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By methods of modern spectral analysis, we rigorously find distributions of eigenvalues of linearized operators

associated with an ideal hydromagnetic Couette-Taylor flow. The transition to instability in the limit of a vanishing

magnetic field has a discontinuous change compared to the Rayleigh stability criterion for hydrodynamical flows,

which is known as the Velikhov-Chandrasekhar paradox.
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Instabilities of Couette-Taylor (CT) flow between two

rotating cylinders are the cornerstone of 20th century studies

of hydrodynamics [1]. In 1917 Rayleigh found a necessary and

sufficient condition for the centrifugal instability of CT flow of

an ideal fluid between cylinders of infinite length with respect

to axisymmetric perturbations [2]. Taylor extended Rayleigh’s

result to viscous CT flow and computed seminal linear stability

diagrams that perfectly agreed with the experiment at moderate

angular velocities [3].

Despite the fact that the Couette-Taylor flow has been

studied, theoretically and experimentally, for more than a

century, the past decade has seen a true renaissance of this

classical subject caused by increased demands for active

development of laboratory experiments with liquid metals

that rotate in an external magnetic field [4]. The prevalence

of resistive dissipation over viscous dissipation in liquid

metals dictates unprecedentedly high values of the Reynolds

number (Re ∼ 106) at the threshold of the magnetorotational

instability (MRI) of hydrodynamically stable quasi-Keplerian

flows, which is currently considered to be the most probable

trigger of turbulence in astrophysical accretion disks [5].

Difficulties in keeping hydrodynamical CT flows laminar at

such high speeds puts the laboratory detection of MRI at the

edge of modern technical capabilities.

Is the existing theory of MRI well prepared to face

these promising experimental opportunities? No matter how

paradoxical it may sound, the answer is “not yet.”

Indeed, the discoverers of MRI, Velikhov [6] and Chan-

drasekhar [7], pointed out a counterintuitive phenomenon. In

the case of an ideal nonresistive flow, which we consider in

this Rapid Communication, boundaries of the region of the

magnetorotational instability are misplaced compared to the

Rayleigh boundaries of the region of the centrifugal instability,

and do not converge to those in the limit of a negligibly small

axial magnetic field. Nevertheless, the convergence is possible

in the presence of dissipation and resistivity [8].

Existing attempts to physically explain the Velikhov-

Chandrasekhar paradox [9] involve Alfvén’s theorem, which

“attaches” magnetic field lines to a fluid of zero electrical

resistivity, independent of the strength of the magnetic field,

which implies conservation of the angular velocity (Velikhov-

Chandrasekhar) rather than the angular momentum (Rayleigh).

However, the weak point of this argument is that the actual

boundary of MRI does depend on the magnetic field strength

even in the case of ideal magnetohydrodynamics (MHD) and

tends to that of solid body rotation only when the field is

vanishing. This indicates that the roots of the paradox are

more hidden.

Recently, this intriguing effect was reconsidered in the full

viscous and resistive setting by a local Wentzel-Kramers-

Brillouin (WKB) approximation [10]. It was found that the

threshold surface of MRI in the space of resistive frequency,

Alfvén frequency and Rossby number possesses a structurally

stable singularity known as the Plücker conoid, which persists

at any level of viscous dissipation. The singular surface

connects the Rayleigh- and the Velikhov-Chandrasekhar

thresholds through the continuum of intermediate states

parametrized by the Lundquist number [10].

Why does this singularity exist? Our Rapid Communication

sheds light on this question via rigorous inspection of the spec-

tra of the boundary eigenvalue problems associated with the

ideal hydrodynamic and hydromagnetic CT flows. Rigorous

spectral results are illustrated by MATLAB computations of

eigenvalues of the linearized operators.

If u is the velocity field, b is the magnetic field, and

cylindrical coordinates (r,θ,z) are used, the basic CT flow

between cylinders of radii R1 and R2, R1 < R2, is

u0 = r�(r)eθ , b0 = b0ez, �(r) = a + cr−2, (1)

where b0 is arbitrary and (a,c) are related uniquely to �1,2 =

�(R1,2) through the viscous limit

a =
�2R

2
2 − �1R

2
1

R2
2 − R2

1

, c =
(�1 − �2)R2

1R
2
2

R2
2 − R2

1

. (2)

In the case of co-rotating cylinders �1,2 > 0, the Rayleigh

boundary corresponds to a = 0, whereas the Velikhov-

Chandrasekhar boundary is c = 0.

The summary of our results is as follows.

(I) In the case of no magnetic field (b0 = 0), co-rotating

cylinders (�1,2 > 0), and an ideal fluid, we prove that the

linearized stability problem has a countable set of neutrally

stable pairs of (purely imaginary) eigenvalues for a > 0 and a

set of unstable pairs of (purely real) eigenvalues for a < 0, all

accumulating to zero. At a = 0, all pairs of eigenvalues merge

together at zero.

(II) Under the same conditions but for counter-rotating

cylinders with �1 < 0 and �2 > 0, we show that there exist

two sets of eigenvalue pairs: One set contains real eigenvalues
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and the other set contains purely imaginary eigenvalues. The

unstable real eigenvalues converge to the zero accumulation

point when �1 → 0 for fixed �2 > 0 (where a > 0), whereas

the stable imaginary eigenvalues persist across �1 = 0.

(III) For any magnetic field (b0 �= 0), co-rotating cylinders

(�1,2 > 0), and an ideal nonresistive hydromagnetic flow, we

prove that there exist two sets of eigenvalue pairs and both

sets contain only purely imaginary eigenvalues for 0 < �1 <

�2. One set remains purely imaginary for �1 > �2 but the

other set transforms to the set of real eigenvalues along a

countable sequence of curves, which are located for �1 > �2

and approach the diagonal line �1 = �2 (c = 0) in the limit

b0 → 0. One pair of purely imaginary eigenvalues below the

corresponding curve transforms into a pair of unstable real

eigenvalues above the curve. No eigenvalues pass through the

origin of the complex plane in the neighborhood of the line

a = 0, even if b0 is close to zero.

(IV) Under the same conditions but for counter-rotating

cylinders with �1 < 0 and �2 > 0, we show the existence

of four sets of eigenvalue pairs, which are either purely

imaginary or real. The unstable eigenvalues bifurcate again

along a countable sequence of curves, which are located for

�1 < 0 and approach �1 = 0 in the limit b0 → 0. The purely

imaginary pair of eigenvalues above the curve turns into a

purely real pair of eigenvalues below the curve.

Although the results (I) and (II) partially reproduce the

conclusions of Synge [11], the existence of zero eigenvalues

of infinite multiplicity at the Rayleigh threshold is emphasized

here. A similar coalescence of all eigenvalues at the zero value

occurs also in the Bose-Hubbard dimer [12]. Results (III) and

(IV) are unique, to the best of our knowledge. Numerical

evidence of these results can be found in Ref. [13].

The rest of our Rapid Communication is devoted to the

proofs of the above results and their numerical illustrations.

We take the equations for an ideal hydromagnetic fluid [9]

ut + (u · ∇)u = −∇
(

p + 1
2
|b|2

)

+ (b · ∇)b,

bt = ∇ × (u × b), (3)

∇ · u = 0, ∇ · b = 0,

where p is the pressure term determined from the incompress-

ibility condition ∇ · u = 0. We linearize (3) at the basic flow

(1) and use the standard separation of variables for symmetric

(θ -independent) perturbations

u = u0 + U(r)eγ t+ikz, b = b0 + B(r)eγ t+ikz, (4)

where γ is the growth rate of perturbations in time and k ∈ R

is the Fourier wave number with respect to the cylindrical

coordinate z. Performing routine calculations [8], we find the

system of four coupled equations for components of U and B

in the directions of er and eθ (denoted by Ur , Uθ , Br , and Bθ )

ikb0(k2 + L)Br + 2k2�(r)Uθ = γ (k2 + L)Ur ,

ikb0Bθ − 2aUr = γUθ ,
(5)

ikb0Ur = γBr ,

ikb0Uθ −
2c

r2
Br = γBθ ,

where L = −∂2
r − 1

r
∂r + 1

r2 is the Bessel operator, which is

strictly positive and self-adjoint with respect to the weighted

inner product 〈f,g〉 =
∫ R2

R1
rf (r)g(r)dr . We note that the z

components of U and B, as well as the pressure term, have

been eliminated from the system of equations (5) under the

condition k �= 0.

For hydrodynamic instabilities of the CT flow, we set b0 =

0, which yields uniquely Br = Bθ = 0, 2aUr + γUθ = 0, and

a closed linear eigenvalue problem

γ 2(k2 + L)Ur = −4k2a�(r)Ur , R1 < r < R2, (6)

subject to the Dirichlet boundary conditions at the inner and

outer cylinders Ur (R1) = Ur (R2) = 0.

The operator L is an unbounded strictly positive operator

with a purely discrete spectrum of positive eigenvalues

{μn}n∈N that diverge to infinity according to the distribution

μn = O(n2) as n → ∞. Inverting this operator for any real

k and defining a different eigenfunction � by Ur = (k2 +

L)−1/2�, we rewrite (6) in the form

γ 2� = −aT �, T = 4k2(k2 + L)−1/2�(k2 + L)−1/2, (7)

where the self-adjoint compact operator T has eigenvalues

{−γ 2/a}n∈N that accumulate to zero with γn = O(n−1) as

n → ∞.

If �1,�2 > 0, then �(r) > 0 for all r ∈ [R1,R2] and T is a

compact positive operator. Hence, all γ 2
n < 0 if a > 0 and all

γ 2
n > 0 if a < 0. The condition a = 0 (�2R

2
2 = �1R

2
1) is the

Rayleigh boundary, at which all eigenvalues are at γ = 0. The

proof of (I) is complete.

If �1 < 0 and �2 > 0, then a > 0 but � is sign indefinite

on [R1,R2]. Since T is a compact sign-indefinite operator,

it has two sequences of eigenvalues accumulating to zero:

One sequence has γ 2
n < 0 and the other one has γ 2

n > 0. This

completes the proof of (II).

Figure 1(a) gives numerical approximations of the five

positive and five negative squared eigenvalues γ 2 as functions

of the parameter �1 for fixed values of �2 = 1, R1 = 1,

R2 = 2, and k = 1. The dotted line shows the accumulation

point γ = 0 for the sequences of eigenvalues.

For hydromagnetic instabilities, we express Br , Bθ , and Uθ

from the system of linearized equations (5) and find a closed

linear eigenvalue problem

(

γ 2 + k2b2
0

)2
(k2 + L)Ur = 4k2�(r)

(

k2b2
0c

r2
− aγ 2

)

Ur ,

(8)

subject to the same Dirichlet boundary conditions at r = R1,2.

If b0 = 0 and γ �= 0, system (8) reduces to (6), however, it is

a biquadratic eigenvalue problem and hence has a double set

of eigenvalues compared to (6).

Denoting λ = γ 2 + k2b2
0, we rewrite (8) as the quadratic

eigenvalue problem

λ2(k2 + L)Ur + 4ak2λ�(r)Ur = 4k4b2
0�

2(r)Ur . (9)

It follows again from the compactness of the operators

(k2 + L)−1� and (k2 + L)−1�2 that the spectrum of

065301-2



RAPID COMMUNICATIONS

PARADOXICAL TRANSITIONS TO INSTABILITIES IN . . . PHYSICAL REVIEW E 84, 065301(R) (2011)

−4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

Ω
1

γ
2

(a) 

−4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

Ω
1

γ
2

(b) 

FIG. 1. Squared eigenvalues γ 2 of problem (8) vs �1 for �2 = 1,

R1 = 1, R2 = 2, and k = 1. (a) b0 = 0: All squared eigenvalues γ

coalesce to zero at the Rayleigh line �1R
2
1 = �2R

2
2 , whereas positive

squared eigenvalues for �1 < 0 merge to zero at �1 = 0. (b) b0 = 0.4:

The squared eigenvalues change stability above the Velikhov-

Chandrasekhar line �1 = �2 and below �1 = 0.

the quadratic eigenvalue problem (9) is purely discrete.

Chandrasekhar [7] showed that all eigenvalues λ are real.

We shall prove that these eigenvalues accumulate to zero as

two countable sets with λn = O(n−1) as n → ∞, one set is

for positive λ and the other set is for negative λ. The result

definitely holds for a = 0 because λ2 becomes an eigenvalue

of the self-adjoint problem

λ2� = k2b2
0S�, S = 4k2(k2 + L)−1/2�2(k2 + L)−1/2,

(10)

where S is a self-adjoint compact positive operator.

To show the same conclusion for a �= 0, we use a recently

developed technique from Ref. [14] and rewrite (9) as a

parameter continuation problem for ν = λ−1,

aν�(r)Ur = −
1

4k2
(k2 + L)Ur + k2b2

0ǫ
2�2(r)Ur . (11)

Here eigenvalues ν of (11) for a �= 0 are continued with respect

to the real values of ǫ to recover eigenvalues λ = ν−1 of (9) at

the intersections with the diagonal ν = ǫ.

At ǫ = 0, we recover the hydrodynamical problem (6). If

�1,�2 > 0, then �(r) > 0 for all r ∈ [R1,R2] and eigenvalues

{νn(ǫ)}n∈N at ǫ = 0 are strictly negative if a > 0 or strictly pos-

itive if a < 0. Moreover, νn(0) = O(n2) as n → ∞. Without

loss of generality, let us consider the case a > 0. Each negative

eigenvalue νn(ǫ) is strictly increasing for large values of |ǫ| at

any point ǫ0, because

aǫ0

dνn

dǫ

∣

∣

∣

∣

ǫ=ǫ0

= 2ǫ2
0k

2b2
0

〈�2ϕn,ϕn〉

〈�ϕn,ϕn〉
> 0, (12)

where ϕn is the eigenfunction for the eigenvalue νn(ǫ) in

Eq. (11) at ǫ = ǫ0. The right-hand side of (12) is always

bounded, hence the eigenvalues {νn(ǫ)}n∈N are continued to

positive infinity as |ǫ| → ∞. As a result, there exist two

countable sets of intersections of eigenvalues {νn(ǫ)}n∈N with

ν = ǫ: One set is for positive λ = ν−1 and the other set is

for negative λ. Both sets accumulate at zero as n → ∞. This

completes the proof of (III).

If �1 < 0 and �2 > 0, then a > 0 but � is sign indefinite

on [R1,R2]. In this case, again using the compact operator

T in Eq. (7), there exist two sets of eigenvalues {ν±
n (ǫ)}n∈N

of (11) at ǫ = 0: One set {ν−
n (0)}n∈N is strictly negative

with 〈�ϕ−
n ,ϕ−

n 〉 > 0 and the other set {ν+
n (0)}n∈N is strictly

positive with 〈�ϕ+
n ,ϕ+

n 〉 < 0. Because the signs of 〈�ϕ±
n ,ϕ±

n 〉

are preserved for small ǫ �= 0, it follows from the derivative

(12) that the eigenvalues {ν−
n (ǫ)}n∈N are convex upward for

larger values of |ǫ| and the eigenvalues {ν+
n (ǫ)}n∈N are concave

downward for larger values of ǫ. The curves of {ν±
n (ǫ)}n∈N

may intersect but the intersection is safe (i.e., eigenvalues

split without the onset of complex eigenvalues) because the

eigenvalue problem (11) is self-adjoint for any real ǫ and

hence multiple eigenvalues are always semisimple. If the signs

of 〈�ϕ±
n ,ϕ±

n 〉 are preserved along the entire curves, then we

conclude on the existence of four sets of intersections of these

eigenvalues with the main diagonal ν = ǫ: Two sets give posi-

tive eigenvalues λ and the two other sets give negative

eigenvalues. The conclusion is not affected by the fact that

〈�ϕ±
n ,ϕ±

n 〉 may vanish along the curve. If this has occurred,

then 〈�ϕ±
n ,ϕ±

n 〉 has at least a simple zero due to analyticity in

ǫ and hence the derivative (12) is infinite, which implies that

the corresponding curve ν±
n (ǫ) goes to plus or minus infinity

for finite values of ǫ. This argument completes the proof

of (IV).

Figure 1(b) shows numerical approximations of the five

positive and five negative squared eigenvalues γ 2 as functions

of �1 for fixed values of �2 = 1, R1 = 1, R2 = 2, b0 = 0.4,

and k = 1. Cascades of instabilities arise for �1 > �2 and

�1 < 0 by subsequent merging of pairs of purely imaginary

eigenvalues γ at the origin and splitting into pairs of real

(unstable) eigenvalues γ . For �1 > 0, the two sets of squared

eigenvalues accumulate to the value γ 2 = −k2b2
0 (λ = 0),

which is shown by the dotted line. For �1 < 0, a more

complicated behavior is observed within each set: The squared

eigenvalues coalesce and split safely, indicating that each set

is actually represented by two disjoint sets of the squared

eigenvalues.
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FIG. 2. Curves of zero eigenvalues (the stability domain is located

between solid curves) for R1 = 1, R2 = 2, b0 = 0.4, and k = 1. The

curves approach the line �1 = �2 as b0 → 0.

To study the instability boundaries in Eq. (8), we substitute

γ = 0 and regroup terms for b0 �= 0 to obtain

b2
0(k2 + L)Ur = 4(�1 − �2)

R2
1R

2
2�(r)

(

R2
2 − R2

1

)

r2
Ur . (13)

If �1,2 > 0, it follows from Eq. (13) that there exists a

countable set of bifurcation curves for �1 > �2, because L is

a positive operator and �(r) is strictly positive. On the other

hand, in the quadrant �1 < 0 and �2 > 0, there exists another

set of bifurcation curves, because � is sign indefinite and L is

unbounded.

To study further the instability boundaries, we notice that

�(r) depends on both �1 and �2. Therefore, we shall rewrite

(13) as the quadratic eigenvalue problem with the unique

eigenvalue parameter c in Eq. (2)

b2
0(k2 + L)Ur =

4�2

r2
cUr +

4

r2

(

1

r2
−

1

R2
2

)

c2Ur . (14)

Figure 2 shows numerical approximations of the first five

curves of zero eigenvalues in the upper half of the (�1,�2)

plane for fixed values of R1 = 1, R2 = 2, b0 = 0.4, and k = 1

and their mirror reflections in the lower half plane. The dotted

curves show the diagonal line �1 = �2, the Rayleigh line

�1R
2
1 = �2R

2
2 , as well as the axes �1 = 0 and �2 = 0. It is

clear that each curve approaches the diagonal line �1 = �2 for

large values of �1,2. When b0 becomes small, they approach

closely to the line �1 = �2.

The above conclusions also follow from a rigorous analysis

of the quadratic eigenvalue problem (14). In the limit �2 →

∞, we can set λ = �2c as a unique eigenvalue and treat

the last term in Eq. (14) as a small bounded perturbation

to the unbounded operator. In the limit b0 → 0, we set

c = b2
0λ and again treat the last term in Eq. (14) as a small

perturbation. In both cases, eigenvalues λ approach to the first

eigenvalues of the positive unbounded operator r2(k2 + L). We

note that this approximation is not uniform for all bifurcation

curves and only applies to the finitely many bifurcation

curves.

To summarize, we gave mathematically rigorous proofs

of the distributions and bifurcations of eigenvalues of lin-

earized operators associated with an ideal hydromagnetic

CT flow. This work lays a firm basis for perturbation

theory in small dissipation and resistivity that will en-

able an identification of unstable modes of the nonideal

MRI.
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supported by the AvH Foundation. G.S. is supported by DFG
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