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A Coriolis force in an inertial frame.

Oleg Kirillov∗ and Mark Levi†

April 30, 2016

Abstract

Particles in rotating saddle potentials exhibit precessional motion
which, up to now, has been explained by explicit computation. We
show that this precession is due to a hidden Coriolis–like force which,
unlike the standard Coriolis force, is present in the inertial frame. We
do so by finding a hodograph–like “guiding center” transformation
using the method of normal form. We also point out that the trans-
formation cannot be of contact type in principle, thus showing that the
standard (in applied literature) heuristic averaging gives the correct
result but obscures the fact that the transformation of the position
must involve the velocity.

1 Introduction and background

We consider the motion of a particle in the rotating saddle potential in the
plane. The “spinning” potential whose graph is obtained by rotating the
graph of a fixed potential U0(x) = U0(x1, x2) with angular velocity ω is

U(x, t) = U0(R
−1x), x = (x1, x2) ∈ R

2

where

R = R(ωt) =

(

cosωt − sinωt
sinωt cosωt

)
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is the counterclockwise rotation. If U0 is a saddle with equal principal cur-
vatures, then

U0(x) =
1

2
(x2

1 − x2

2)

without the loss of generality, and the equations of motion ẋ = −∇U take
the form

ẍ+ S(ωt)x = 0, x ∈ R
2, (1)

where

S(τ) =

(

cos 2τ sin 2τ
sin 2τ − cos 2τ

)

, τ = ωt.

These equations describe the linearized motion of a particle sliding without
friction on a rotating saddle surface (with equal and opposite principal cur-
vatures) in the presence of gravity, Figure 1. It is a surprising fact, known
for almost a century [1, 2, 3, 5, 6, 7] that the equilibrium position of the
particle becomes stable if the surface rotates around the vertical axis suffi-
ciently fast (a heuristic explanation of this effect can be found in [8], and is
also given below). Numerical experiments show another puzzling effect: the
Foucault–like precession [8, 9, 10, 11], Figure 2.

Figure 1: A particle on a rotating saddle surface.

A similarly surprising phenomenon is the stabilization of a ball rolling
without slipping on a rotating saddle surface (several demonstrations can be
found on YouTube) [10, 12]. Superficially, the two effects appear to be the
same; however, the reasons for stability are entirely different. For the rolling
ball, the gyroscopic effect, which has no counterpart for a point mass in our
case, plays the key role. In fact, the rolling ball is stable even if the surface
is horizontal and flat, [13]. The rolling ball is an entirely different system:
first, it is a nonholonomic system (see [14, 15] for more details), unlike the
one considered here, and second, it has more degrees of freedom.
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Returning to the particle in the rotating saddle potential, the force field
−R(ωt)x in (1) admits the following nice interpretation. Consider the saddle
force field 〈x,−y〉, and make it time–dependent by rotating each vector coun-
terclockwise with angular velocity 2ω. Equation (1) describes the motion of
the unit point mass in this force field.

We note that S(τ) is the reflection in the x–axis followed by a rotation by
2τ counterclockwise. It follows that the vector S(t)r0 rotates clockwise with
angular velocity 2ω – the fact we use in the heuristic explanation of stability
(Section 3).

2 The results

An averaging result

Theorem 1 Let x(t) be a solution of (1), and consider the associated func-
tion

u = x−
ε2

4
S(t/ε)(x− εJẋ), J =

(

0 −1
1 0

)

(2)

built out of x and ẋ. This “image” of x satisfies

ü−
ε3

4
Ju̇+

ε2

4
u = ε4f(u, u̇, ε), (3)

where f is linear in u, u̇ and analytic in ε, in a fixed neighborhood of ε = 0.

Figure 2 shows a typical trajectory of x, the corresponding trajectory of
u, and their superposition.

According to (3), the “guiding center” u behaves (modulo the O(ε4)–
terms) as a unit point mass with a unit charge, subject to the restoring
force −ε

2

4
u and to the magnetic force due to the magnetic field of constant

magnitude B = ε3/4 perpendicular to the u–plane. Alternatively, one can
think of−(ε3/4) Ju̇ as the Coriolis force which would have been caused by the
rotation of the reference frame with angular velocity ε3/8, although of course
our frame is inertial. This seems to be the first example of a Corilois–like
force arising in an inertial reference frame.

It should be noted that the O(ε3) “magnetic” effect is small compared
to the O(ε2) restoring force in (3), as reflected by the “petals” in Figure 3
becoming closely spaced for smaller ε.
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While a heuristic explanation of the stabilizing restoring force −ε
2

4
u is

known (and described in Section 3), such an explanation of the “Coriolis
force” ε

3

4
u̇ is still unknown. Part of the difficulty lies in the fact that u,

unlike x, is not a “material particle” but rather a mixture of position and
velocity.

Remark 1 It is tempting to study the system in the rotating frame (as had
been done, [8, 10]), since in such a frame the equations become autonomous.
The problem with this approach is that solutions such as those shown in
Figure 2 move rapidly relative to the rapidly rotating frame and thus the
region in the phase space they occupy grows with ω = ε−1. In fact, in the
rotating frame one can write down explicit solutions ([1, 2, 3, 7, 19, 20]), but
this hides the Coriolis effect.

Figure 2: A typical trajectory x; its “guiding center” u; their superposition.

Figure 3: The “Coriolis” effect is one order in ε higher than the stabilizing
effect: here ε = 0.2 versus ε = 0.5 in Figure 2.

Theorem 1 was announced in an expository article [16], but without the
derivation, and more importantly without an explanation of how it was ar-
rived at, and without the mention of an obstruction that (for us) stood in
the way of obtaining this result (Theorem 2 in the next section).
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Contact transformations

The standard (in the physics and applied mathematics literature) textbook
heuristic averaging procedure as described in Landau-Lifshitz [17, 18, 19]
involves transformations acting on the position variable, with the velocity
transformation dictated by the transformation of the position. In other
words, these are transformations of contact type. In attempting to come
up with an averaging result we ran into difficulties which led to the real-
ization that this class of contact transformations is actually too narrow to
eliminate any higher order terms beyond constant, not only for (1), but even
in the simpler scalar case ẍ = a(ωt)f(x), where a : R → R is periodic and
f : Rn → R

n, considered in [18]. The heuristic procedure used in [18] does
give a correct differential equation in the end, but it does not make it clear
that the transformation must involve the velocity, and not only the position,
and thus is not justified, except for the fact that it gives the correct result.
In fact, the transformation used in the proof in [29] does involve the velocity,
i.e. is not of contact type, although this fact also was not stated.

We now make this precise as follows.
Our extended phase space {x, y, t} = R

5 carries a natural contact struc-
ture [4])

α = dx− y dt, (4)

and the velocity vectors

V = 〈ẋ, ẏ, ṫ〉 = 〈y,−S(ωt)x, 1〉

corresponding to (1) belong to the distribution α = 0 defined by this structure
since α(V ) = ẋ− y = 0.

Now a general contact transformation of R2n+1 (n = 2 in our case) pre-
serving the contact structure α = 0 and not involving change of t (i.e. pre-
serving the planes t = const.) is determined by a single map ϕ : Rn×R → R

n

acting on {(x, t)} via




x
y
t



 7→





ϕ
ϕxy + ϕt

t



 , (5)

were ϕ = ϕ(x, t).

Theorem 2 No contact transformation, i.e. no map of the form (5), i.e.
no substitution of the form x = ϕ(u, t) can eliminate time–dependence in the
terms of the order O(ε) in the system (1).
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A complete proof of this theorem is given at the end, but the gist can
alternatively be seen as follows. Substitute (2) into (3); rather than going
through tedious manipulations, let us simply consider all possible sources in
(2) which contribute O(ε)–terms to (3) and see how they can cancel each
other, as (3) implies they do. One such source is the cubic term ε

3

4
SJẋ

in (2); since Ṡ = O(ε−1), two differentiations produce precisely one O(ε)
term: ε

3

4
S̈Jẋ. The only other source of O(ε)–terms is ε

2

4
Sx, which after two

differentiations contributes 2 ε
2

4
Ṡẋ. This latter contribution could not have

been canceled without the cubic term containing ẋ in (2), suggesting that
the latter term is indeed necessary.

3 A heuristic explanation of stability

For a fixed location x0, the force vector

F0(t) = −S(t/ε)x0 (6)

rotates counterclockwise. Were the force independent of x near x0, a non–
drifting particle would have moved in a circle, with F0(t), the centripetal
force, related to the radius vector r = x−x0 via F = −(2ω)2r = −(ε2/4)(x−
x0), so that

x = x0 +
ε2

4
F = x0 +

ε2

4
Sx0. (7)

Substituting this for x0 in (6) gives a better approximation for the force:

F1(t) = −S (x0 +
ε2

4
Sx0) = −Sx0 −

ε2

4
x0, (8)

showing that in this approximation (improving on (6)) F1(t) describes a
shifted circle, so that the average force (in this approximation) is

F1(t) = −
ε2

4
x0;

this is precisely the restoring force in (3).
To repeat the above in a different way, consider the force F = −S(t/ε)(x0+

r(t)) changing with t, as r(t) travels in a small circle counterclockwise with
the angular velocity 2/ε, so that the force

F = −S(t/ε)(x0 + r(t)) = −Sx0 − Sr.
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The key point now is that the last term Sr is constant and points into the
origin (thus explaining the restoring force). Indeed, while r rotates counter-
clockwise, the time–dependence of S precisely cancels this rotation (accord-
ing to the last remark in Section 1). Thus the average F = −Sr = −r(0) =
−ε

2

4
x0, reconfirming the earlier conclusion.

4 Rotating saddle in physical applications

Equations (1), as well as their autonomous version in the rotating frame,
arise in numerous applications across many seemingly unrelated branches of
classical and modern physics [6, 7, 20]. In celestial mechanics the rotating
saddle equations describe linear stability of the triangular Lagrange libration
points L4 and L5 in the restricted circular three-body problem [22, 23]. For
this reason the classical work by Gascheau of 1843 may be considered as
the first one that established stability conditions for a particle on a rotating
saddle [21, 24]. However, it was not until Brouwer, one of the authors of
the fixed point theorem in topology, considered in 1918 stability of a heavy
particle on a rotating slippery surface [1, 2, 3] that the rotating saddle trap
per se became an object for investigation.

Indeed, according to Earnshaw’s theorem an electrostatic potential can-
not have stable equilibria, i.e. minima, since such potentials are harmonic
functions. The theorem does not apply, however, if the potential depends on
time; in fact, the 1989 Nobel Prize in physics was awarded to W. Paul [25]
for his invention of the trap for suspending charged particles in an oscillating
electric field. Paul’s idea was to stabilize the saddle by “vibrating” the elec-
trostatic field, by analogy with the so–called Stephenson-Kapitsa pendulum
[17, 18, 26, 27, 28, 29] in which the upside–down equilibrium is stabilized by
vibration of the pivot. Brouwer [1, 2] explicitly demonstrated that, instead
of vibration, the saddle can also be stabilized by rotation of the potential (in
two dimensions). This effect is used, e.g., in quantum optics, in the theory of
rotating radio-frequency ion traps [8] and for guiding electrons inside Bessel
beams of an electromagnetic field [11].

In plasma physics equations (1) appear in the modeling of a stellatron –
a high-current betatron with stellarator fields used for accelerating electron
beams in helical quadrupole magnetic fields [9, 19, 30, 31]. In atomic physics
the stable triangular Lagrange points were produced in the Schrödinger-
Lorentz atomic electron problem by applying a circularly polarized microwave
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field rotating in synchrony with an electron wave packet in a Rydberg atom
[22]. This has led to a first observation of a non–dispersing Bohr wave packet
localized near the Lagrange point while circling the atomic nucleus indef-
initely [32]. Recently, the rotating saddle equations (1) reappeared in the
study of confinement of massless Dirac particles, e.g. electrons in graphene
[33]. Even stability of a rotating flow of a perfectly conducting ideal fluid in
an azimuthal magnetic field possesses a mechanical analogy with the stabil-
ity of Lagrange triangular equilibria and, consequently, with the gyroscopic
stabilization on a rotating saddle [34]. Finally, we note that in mechanical en-
gineering equations (1) describe stability of a mass mounted on a non-circular
weightless rotating shaft subject to a constant axial compression force [5, 35].

5 Proofs

5.1 Proof of Theorem 1

In an attempt to bring (1) to a normal form, let us choose a new variable
x1 ∈ R

2 via

x = x1 +
ε2

4
S(t/ε)x1. (9)

This transformation is suggested by the heuristic discussion in Section 3.
The transformation (9) converts (1) into

ẍ1 − εSJẋ1 +
ε2

4
x1 +

ε3

4
Jẋ1 −

ε4

16
Sx1 = O(ε5). (10)

Remark 2 The fact that the average S = 0 (a zero matrix) may suggest
that the the averaging of (10) may give

ẍ2 +
ε2

4
x2 +

ε3

4
Jẋ2 = O(ε5);

interestingly, this coincides with the correct result (3) except for the sign in
front of the Coriolis term.

Proof of (10) goes by direct substitution, and we omit the details, pointing
out only that the identities

Ṡ =
d

dt
S(t/ε) = −2ε−1SJ (11)
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and
S̈ = −4ε−2S (12)

should be used in the process.
We expect, according to Theorem 2, that the transformations must in-

volve both x and ẋ, and we therefore write (10) as a system
{

ẋ1 = y1

ẏ1 = εSJy1 −
ε
2

4
x1 −

ε
3

4
y1 +

ε
4

16
Sx1 +O(ε5),

or, more compactly as a system in R
4:

ż1 = (A0 + εA1(t) + ε2A2 + ε3A3 + ε4A4 +O(ε5)) z1, (13)

where

z1 =

(

x1

y1

)

, A0 =

(

0 I
0 0

)

, A1(t) =

(

0 0
0 SJ

)

, (14)

A2 = −
1

4

(

0 0
I 0

)

, A3 = −
1

4

(

0 0
0 J

)

, A4 =
1

16

(

0 0
S 0

)

. (15)

Averaging the O(ε)–term. We seek to kill time–dependence in the O(ε)–
term in (13) via the change of variables

z1 = (I + ε2T1))z2, T1 = T1(t/ε), (16)

where T1(τ) is a periodic 4×4 matrix function of period π. Substituting this
into (13) and using

(I + ε2T1)
−1 = I − ε2T1 + ε4T 2

1 +O(ε6),

we obtain

ż2 = (B0 + εB1(t) + ε2B2 + ε3B3 + ε4B4 +O(ε5))z2, (17)

where
B0 = A0, B1 = A1 − T ′

1, (18)

and
B2 = A2 + [A0, T1]

B3 = A3 + [A1, T1] + T1T
′

1

B4 = A4 + [A2, T1]− T1[A0T1]

(19)

9



with brackets denoting commutator of matrices. Note that according to our
notation T ′ = ε−1Ṫ , so that T ′ = O(1). By setting

T1 = −
1

2

(

0 0
0 S

)

(20)

we get
B1 = A1 − T ′

1 = 0,

as follows from (15) and (11). Substituting (20) into (19) we compute

B2 = −
1

4

(

0 2S
I 0

)

, B3 =
1

4

(

0 0
0 J

)

, B4 = −
1

16

(

0 0
S 0

)

; (21)

summarizing, our equation becomes

ż2 = (B0 + ε2B2(t) + ε3B3 + ε4B4(t) +O(ε5))z2. (22)

Averaging of the ε2–term. We now eliminate t from the B2(t) term in
(22) by seeking the transformation

z2 = (I + ε3T2)z3, T2 = T2(t/ε), (23)

where T2(τ) is a matrix function periodic in τ of period 2π. Substitution of
(23) into (17) gives the new system

ż3 = M2z3

where
M2 = (I + ε3T2)

−1M1(I + ε3T2)− (I + ε3T2)
−1ε2T ′

2. (24)

Note that we used the fact that Ṫ2 = ε−1T ′

2. Multiplying out (24) and
collecting the like powers of ε we obtain

M2 = A0 + ε2(B2 − T ′

2) + ε3 (B3 + [A0, T2]) + ε4B4(t) +O(ε5); (25)

note that the ε4–term was unaffected by the transformation. To kill the
t–dependence in the ε2–term we choose T2 so as to turn B2 − T ′ into the
average of B2:

B2 − T ′

2 = B2 = −
1

4

(

0 0
I 0

)

, (26)

10



This condition, along with the requirement of periodicity, dictates the choice

T2 = −
1

4

(

0 SJ
0 0

)

. (27)

Substituting this into (25) yields

M2 = A0 + ε2B2 + ε3B3 + ε4B4(t) +O(ε5),

where we used the fact that B3 + [A0, T2] = B3, since T2 commutes with A0.

Reduction of the ε4–term. Note that the cubic term turned out to be
time–independent, and thus we need to average the quartic term. To that
end we subject the system

ż3 = M2z3

to the transformation
z3 = (I + ε5T4)z5

with the periodic matrix function T4 chosen so as to kill time dependence in
B4(t).

1 The matrix

M3 = (I + ε5T3)
−1M2(I + ε5T3)− (I + ε5T3)

−1ε3T ′

3

of the transformed system differs from M2 only in the terms starting with ε4:

M3 = M2 − ε4T ′

4,

and thus we must choose T4 so as to kill the time–dependence in the coefficient
of ε4:

T ′

4 = B4(t) = −
1

16

(

0 0
S 0

)

,

or

T4 =
1

32

(

0 0
SJ 0

)

. (28)

Denoting z5 = w, we obtain the averaged system

ẇ = (A0 + ε2B2 + ε3B3 + O(ε5))w, (29)

1We use the subscript 4 for consistency, noting that T3 = 0, i.e. that the identity
transformation is needed for the cubic terms.
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or, explicitly,

d

dt

(

u
v

)

=

(

0 I

−ε
2

4
I ε

3

4
J

)(

u
v

)

+O(ε5)

(

u
v

)

. (30)

It follows that u satisfies

ü−
ε3

4
Ju̇+

ε2

4
u = O(ε4); (31)

indeed, according to the first equation in (30)

u̇ = v +O(ε5);

differentiating this by t gives

ü = v̇ +O(ε4)

– note the drop in the power of ε due to differentiation (recall that d/dt =
ε−1d/tτ). Substituting v̇ from the second equation in (30) results in (31).

It remains to find the explicit form for the averaging transformation

z1 = (I + ε5T4)(I + ε3T2)(I + ε2T1)w.

Expanding the product in the powers of ε, we write the transformation as

I + ε2T1 + ε3T2 +O(ε5); (32)

substituting the expressions for T1 and T2 (see (20) and (27)) and reading off
the first component, we obtain (3), as claimed in the statement of Theorem
1. ♦

5.2 Proof of Theorem 2

We start with the system (13) which was obtained from the original system by
a contact transformation, and will show that the ε–term cannot be averaged
by a contact transformation. In fact, it suffices to consider the transformation
(16) since adding other powers of ε to I + ε2T1 will not affect the ε–term in
the transformed system. Now T1, which is uniquely determined by (20), gives
the transformation with the matrix

I + ε2T1 =

(

I 0
0 I − 1

2
ε2S

)

. (33)
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But any map of contact type has the matrix of the form
(

Φ 0
Φt Φ

)

where Φ is a matrix – this is just the linear version of (5) (we drop the t–
variable since it is not transformed). And thus (33) is not of contact type.
And adding other powers of ε to the matrix of the transformation (33) will
not turn this transformation into one of contact type. This completes the
proof of Theorem 2. ♦

6 Conclusion

We showed that the rapid rotation of the symmetric saddle potential cre-
ates a weak Lorentz–like, or a Coriolis–like force, in addition to an effective
stabilizing potential – all in the inertial frame. As a result, the particle in
the rotating saddle exhibits, in addition to oscillations caused by effective
restoring force, a slow prograde precession caused by this pseudo–Coriolis ef-
fect. By finding a hodograph–like “guiding center” transformation using the
method of normal form, we found the effective equations of this precession
that coincide with the equations of the Foucault’s pendulum [36].

An interesting open question is to find a more abstract geometrical point
of view (assuming one exists) from which the Coriolis–like force discussed
here and geometric magnetism ([37, 38, 39]) are manifestations of the same
effect.
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