the range
10~°~107>. Therefore, in order to achieve Rm ~ 1, we need
Re ~ 10°-10°, and wall-constrained flows (in contrast to wall-
free Keplerian flows) with such high Re are usually turbulent,
whatever the linear stability analysis might tell (see, however, Ji
et al. 20006). This is the point which makes SMRI experiments,
and their interpretation, so cumbersome.

One might ask, however, why not to substitute the induction
of the necessary azimuthal magnetic field component of the
MRI mode by simply externally applying this component as a
part of the base configuration. Indeed, it was shown (Hollerbach
& Riidiger 2005; Riidiger et al. 2005) that the resulting “helical
MRI” (HMRI), as we now call it, is then possible at far smaller
Reynolds numbers and magnetic field amplitudes than SMRI,
making HMRI an ideal playground for liquid metal experiments.

First experimental evidence for HMRI was obtained in 2006
at the liquid metal facility PROMISE (Potsdam ROssendorf
Magnetic InStability Experiment) which is basically a TC cell
made of concentric rotating copper walls, filled with GalnSn
(a eutectic which is liquid at room temperatures). In Stefani
et al. (2006), Riidiger et al. (2006), Stefani et al. (2007), and
Stefani et al. (2008b), it was shown that the HMRI traveling
wave appears only in the predicted finite window of the magnetic
field intensity, with a frequency of the traveling wave that was
also in good accordance with numerical simulations. Results of a
significantly improved experiment (PROMISE 2) with strongly
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reduced Ekman pumping at the end caps were published recently
(Stefani et al. 2009b, 2009a).

The connection of SMRI and HMRI is presently under intense
debate (Liu et al. 2006; Riidiger & Hollerbach 2007; Priede et al.
2007; Lakhin & Velikhov 2007; Liu et al. 2007; Szklarski 2007;
Riidiger & Schultz 2008; Liu 2009; Priede & Gerbeth 2009).
The first essential point to note here is that HMRI and SMRI are
connected. Indeed, Figure 1 in Hollerbach & Riidiger (2005)
shows that there is a continuous and monotonic transition from
HMRI to SMRI when Re and the magnetic field strength are
increased simultaneously.

A second remarkable property of HMRI for small Pm (which
has been coined “inductionless MRI”), was clearly worked out
in Priede et al. (2007). It is the apparent paradox that a magnetic
field is able to trigger an instability although the total energy
dissipation of the system is larger than without this field.

The relevance of HMRI for Keplerian flows has been seriously
putinto question in Liu et al. (2006). Using alocal WKB analysis
in the small-gap approximation, the authors had shown that the
HMRI works only for comparably steep rotation profiles (i.e.,
slightly above the Rayleigh line) and disappears for profiles as
flat as the Keplerian one. This result has been confirmed by
Lakhin & Velikhov (2007) and Riidiger & Schultz (2008).

However, this disappointing result was soon relativized in
Riidiger & Hollerbach (2007) by solving the global eigenvalue
equation for HMRI with various electrical boundary conditions.
It turned out that HMRI re-appears again for Keplerian flows
provided that at least one radial boundary is highly conduct-
ing. A similar discrepancy between local and global results is
well known for the so-called stratorotational instability (SRI;
Dubrulle et al. 2005) for which the existence of reflecting bound-
aries appears necessary for the instability to work (Umurhan
2006). This artificial demand is of course a much stronger ar-
gument against the working of SRI than the necessity of one
conducting boundary is for the working of HMRI: considering,
i.e., the colder outer parts of accretion disks, then the inner part
can indeed be considered as a good conductor (Balbus & Henri
2008).

Other arguments that have been put forward against the
relevance of HMRI for thin accretion disks are the necessity
for a large ratio of toroidal to poloidal magnetic fields (Liu
2008a) and the fact that the inductionless approximation (under
the assumption of finite viscosity) would lead to unphysically
small values of the plasma g8 (Liu 2008b).

A further complication for applying HMRI to the real world
is the fact that it appears in form of a traveling wave. The crucial
point here is that monochromatic waves are typically not able to
fulfill the axial boundary conditions at the ends of the considered
region. To fulfill them, one has to consider wave packets. Only
wave packets with vanishing group velocity will remain in
the finite length system. Typically, the onset of this absolute
instability, characterized by a zero growth rate and a zero group
velocity, is harder to achieve than the convective instability of a
monochromatic wave with zero growth rate. A comprehensive
analysis of the relation of convective and absolute instability
for HMRI can be found in Priede & Gerbeth (2009). From
the extrapolation of the results of this paper, it seems that
Keplerian rotation profiles (with conducting boundaries) are
indeed absolutely HMRI-unstable, but a final solution to this
puzzle is still elusive.

In the present paper, we step back from those important
consideration of absolute and global instabilities and focus
again on the local WKB method by considering the dispersion
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relation of MRI which had been derived and analyzed in Liu
et al. (2006), Lakhin & Velikhov (2007), and Riidiger & Schultz
(2008). In spite of these former investigations, we feel that some
points still need further clarification. This concerns a careful
application of the Bilharz stability criterion as well as some
further parameter dependencies, in particular the dependence
for small but finite magnetic Prandtl numbers. It also concerns
the question in which sense the HMRI can be considered as a
dissipation-induced instability which is quite common in many
areas of physics (Krechetnikov & Marsden 2007; Kirillov 2006,
2007).

To make the paper self-contained, we will start with a
re-derivation of the dispersion relation in two forms which
explicitly contain the relevant frequencies or the dimensionless
parameters, respectively.

Then we will study the peculiar relation of SMRI and HMRI.
As a main result of this paper we will describe in detail the
mechanism of transition from SMRI to HMRI through a spectral
exceptional point (EP) which appears at finite but small Pm. This
provides a natural explanation for the continuous and monotonic
connection between SMRI (a destabilized slow MC wave) and
HMRI (a weakly destabilized inertial oscillation). In addition
to this, for high Reynolds numbers we will identify a second
scenario for HMRI which leads to new islands of instability at
small but finite values of Pm.

2. MATHEMATICAL SETTING

In this section, we will re-derive the dispersion relation for
HMRI, including viscosity and resistivity effects. Note that
equivalent relations, in various forms and approximations, were
already given by a number of authors (Liu et al. 2007; Lakhin
& Velikhov 2007; Riidiger et al. 2008).

The standard set of nonlinear equations of dissipative incom-
pressible magnetohydrodynamics (Ji et al. 2001; Goodman & Ji
2002; Noguchi et al. 2002; Lakhin & Velikhov 2007; Riidiger
& Schultz 2008) consists of the Navier—Stokes equation for the
fluid velocity u,

ou 1 B? 1 )
—+@@Vu=—-V{p+—|)+—@B-V)B+vV-u, (1)
ot P 20/ op

and of the induction equation for the magnetic field B,

B 5
W:Vx(uxB)+nv B, 2)
where p is the pressure, p = const the density, v = const

the kinematic viscosity, n = (o0 )~ the magnetic diffusivity,
o is the conductivity of the fluid, and uo is the magnetic
permeability of free space. Additionally, the mass continuity
equation for incompressible flows and the solenoidal condition
for the magnetic induction yield
V.-u=0, V-B=0. 3)

We consider the rotational fluid flow in the gap between the
radii R) and R, > R;, with an imposed magnetic field sustained
by currents external to the fluid. The latter is important in order
to distinguish the MRI from other instabilities (i.e., the Tayler
instability for which electric currents are applied to the fluid).
Introducing the cylindrical coordinates (R, ¢, z), we consider
the stability of a steady-state background liquid flow with the
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angular velocity profile Q(R) in helical background magnetic
field (a magnetized TC flow)

p= pO(R)’ BO =

with the azimuthal component

u) = RQ(R) ey, Bj(R)ey+Ble., (4)

ol
2 R’

which can be thought of as being produced by an axial current
1. The angular velocity profile of the background TC flow is

BY(R) = 5)

b
QR)=a+ =7 (6)
where a and b are arbitrary constants as in TC experiments
(Wendl 1999). The centrifugal acceleration of the background
flow (Equation (6)) is compensated by the pressure gradient (Ji
et al. 2001):
19
RQ? = _ 2P0 )
p OR

2.1. Linearization with Respect to Axisymmetric Perturbations

Throughout the paper, we will restrict our interest to ax-
1symmetr1c perturbations v = uw'(R, z), B = B/(R, z), and
p' = p'(R, z) about the statlonary solution (Equations (4)—(7)),
keeping in mind that for strongly dominant azimuthal mag-
netic fields also nonaxisymmetric perturbations are possible
(Hollerbach et al. 2010).

With the notation
Dy = 0gd} +02, D, =g+, ®

where the differential operators are defined in Equation (Al),
the general linearized Equations (A2) derived in the Appendix
are simplified in the assumption of axisymmetric perturbations
to

0 —vDuy — 2Qu’¢

1 1
= —— | dgp + — (BY3x B, + BY3r B, ]
p |: o ( z b4 ¢ ¢>)

1 B,
s (BQBZB;e - %’%) :

@ vD)’+K2’ B o m
— u, + —ufp = .B,,
' VR T oQ R T gp Y
/ 1 / 1 0 /
(0 —vDyu, = ——|9d,p +—\ B9, B,
) o Mo\

BO
+B281B;,>} + ——0.B]
Hop
(0 — nD\)By = BY0.uy,

2BY
(8, — nD1)B), = Bo,ul, + T“’M’R +(RORQ) By,

(8 —nDy)B. = —B%3Lu’,
BzuZ = —BITeuR,
3,B. = —3} By, )

where the squared epicyclic frequency « is defined as

dQ 1
K2 =2Q (29 + R—)

Q?R* 10
dR R3dR( )- 10)

Vol. 712

Following the approach of Goodman & Ji (2002) and Liu
et al. (2006), we act on the first of Equations (9) by the operator

8; and on the third one by the operator d,. Summing the results,
taking into account that

BOB/
By =0. dr(ByB})=——"""+BJorB,.
(I

and using the last two equations of Equations (9) yields

3,Dy = D0}, 9}

, 1 1
—2Q0ju, = ——D2 I:p/ + —393;]
Mo

- %i(aT BYog +92By)B,,
j%2

2 By
- —a;<—"’3(;,>. (12)
Hop R
Therefore, we extend the identity obtained in Goodman & Ji
(2002) to the case Bj # O:

1 1 1 BY
D,— [p +—(BYB,+BYB )} =204 [ Qujy — — 2B, |.
P Ho Hop R

(13)
On the other hand, using Equation (11), we transform the first
of Equations (9) into

1 , 1 ’
0 —vDuy — ZQM; = — 3R; |:P + E (B?Bé + BgB¢)i|

0
+L BOE)B’—Z&B’ (14)
pop \ R )

Acting on both sides of Equation (14) by the operator D; and
taking into account the identity (13) and

D1dg = (3gdp +02)dr = Or(kdr +82) = 8x D2, (15)

we get

D1(8, — le)u'R - 2QD1M;5

Ho

Y
+D,— (B%.By — —B,
Hop \ ° R

1 By
f ’ [

1 o o, 2By
+D1—p BZaZBR_TB¢ . (16)

1 1
= —9gDyr— I:p/ +— (BB, + Bng;)}
0

Rearranging the terms and using the definition of the operator
D yields
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Dy(d; — vDufy —2Q07u,, with
0
_ i 1 B / 1 0 / 1 ZBg ’ Dl 000
—28R8R B¢+_B Dla B Dl_B O 1 0 O
Hop R Hop Cmop R Eo = ,
1 233 0O 0 1 0
=—B"D,3.B, — — —23°B.. (17) 1
op * PRT 0 R T 0 00
0\2 2 BY 10 2By 2
. , v(DY)” 2000; =Dz  ——%-0:
Therefore, we have separated the equations for u/,, u;), and By, ) ‘ Hop “;g’ 0z
By, from the others in Equations (9): i, — —2'(—50 vD? 0 0 @
| B?Bg 0 nD? 0
2 0
(8, — le)DluR 2Q0 u¢ = WB Dla B/ % Bgag % _ 290 ’ID?
b 2B} 32 B, where
/LO:O R a0
K2 B° Qo = Q(Ry), Kg =2Q0(2Q¢ + Ry — s
(8 — vDuy + ——ufp = ——3.By, dR |p_g,
2Q Kop o
(8 — nD1)By = B%9.uy, By =Bj(Ro). D) =0%+03:+ R—R - (23)
0

2B
(0, —nDy)Bj, = BY0.u, + Tu,ﬁ (RIRQ)BY.

(18)

Note that after introducing the stream functions for the poloidal
components
By =0y, Bl=—0}V,
(19)

Equations (18) extend the inviscid equations of Liu et al. (2006)
to the case v # 0.

We can rewrite Equations (18) in the form of the operator
matrix equation Btﬁé’ = H&'/, where &' = (u'y, u;), By, B(;)T,

ug =00, u,= —8,2(/),

D, 0 0 0
s o 1o
o o1 o]
0 00 1
0
vD} 2032 D —;?Rag
~ K2 B/
H=|"a vD 0 v B
BZ?Z 0 77D1 0
2 BY%. RoQ gD

The resulting multiparameter family of operator matrices
equipped with boundary conditions can be investigated by nu-
merical or perturbative (Kirillov et al. 2009; Kirillov 2010)
methods. In the following, we use the local WKB approxima-
tion.

2.2. Local WKB Approximation

We choose a fiducial point (R, zo), around which we perform
the local stability analysis (Pessah & Psaltis 2005). We expand
all the background quantities in Taylor series around (Ry, zo)
and retain only the zeroth order in terms of the local coordinates
R =R —Ryand Z = z — 79 to obtain the operator matrix
equation with the constant coefficients

8, EoE' = Hyt' 21

0

Equation (21) is a linear PDE with the constant coefficients in
the local variables (R, %) for the perturbed quantities &’. This is
a good approximation as long as the variations R and Z are small
in comparison with the characteristic length scales in the radial
and vertical directions, respectively (Pessah & Psaltis 2005). A
solution to Equation (21) has the form of a plane wave:

£ =Eexp(yt +ikgR +ik.2), &= {(iig.iig, Br, By)",

(24)

where £ is a vector of constant coefficients.
Introducing the total wavenumber k*> = k? +k% and denoting
o =k, /k, we find

DVexp(yt +ikgR +ik,Z)

ik 1

= (—k2 R —) exp(yt +ikgR +ik.3). (25)
Ry R}

In the WKB approximation, we restrict the analysis to the modes

with the wavenumbers satisfying krRo > 1 which allows us

to neglect the terms ’k—" — — in Equation (25). In view of this,

after substitution of Equatlon (24) into Equation (21), we arrive
at the matrix eigenvalue problem:
(H—yE) =0, (26)

with E as a unit matrix and H = —diag(w,, w,, w,, ®,) + H| +
H,, where w, = vk? and w, = nk? are the viscous and resistive
frequencies,

. 0 0 10
lw
_ A 0 0 0 1 , @7
Jiop | #op 000
0 wp 00
H,
0 2Qo0? 0 2wA¢JW
_ | 290 — Ro s, 0 0 0
0 0 0 0 ’
—2w4, /0P 0 Ry Z% R=Ry 0

(28)
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Figure 1. (a) Coriolis splitting of the Alfvén plane wave into the fast and the slow magneto—Coriolis (MC) waves, (b) shear causes interaction of slow MC branches
with the origination of the double zero eigenvalue, and (c) splitting of the double zero eigenvalue yields positive real eigenvalues (SMRI).

and the Alfvén frequencies are

2
R
Hop

BY)*
T

= . (29)
Y popR?

Note that the matrix —diag(w,, ,, w,, @,)+ H; has two dou-
ble eigenvalues related to the damped Alfvén modes (Nornberg
et al. 2010):

wy + Wy \/ wy — wy 2 )

Y2 =— 5 +< ) >_wA’
__a)v+a),,_\/ wy — wy 2_ )
V34 = ) ( ) ) Wy -

When wy, = 0, % ] ReRy = 0, the eigenvalues of the matrix

H, + H, correspond to the Alfvén-inertial or MC waves (Lehnert

1954)
yia = iyJod + Qa2 + iaQy,
Vaa = —iyJ i + Qla? £ iaQ.

Figure 1(a) demonstrates how rotation leads to the splitting
of plane Alfvén waves into the fast and slow MC waves
(Lehnert 1954). The system with purely imaginary eigenvalues
(Equation (31)) is marginally stable and its destabilization,
caused by dissipation, shear, or azimuthal magnetic fields,
can efficiently be treated by methods that were developed in
the theory of dissipation-induced instabilities (Krechetnikov &
Marsden 2007; Kirillov 2007, 2009).

On the other hand, the matrix H can be considered as a
result of a non-Hermitian complex perturbation H; + H, of
a real symmetric matrix, which has two double semi-simple
eigenvalues—diabolical points (Berry & Dennis 2003). This is
a typical situation for the problems of wave propagation in
chiral absorptive media (Keck et al. 2003; Berry & Dennis 2003;
Kirillov et al. 2005) or in rotating symmetric continua (Kirillov
2009).

(30)

(€29

2.3. Dispersion Relation in Terms of Dimensionless Parameters

The stability of the propagating plane wave perturbation
(Equation (25)) is determined by the roots y of the dispersion

relation,
P(y)=y*+ary® +ary* + (a3 +ib3)y +as +iby = 0, (32)

where P(y) = det(H — y E). We write the coefficients of the
complex polynomial (Equation (32)) in the form

a; = 2w, + wy),

ay = (w, +w,)* + 2(a)ﬁ +wywp) + o’ig + 4a2wi¢,

az = 2(w, + a),,)(a)i + a),]a)v) + Zazlcga),, + 40(2(60,] + a),,)a)id),
2

as = (wi + wvw,,) — 40(20)%9% + otzlcg(wi + w,zl)

2 2
+hat o 0wy,

by = —Sazﬂoa)AwA¢,
by = —4aZQOwAa)A¢(2w,7 +w,) — KgaZQaIwAwA¢(w,, — wy).
(33)
After scaling the spectral parameter as y = A/, ®,, We ex-
press the appropriately normalized coefficients

(Equation (33)) by means of the dimensionless Rossby num-
ber (Ro), magnetic Prandtl number (Pm), ratio of the Alfvén
frequencies (8*), Hartmann (Ha*), and Reynolds (Re*) num-
bers:

1 Ry dQ
0= __0 _ , Pm = K — ﬁ7 ﬂ* :a%,
2Qp dR|p_p, n o wa
«_ L . B?
Re*=a—, Ha"=a———— (34)

wy k A/ Hopvn .
Additional transformations yield the coefficients of the disper-
sion relation P(1) = 0 in a simplified form:

a1=2<ﬁ+\/I1Tn)’

a = %‘ +2(1 + Ha*?) + 48*?Ha*? + 4Re*’Pm(1 + Ro),

ay = a;(1 + Ha*?) + 2a, B**Ha*? + 8Re**(1 + Ro)v/Pm,
as = (1 + Ha*?)? + 48*?Ha* + 4Re*?
+4Re*’Ro(PmHa*? + 1),
by = — 8f*Ha*’Re*+/Pm,
by = — 4B*Ha**Re*(2 + (1 — Pm)Ro). (35)
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Therefore, we have exactly reproduced the dispersion relation
of Lakhin & Velikhov (2007) and Riidiger & Schultz (2008),
which generalizes that of Goodman & Ji (2002) and Liu et al.
(2000).

3. SMRI IN THE ABSENCE OF THE AZIMUTHAL
MAGNETIC FIELD (8* = 0)

Let us first assume 8* = 0 and study the onset of the SMRI.
The coefficients of the polynomial P(}) are then real because
bz = 0 and by = 0. We have

1
a=a; =2(~vPm+ >,
1 1 < o

~D
ay = é %‘ +2(1 + Ha*?) + 4Re*2Pm(1 + Ro),

a3 = a3 = a;(1 + Ha*?) + 8Re**(1 + Ro)v/Pm,
as = a4 = (1 + Ha**)? + 4Re**(1 + Ro(PmHa** + 1)).
(36)

Composing the Hurwitz matrix of the real polynomial P(A),
we write the Lienard and Chipart criterion of asymptotic stability
(Lienard & Chipart 1914; Marden 1966): all roots A have
ReXl < 0 if and only if

LAl4>O, &2>0, h]=£l1>0,

]’l3 = &1&2&3 — &]2&4 — fl% > 0. (37)

Explicit calculation of k3 shows that it is a sum of squared
quantities:

aan 2
hy = 64 <Pm*Re*2(Ro 1)+ %)

~2
+Ha*22 (%1 + 4Re*2) 0. (38)

Therefore, the condition 23 > 0 is always fulfilled.

The local definition of the Rossby number (Equation (34))
allows us to vary it for the background profile Q(R) = a+bR >
changing the coefficients a and b because Ro = —b/(a RS +b).
On the other hand, we can interpret the Rossby numbers as if
they would correspond to quite general rotation profiles Q(R),
which can have, e.g., the shape Q(R) ~ RY (with w = —3/2
and Ro = w/2 = —3/4 for Kepler rotation).

In the following, we assume Ro > —1 that corresponds to
the centrifugally (Rayleigh) stable flow in the absence of the
magnetic field. This reduces the conditions (37) to a4 > 0 that
is equivalent to

(1 + Ha*?)? + 4Re*?

Ro > Ro¢ = 5 5 .
4Re*“(PmHa*~ + 1)

(39)

Note that in the absence of the magnetic field, Ha* = 0, the
inequality (Equation (39)) is
1
4Re*?’

where we define the viscous Rayleigh line Ro”. In the inviscid
limit, Re* — oo it is reduced to Rayleigh’s centrifugal stability
criterion:

Ro > Ro” = —1 (40)

Ro > Ro' = —1, 41)

where Ro' is the classical inviscid Rayleigh line.
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As is seen in the Figure 2(a), there are two extrema of the
function Ro“(Ha™) at

. (42)

i —1++/(1 — Pm)? + 4Pm>Re*>
Ha,, =+
Pm

which agrees with the results of Ji et al. (2001). Triggered by
the vertical magnetic field (B? # 0) at some values of Ha* the
flow becomes unstable for Ro > —1. It can be stabilized again,
however, with the further increase of Ha*, which is a hallmark
of the standard MRI, cf. with Figure 1 in Ji et al. (2001).

The maximal values of the Rossby number at the peaks of the
boundary of the SMRI domain are

2
4Re*2Pm2+(Pm—1+\/ (1—Pm)2+4Re*2Pm2)

Rol = —

max

. (43)
4Re*2Pm? 4/ (1—Pm)2+4Re*2Pm?

The two extrema at Ha*,,x # 0 exist when the radicand in
Equation (42) is positive, that is when

/(2 — Pm)Pm
—

Re*Pm > (44)

Otherwise, the unique maximum is at the origin, Figure 2(b).
This condition also follows from the positiveness of the second-
order coefficient in the series expansion of Ro‘(Ha*) at Ha* = 0:

. 1+4Re*? 2 —(4Re** + 1)Pm__ ,
Ro¢ = — — — 5 Ha*“+.... (45)
4Re* 4Re*
Setting Ro;, .. > —3/4, we find the conditions for existence

of the standard MRI at and above the Kepler line in terms of the
magnetic Reynolds number Rm* = Re*Pm:

2
Rm* > §v1 + 3Pm. (46)

For Pm « 1 one should have Rm* > 2/3 to obtain SMRI for
the Kepler flow, which leads to Re* >> 1. At such values of Re*,
the following formal asymptotic expansions of Ha*,,x(Re*) and
Ro¢ . (Re*) are valid:

2
Ha*p = & v2Re* F L
4Pm+/Re*
Rt I, 1-Pm (1 — Pm)? “
(0) = — — .
max PmRe*  2Pm”Re*>  23Pm’Re*?

The asymptotic expansion (Equation (47)) gives a simple scaling
law which is known to be a characteristic of SMRI:

1
Re* = —Ha*’. (48)
2
This equation is identical to N* := Ha*?/Re* = 2 where

N* is called interaction parameter (ratio of magnetic versus
inertial effects, often used in technical magnetohydrodynamics)
or Elsasser number (ratio of magnetic versus Coriolis effects,
often used in geophysics and astrophysics).

The SMRI can be interpreted as destabilization of slow MC
waves (Nornberg 2008; Nornberg et al. 2010). Indeed in the
presence of shear, Ro # 0, we find from Equation (32) with the
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Figure 2. Domain according to Equation (39) of the standard MRI (gray) for Pm = 107> and (left) Re* = 2 x 10° or (right) Re* = 0.5. The left plot shows the typical

SMRI peaks (Ji et al. 2001).

coefficients (Equation (33)) that in the absence of dissipation
(w, = 0, w, = 0) the eigenvalues are

y = i\/—zggam +Ro) — 0’ £ 2Qa/QZa?(1 + Ro)? + w?.

(49)
At the critical value £y = Qg, where
2
w
Q=—— 4 50
0 ZaZROBRQ ( )

the branches of the slow magnetic—Coriolis waves merge with
the origination of the double zero eigenvalue, see Figure 1(b).
Splitting of this eigenvalue yields positive real eigenvalues, see
Figure 1(c). Note that the SMRI threshold (Equation (50)) is
equivalent to

Ha*Z

" 4Re*2Pm
that follows from Equation (39) when Ha* — oo.

Ro = 61V

4. HMRI IN THE PRESENCE OF AN AZIMUTHAL
MAGNETIC FIELD (8* # 0)

The fact that an additional azimuthal field changes the
character of the MRI drastically had been detected by Knobloch
as early as 1992 (Knobloch 1992). He had shown that in this
case the instability appears in form of a traveling wave (see
also Knobloch 1996). However, the difference in the scaling
behavior for small Pm between standard and helical MRI was
worked out only recently (Hollerbach & Riidiger 2005), and
is still the subject of intense debate. In this section, we will
contribute to this discussion by focusing on the specific Pm
dependence of the helical MRI.

4.1. Bilharz Criterion for Asymptotic Stability

With the appearance of the azimuthal magnetic field (8* # 0),
the coefficients of the polynomial P(X) become complex. This
breaks the symmetry of the eigenvalues with respect to the real
axis of the complex plane and consequently may lead to dramatic
changes in the stability properties of the system.

In contrast to previous studies (Lakhin & Velikhov 2007;
Riidiger & Schultz 2008) that were based on the study of
approximations to the roots of the dispersion relation

P =2 +a M +ad? + (a3 +iby)h +as +iby =0, (52)

we prefer to use the Bilharz criterion (Bilharz 1944; Marden
1966) of asymptotic stability of the roots of complex polyno-
mials. This criterion establishes the necessary and sufficient
conditions for all the roots to be in the left part of the complex
plane (ReX < 0) in terms of positiveness of the main even-
ordered minors of the Bilharz matrix. For the polynomial P(})
with the coefficients (Equation (35)) this matrix is

a, —by O 0 0 0 0 0
b3 as as —b4 0 0 0 0
—ap 0 b3 as ag —b4 0 0
—aq —ay 0 b3 as ay —b
0 0 —d1 —ap 0 b3 as
0 1 0 0 —a; —ap 0
0 0 0 1 0 0 -—-a
0 0 0 0 0 1 0
(53)

The Bilharz stability conditions (Bilharz 1944; Marden 1966)

require positiveness of all diagonal even-ordered minors of B:

4

oo~ O

my = azas + bsby > 0,

my = (araz — ajas)m, — a%bi > 0,

m3 = (a1a; — a3)my — (ajasas + (a1by — bs)*)m,
+ajay (b4a2(2b4 —aib3) + alzai) > 0,

myg = aymsz — ajazmy + (a; + afb4b3 — 2a1bi)m1

+ajblay(aay — az) — biaiay + by > 0. (54)

The inequalities (Equation (54)) determine the stability condi-
tion of the general dispersion relation (Equation (52)) in the
presence of both vertical (B?) and azimuthal (Bg) components
of the magnetic field.

We first note that for 8* = 0 the stability conditions (Equation
(54)) are reduced to the stability condition a5 > 0 that was
derived in the previous section. Indeed, with g* = 0 the
coefficients b3 and b4 vanish to zero, which yields

my = a4a3(a2a3 — 4,4s),
my = agh3. (55)

my = 443,

m3 = dy4(Gra3 — 1a4)h3,

In view of a3 > 0 and &3 > 0 it remains to check the sign of
the expression a>a; — aas. Explicit calculation yields
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and that of HMRI (dark gray) for Pm = 10> and Re* = 2 x 10°. The thin
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gray. The boundary to the HMRI domain (bold line) is m4 = 0.

ra3 — 414y (4PmRe*’(Ro + 1) + Pm + Ha*” + 2)°Pm

2 Pm+/Pm
N (4Re*?Pm?+1)(Pm+1)Ha*?>+Pm?Ha*2(Ha*2+3+Pm)+1

Pm+/Pm

> 0.
(56)

Therefore, for 8* = 0 the conditions (Equation (55)) are reduced
to the inequality a4 > 0 that determines the stability domain that
is adjacent to the domain of SMRI.

In Figure 3, we plot the boundary (Equation (39)) of the
SMRI domain to compare it with the domain of HMRI given
by the inequalities (Equation (54)). We see that the domain
myg > 0 is an intersection of all the domains m; > 0,
i =1,2,3,4. Thus, the region of HMRI, shown by dark gray
in Figure 3, is adjacent to the domain m4 > 0. Although
this fact is not a proof that the inequalities (Equation (54))
are reduced to the last one, our numerical computations of
the domains and of the roots of the dispersion relation as
well as the analysis of the inductionless approximation in the
next section confirm that m4 = 0 is the boundary of HMRI
domain.

4.2. Inductionless Approximation

As it was first observed in Priede et al. (2007), a remarkable
feature of HMRI is that it leads to destabilization, even in the
limit Pm — 0, for some Ro > —1, although not until the Kepler
profile (Ro = —0.75). Below we prove this.

Let us consider the Rossby number as a function of the mag-
netic Prandtl number and fix all other parameters. Substituting
Ro = a+bPm+- - - into the equation m4 = 0 and collecting the
terms with the identical powers of Pm, we find a quadratic equa-
tion in the coefficient a, which can be exactly solved. Therefore,
in the limit Pm — +0 there are two branches of the function
Ro(Ha*, Re*, B*): a positive one (Ro* > 0) and a negative one
(Ro™ < 0),
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2
N (1+Ha*2) +4*2Ha* 2 (1+4* 2Ha*?)
Ro™ = 252 Ha

4542
(Zﬂ*zHa*2+Ha*2+l)‘/(1+Ha*2)2+4/S*2Ha*2(1+f3*2Ha*2)+L* 5= ((1+Har2) 44572 Ha?)
Re*
2Ha*4p*2

(57)

When B* — +0 the function Ro* tends to infinity while for Ro™
we get

_ - (1+Ha"?)?
hm Ro=—-1—-——— -~

58
p—+0 4Re*? (58)

The expression (58) can also be obtained as a limit of Ro®
defined in Equation (39) when Pm — +0.

Calculating the derivative aaRRz;, we find that it is strictly
positive for all Re* € (0, +00),

dRo™

dRe* T

(14Ha*?)*+ 8*?Ha*?(6+8Ha*> +2Ha**+8 *?Ha*?) <
2Re*? \/ Re*?((1+Ha*?)2+48*2Ha*? (1+4*2Ha*?))+Ha** 82 ((1+Ha*?)2+4 82Ha*?)

(39)

Consequently, the maximal value of Ro™ < 0 is attained
when Re* — +o0. In this limit, the function Ro™(8*) has a
maximum

Rop, (Ha") = max  lim Ro™

—Ha*? — 2 + V4 + 6Ha*? + 2Ha**

T 2Ha*? (60)
at
. .. ~2+2Ha*
B (Ha") = ——. (61)

2Ha*

Since the derivative of the function Ro,, (Ha*) is strictly
positive for all Ha* > 0,

max

dRo_, (Ha*) 43Ha*2 +4 — 24/4 + 6Ha*? + 2Ha**
dHa* Ha*3+/4 + 6Ha*? + 2Ha**

> 0,

(62)
we conclude that the global maximum of the function
Ro™ (Ha*, Re*, B*) coincides with the maximal value of

Ro,,,(Ha*), which is attained at Ha* — +o0 and is therefore

max Ro™ =maxRo_, (Ha") =2 — 23/2 ~ —0.8284,
Ha*,Re*, 8* Ha*
(63)

being exactly the same value that was found in the highly
resistive inviscid limit in Liu et al. (2006). The corresponding
optimal value of 8* in the limit Ha* — 400 is

B = ? ~0.7071. (64)

max
Note that numerical maximization of Ro frequently leads to
the extrema corresponding to the values of 8* ~ 0.7 even for
Pm # 0.
Extending the inviscid result of Liu et al. (2006), we establish

that in the inductionless approximation (Pm = 0) the upper
bound for HMRI is

Ro~(Ha*, Re*, B*) <2 — 242~ —0.8284.  (65)
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Figure 4. Inductionless approximation (Pm = 0): two domains (Equation (57)) of HMRI (gray) are within the bounds (Equation (67)). It is seen how the scaling law
(Equation (68)) works. HMRI is possible even for Pm = 0—the paradox of inductionless magnetorotational instability (Priede et al. 2007).

Proceeding similarly, we find that

Ro*(Ha*, Re*, B*) > 2+ v/2 ~ 4.8284, (66)
where the minimum is attained at the same extremal value of
B* given by Equation (64). The lower bound (Equation (66))
for Ro* exactly coincides with that found in Liu et al. (2006)
in the highly resistive inviscid limit by analyzing the roots of
the dispersion relation. However, it should be noticed that the
character of this Ro* is still unclear. Since up to present we have
not obtained any corresponding result from a one-dimensional
global eigenvalue solver, it remains to be checked if this result
is an artefact of the short wavelength approximation.

Anyway, quite in accordance with Lakhin & Velikhov (2007)
and Liu et al. (2007), we conclude that in the inductionless
approximation there is no HMRI for

2 — 24/2 < Ro(Ha*, Re*, %) < 2+ 2+/2, (67)
which excludes HMRI for the Kepler law and for other shallower
velocity profiles.

Finally, we would like to find a scaling law for HMRI to
compare it with that of SMRI (Equation (48)). The HMRI
scaling law for the maximum of the critical Rossby number
at infinity (which works well, however, starting from Ha* >~ 3)

reads
2
Re* = (1 + %)Ha*? (68)

In terms of the interaction parameter, this can be rewritten as
N*Ha* = 1/(1 + \/5/2). This scaling is rather different from
the scaling of SMRI (Equation (45)).

In Figure 4, the two domains (Equation (57)) of HMRI in
the inductionless approximation (Pm = 0) are plotted for the
Hartmann and Reynolds numbers that change according to the
scaling law (Equation (68)). It is seen that the helical MRI
regions are within the bounds (Equation (67)) which are reached

only at B* = v/2/2.
4.3. HMRI in the Case when Pm # 0

In the previous section, we have confirmed that for Pm = 0,
HMRI does not work for Keplerian flows, at least according to
the WKB approximation. Nevertheless, Hollerbach and Riidiger
had shown that it does when considered as an eigenvalue
problem, provided that at least one radial boundary is conducting
(Riidiger & Hollerbach 2007).

In this section, we analyze the dispersion relation without
the simplifying assumption that Pm = 0. As it follows from
Equation (39), in the absence of the azimuthal component of the
magnetic field (8* = 0) there is no SMRI for Pm < Pm®, where
at the threshold

(1+Ha*?)” + 4Re**(1 + Ro)

Pm = Pm‘ := — —
4RoRe*“Ha*

(69)

The SMRI in this case develops when Pm > Pm°. In Figure 5,
the threshold (Equation (69)) is shown by the dashed line.
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4.3.1. First Scenario of HMRI Excitation

When the azimuthal magnetic field is switched on (8* # 0),
the instability threshold Pm® depends on 8*. At small values
of B*, the threshold slightly increases so that the boundary
of the domain of instability bends to the right of the dashed
line in the (Pm, 8*)-plane (see Figure 5). The behavior of the
instability boundary with further increase of 8* is determined
by the Rossby number.

For Rossby numbers close to Ro —1, the instability
boundary at some 8* # 0 bends to the left, crosses the dashed
line and forms a “semi-island” of instability with its center

located close to g* = %, Figure 5(a). This enlargement of
the instability domain on the left of the dashed line relies on
a sort of optimal helicity of the applied magnetic field because
neither at smaller nor at larger values of 8* # 0 there is any
instability in this range of Pm. Although the whole gray area of
instability in Figure 5(a) is of course the region of the HMRI,
the main interesting effect of non-zero helicity is the excitation
of instability at small and even infinitesimally small values of
Pm in the range where SMRI is not possible. With the increase
of Ro the specific effect of * becomes even more pronounced

with the bifurcation of the instability domain to the isolated
region (island) that lies on the left of the dashed line and to the
“continent” on the right of it, Figures 5(b) and (c). The island
of HMRI illustrates both the destabilizing role of the azimuthal
magnetic field component and the non-triviality of inducing
HMRI below the threshold (Equation (69)) at small negative
values of the Rossby number (Ro > —1). For these reasons,
we propose to refer to the instability for * # 0 on the left of
the dashed line as the essential HMRI and that on the right as
the helically modified SMRI.

Despite the apparent discontinuities in the (8*, Ro)-plane,
the three-dimensional domain of HMRI in the (8*, Pm, Ro)-
space has a smooth boundary given by the expression my4 = 0,
Figure 6(a). Asitis seen in Figure 6(a), the function Ro“(Pm, 8*)
has local extrema at some Pm ## 0, yielding regions of HMRI
that are separated from each other in the plane (Pm, %),
Figures 5(b) and (c). Since the maximum is attained at small
but finite values of Pm, the corresponding boundary of HMRI
in the (8*, Ro)-plane at Pm # O can exceed that in the
inductionless limit (an instability induced by the viscosity
w, # 0) and, moreover, the limiting bound Ro = 2 — 2«/5,
as is clearly seen in Figure 6(b). The one-dimensional slices of
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eigenvalue branches thus creating new opportunities for instability at low Pm.

the three-dimensional instability domain in the (8%, Ro)-plane

converge, however, to the region of the inductionless HMRI

when Pm — 0. Therefore, in comparison to the inductionless
limit, for Pm # 0 we obtain higher values of the maximal

0
Figure 7. (a) SMRI domains shown in gray with the intensity of the color corresponding to various values of Ro and (b) a considerable deformation and even breaking
of the instability domains in the region of small Pm when * is switched on (HMRI). The pictures are in agreement with the calculations of (Riidiger & Schultz 2008).
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Figure 8. Ha* = 5, Re* = 100, and Ro = —0.85: real and imaginary parts of eigenvalues A1 » 3 4 as functions of Pm. (a) Two stable complex branches (inertial modes)
with the coincident real parts and two pure real ones, one of the latter shown in gray becomes positive and yields SMRI; (b) merging of the inertial complex mode
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Rossby numbers corresponding to the excitation of HMRI—
a quite promising similarity of this local WKB analysis with

the observation of HMRI for Keplerian flows with conducting
boundaries in Riidiger & Hollerbach (2007). In Figure 7, the

() p=0
with the deformed unstable helically modified SMRI-branch (gray) with the origination of an exceptional point (EP); and (c) bifurcation yields new mixed complex
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Figure 10. Ha* = 5, Re* = 100, and Ro = —0.85, 8* = 0.7: (a) real part of the new critical eigenvalue branch, combined from the parts of A (black) and 1 (gray),
is positive while Pm is within the island of the essential HMRI and the continent of the helically modified SMRI; (b) imaginary parts of the new stable and unstable
branches; and (c) trajectory in the complex plane of the new critical eigenvalue that creates instability with the change of Pm from zero to Pm = 0.011.

detailed evolution of the stability boundaries in the (Pm, Re*)-
plane with the increase of Ro for 8* = 0 and B*
demonstrates that the mechanism of reduction of the critical
Reynolds number, which is another important characteristic of
HMRYI, is accompanied by a qualitative effect—a breakup of the
instability domain into two disjoint regions.

To clarify the nature of HMRI and SMRI and their relation to
each other, we inspect now the roots of the dispersion relation
as functions of Pm. Series expansions of the roots in the vicinity

of Pm = 0 at 8* = 0 yield

A3 =[— 1 —Ha™ £ 2Re*\/~(1 + Ro)]vPm + o(Pm'/?),
1
Aya= — N + Ha**v/Pm + o(Pm'/?). (70)

Therefore, two eigenvalues A 3 branch from zero and the other
two Aj 4 branch from minus infinity. The eigenvalues X, 4 are
real and negative, whereas the eigenvalues A, 3 are real in the
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Figure 11. Ha* = 17, Re* = 28850, and Ro = —0.88: (a) stable inertial waves (11 3) and critical SMRI branch (in gray) of the real eigenvalues (1 4) for * = 0;
(b) for B* = 0.7 one of the inertial wave branches becomes unstable independently of the SMRI branch; and (c) for f* = 2 the same inertial wave branch becomes

unstable a second time at higher frequencies independently of the SMRI branch.

vicinity of the origin for Ro < —1 and complex otherwise with
the frequency

k
w= 290;Zx/Ro+ 1.

The eigenvalues A; 3 correspond to inertial waves with
wc = 2Qok, / k, if we assume rotation without shear (Ro = 0)
and without damping, see, e.g., Nornberg et al. (2010).

In the particular case, when f* = 0 and Ro = —1 the
dispersion equation is exactly solved:

—Pm— 14/ (Pm—1)2—4PmHa*(Ha*—2+/Pm)Re*

Ao =
b2 2/Pm ’
\. . _ —Pm—lEy/(Pm—1)—4PmHa"(Ha* +2v/Pm)Re*
4 2+/Pm '

(71)

The eigenvalues (Equation (71)) are real near the origin, because
Ro=-1:
— v/Pm — Ha*’>v/Pm + 2Re*Ha*Pm + o(Pm),
1
— —— +Ha*>v/Pm F 2Re*Ha*Pm + o(Pm). (72)

vPm

Equating the roots A, 4 to zero, we reproduce the expression for
the threshold (Equation (69)) at Ro = —1.

ALz =

A4 =

In another particular case, when g* = 0, Re* = 0, and
Ro = 0 the exact solution to the dispersion equation consists of

two double eigenvalues
1 («/ﬁ+ ! ) i\/l <\/P_m— L>2—Ha*2

2 +~/Pm 4 /Pm
that are expressed in terms of the viscous, resistive, and Alfvén
frequencies in Equation (30).

Consider the eigenvalues corresponding to the values of
parameters of Figure 5. Since Ro = —0.85 > —1, there are
two real and two complex branches of eigenvalues A = A(Pm)
at f* = 0. In the upper subfigure of Figure 8(a), the real
parts of the two complex branches A; 3 coincide forming a
single curve ReiA(Pm) with ReA(0) = 0. The branches of
pure real eigenvalues A, 4 form two different curves of the real
parts ReA(Pm) and two identical curves of the imaginary parts
ImA(Pm) = 0O, Figure 8(a). One of the real branches A, 4 that
comes from minus infinity changes its sign at the threshold
(Equation (69)) and excites SMRI with zero eigenfrequency.
Due to the large negative values of the real eigenvalues of the
critical branch, there is no way to destabilize the flow at small
Pm. However, new opportunities for destabilization occur with
the increase of 8* that is accompanied by the qualitative change
in the configuration of the eigenvalue branches.

When the azimuthal component of the magnetic field is
switched on, the real eigenvalues of the critical branch (4;),

A=
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Figure 12. (a) First and second islands of the essential HMRI developed according to the second scenario in the neighborhood of 8* = +/2/2 and g* = 3/2/2,
(b) an essential HMRI inclusion in the helically modified SMRI domain, (c) an island of the essential HMRI developed according to the first scenario, and (d) the

corresponding view in the (Ha*, Ro)-plane.

shown in gray in Figure 8, get complex increments. Note
that the perturbation splits the coincident curves of the real
parts of the roots X 3 into two different curves ReA(Pm), see
Figures 8(b) and (c). Similar splitting of the coincident curves
of the imaginary parts of the roots A, 4 yields two different
curves ImA(Pm) in Figures 8(b) and (c). By this reason, the
total number of the branches in Figures 8(b) and (c) increases
up to four in comparison with the three ones that are visible in
Figure 8(a).

With the increase of 8*, the critical real branch (),) deforms
and interacts with a stable complex one () of an inertial wave
until at 8* >~ 0.084 they merge at a point with the origination of
the double complex eigenvalue with the Jordan block known as
an exceptional point (EP; Berry 2004; Mailybaev et al. 2005),
see Figure 8(b). Notice that another EP corresponds to negative

B*. With the further increase of 8* this configuration bifurcates
into a new one, where parts of the stable and unstable branches
are interchanged (Figure 8(c)). The new critical eigenvalue
branch consists of complex eigenvalues that demonstrate the
typical generalized crossing scenario near an EP (Or 1991; Keck
etal. 2003), when real parts avoid crossing while imaginary ones
cross and vice versa, Figure 8(c).

In Figure 9, the “surgery” of eigenvalue branches is clearly
seen in the complex (Imi, Re))-plane. Although “on the sur-
face” (for Re(A) > 0) nothing special happens, the deep reason
for the exchange of the fragments between the branches is “hid-
den” in the Re(X) < Oregion at some finite value of Pm where an
EP is formed, see Figure 9(c). The critical branch (A,) that was
responsible for SMRI leaves its stable “tail” coming from minus
infinity (Figures 9(a) and (b)) and instead “catches” a fragment
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Figure 13. Ha* = 17, Re* = 28850, and Ro = —0.88: (left, B* = 0.7) real part of the first critical eigenvalue branch (gray) is positive when Pm is within the
continent, while for the second critical branch (black) it is within the first HMRI island; (right, 8* = 2) real part of the first critical eigenvalue branch (gray) is positive
when Pm is within the continent while for the second critical branch (black) it is within the second HMRI island.

of a stable branch of complex eigenvalues (1) with small real
parts (Figures 9(d)—(f)). Note that at 8 = 0 and Pm = 0 we
have A; = 0. This rearranged branch of complex eigenvalues
is much more prone to instabilities at low Pm than the original
critical one as the further increase of 8* confirms. Indeed, the
negative real parts become smaller and around g* = 0.7 there
appears a new interval of HMRI at those values of Pm, at which
SMRI did not exist, see Figure 10(a). This interval exactly cor-
responds to the island of HMRI shown in Figures 5(b) and (c).
We note here that the numerical calculation of the roots of the
dispersion relation confirms the boundaries of the regions of
HMRI given by the Bilharz criterion: m4 = 0.

The hidden EP governs transfer of instability between the
branch of (helically modified) SMRI and a complex branch
of the inertial wave that after interaction becomes prone to
destabilization. This qualitative effect explains why switching
the azimuthal component of the magnetic field on we get HMRI
as a traveling wave whereas SMRI was a stationary instability.
Moreover, as Figure 10(c) shows, the new critical branch is
characterized by a broad band of unstable frequencies while the
tail of the branch responsible for SMRI corresponds to a more
sharply selected unstable frequency which is close to zero at
small B* # 0, growing, however, up to ImA >~ 5 when B* is as
big as 0.7.

The above observations are in agreement with the observation
of Liu et al. (2006) that, in contrast to SMRI, which is a
destabilized slow MC wave, HMRI is a weakly destabilized
inertial oscillation. Further results on interpretation of the HMRI
as an unstable MHD wave as well as on its relation to the
dissipation-induced instabilities will be published elsewhere
(Y. Fukumoto et al. 2010, in preparation).

4.3.2. Second Scenario of HMRI Excitation

The remarkable complexity of the phenomenon of HMRI
manifests itself in different scenarios of destabilization. It turns
out that the transition from SMRI to HMRI through an EP is not
the only way to instabilities at low magnetic Prandtl numbers. At
higher values of Re* and Ha*, in the presence of the azimuthal
magnetic field the inertial wave can become unstable without
mixing with the critical SMRI branch.

In contrast to the scenario of the first type when one mixed
complex branch becomes unstable at different intervals of Pm

and causes both the essential HMRI and the helically modified
SMRI, in the new situation the inertial wave causes the excitation
of the essential HMRI and the critical real branch remains
responsible for the helically modified SMRI, as is clearly seen
in Figure 11.

Most surprisingly, the inertial wave branch can become
unstable twice with the increase of §*. The first time this happens

in the vicinity of g = %«/5 =~ 0.707, see Figure 11(b), then—

in the neighborhood of 85 = %ﬁ ~ 2.121, as is visible in
Figure 11(c). In the (Pm, 8*)-plane this yields two islands of the
essential HMRI that coexist with the continent of the helically
modified SMRI, Figure 12(a). The real parts of the unstable
branches shown in black and gray in Figure 13 correspond to
the first and second essential HMRI islands and to the continent
of the helically modified SMRI, respectively.

The difference between the two HMRI scenarios is visible
also in the other parameter planes. For example, in (Ha*, Ro)-
plane the domain of HMRI developed by the first scenario
and corresponding to the HMRI island of Figure 12(c) has
an SMRI-like form with two peaks (see Figure 12(d)). The
second HMRI excitation scenario can lead to the inclusions
of the essential HMRI domain in the domain of the helically
modified SMRI (Figure 12(b)). This is natural because the two
different eigenvalue branches can be unstable simultaneously
at the same values of parameters. Another consequence of the
destabilization of the inertial wave without mixing with the
critical SMRI branch is that the islands in Figure 12(a) are
slices of different three-dimensional domains that can intersect
each other along an edge that forms a singularity of the
common stability boundary, while the HMRI domains shown
in Figure 12(c) are slices of the same three-dimensional region
of instability with the smooth boundary, cf. Figure 6(a).

5. CONCLUSIONS

The HMRI is a more complicated phenomenon than the stan-
dard one. We found evidences that HMRI can be identified with
the destabilization of an inertial wave in contrast to SMRI that
is a destabilized slow MC wave. We established two scenarios
of transition from SMRI to HMRI. The first one is accompanied
by the origination of a spectral EP and a transfer of instability
between modes, while in the second scenario two independent
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eigenvalue branches become unstable. We distinguish between
the essential HMRI that is characterized by small magnetic
Prandtl numbers at which SMRI is not possible, smaller growth
rates than SMRI, and by non-zero frequencies and the heli-
cally modified SMRI which is caused by a small perturbation of
the unstable real eigenvalue branch and is thus characterized by
high growth rates, small frequency, and relatively high magnetic
Prandtl numbers within the usual range of SMRI. With the use of
the Bilharz stability criterion we established explicit expressions
for the stability boundary and proved rigorously the bounds on
the critical Rossby number for HMRI in the inductionless limit
(Pm = 0). Nevertheless, we revealed that for Pm # 0 these
bounds can be easily exceeded—an indicator in favor of the
HMRI for small negative Rossby numbers. Finally, we found
that for small negative Rossby numbers the essential HMRI
forms separated islands that can coexist simultaneously in the
(Pm, B*)-plane.
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discussions.

APPENDIX

LINEARIZATION WITH RESPECT TO
NONAXISYMMETRIC PERTURBATIONS

We linearize Equations (1)—(3) in the vicinity of the stationary
solution (Equation (4)—(7)) assuming general perturbations
u=uy+u, p=po+p,and B = B+ B’ and leaving only the
terms of first order with respect to the primed quantities. With
the notation (Goodman & Ji 2002; Liu et al. 2006)

R A K
Tar YT e fT AR T e
o= Dkt~ D= ohigt o024 02 (A1)
R — YR R1 — UROR R2¢ z

we write the linearized equations in cylindrical coordinates, cf.
Goodman & Ji (2002), Pessah & Psaltis (2005), and Liu et al.
(2006):
(8 — vD)up — 2Qujy + Qdpu'y
1 1 B}
=——|ogp' + — [ BY9xB. + B3z B, — - B!
0 RP 4o z9RD, ¢YRDPy R ¢

1 0 ’ Bg ’ B¢ ’
+—— | B,0;Br+ —9yBr —2—B,
Hop R R
—v (% + %B(ﬁu;) ,
2
(8 — vD)uy + EM/R +Qdyuy,
1 [3¢p/ s L (B4 B, + Byd, B/)}
p R o\ 2 TR TeneTe
1
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BO 2 u’
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1 By
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