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Abstract 

The study investigated whether the capacity to regulate muscle blood flow (Q) relative to 

metabolic demand (VO2) is impaired in COPD. Using six NIRS optodes over the upper, middle 

and lower vastus lateralis in 6 patients, (FEV1:46±12%predicted) we recorded from each: a) Q 

by indocyanine green dye injection, b) VO2/Q ratios based on fractional tissue O2 saturation and 

c) VO2 as their product, during constant-load exercise (at 20%, 50% and 80% of peak capacity) 

in normoxia and hyperoxia (FIO2:1.0). At 50 and 80%, relative dispersion (RD) for Q, but not for 

VO2, was greater in normoxia (0.67±0.07 and 0.79±0.08, respectively) compared to hyperoxia 

(0.57±0.12 and 0.72±0.07, respectively). In both conditions, RD for VO2 and Q significantly 

increased throughout exercise; however, RD of VO2/Q ratio was minimal (normoxia: 0.12 to 

0.08 vs hyperoxia: 0.13 to 0.09). Muscle Q and VO2 appear closely matched in COPD patients, 

indicating a minimal impact of heterogeneity on muscle oxygen availability at submaximal 

levels of exercise. 
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1. Introduction 

Limb muscle dysfunction is a major systemic consequence of chronic diseases such as 

chronic obstructive pulmonary disease (COPD) (Maltais et al., 2014) chronic heart failure (Okita 

et al., 2013) diabetes (Bauer et al., 2007), and peripheral vascular disease (Creager and Libby, 

2011) because of its important clinical implications adverse impact on daily physical activity, 

exercise capacity, quality of life and even survival (Graham et al., 2011, Hulsmann et al., 2004, 

Patel et al., 2014, Powers et al., 2016).  

A major consequence of locomotor muscle dysfunction is the limitation in oxygen 

availability caused by reduced arterial oxygen saturation and/or reduced muscle perfusion (Q) 

(Casey and Joyer, 2011). Reduction in either of these during exercise may cause mismatch 

between local muscle metabolic demand (VO2) and blood flow (Q) resulting in VO2/Q 

heterogeneity in different regions within the exercising muscles (Brass et al., 2004, Heinonen et 

al., 2015, Koga et al., 2014). Ineffective matching of regional muscle Q to VO2 (i.e., large 

regional muscle VO2/Q heterogeneity) may cause overall impairment of muscle oxygen 

availability (Casey and Joyer, 2011, Piiper and Haab, 1991, Walley, 1996) thus limiting exercise 

capacity.   

In patients with COPD the well documented lower limb muscle morphological and 

structural alterations, namely muscle fiber type alteration and atrophy, reduced capillarization, 

poor oxidative capacity and mitochondrial dysfunction (Maltais et al., 2014) could potentially 

lead to regional muscle VO2/Q heterogeneity during exercise of progressively increasing loads 

(Brass et al., 2004, Mizuno et al., 2003). However, in patients with COPD, studies have 

demonstrated proposed the existence of a metabolic muscle reserve, manifested by an adequate 

increase in limb muscle oxygen delivery to support a proportional increase in muscle VO2 when 

the locomotor muscles are freed from the constraints of the cardiopulmonary system during 
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single-leg extension or cycling exercise breathing pure oxygen (37, 39, 53, 54). This evidence 

suggests that the peripheral muscles of patients with COPD may preserve the capacity to 

regulate lower leg muscle Q relative to VO2 across various exercise intensities (Maltais et al., 

1998, 2001, Richardson et al., 1999, 2004), thereby suggesting minimal regional peripheral 

muscle VO2/Q heterogeneity.   

Elegant studies in healthy subjects have used imaging methods such as positron emission 

tomography (PET) and magnetic resonance spectroscopy (MRS) to evaluate heterogeneity of 

lower limb muscle perfusion and metabolism at rest and various exercise intensities during low 

intensity one-leg static or cycling exercise (Heinonen et al., 2010, 2011, 2012, Kalliokoski et al., 

2000, 2001, 2003, 2005, Laaksonen et al., 2003, Mizuno et al., 2003). These studies revealed 

that while at rest and exercise there was some regional muscle variation in VO2, perfusion 

remained closely matched to metabolic demand, thereby suggesting very little functional 

heterogeneity of muscle perfusion and metabolism. Recently our group developed a new 

technique using near-infrared spectroscopy (NIRS) to assess regionally and simultaneously the 

degree of heterogeneity of muscle VO2 to Q and their ratio, VO2/Q, during cycling exercise of 

progressive intensity in healthy subjects (Vogiatzis et al., 2015). The findings of this study 

(Vogiatzis et al., 2015) confirmed previous suggestions (Heinonen et al., 2010, 2011, 2012, 

Kalliokoski et al., 2000, 2001, 2003, 2005, Laaksonen et al., 2003, Mizuno et al., 2003) by 

demonstrating that in healthy individuals there is tight local matching between Q and VO2 and a 

likely minimal impact of heterogeneity on muscle oxygen availability (Vogiatzis et al., 2015). 

Accordingly, the aim of the present study was to employ this technique in patients with COPD in 

order to investigate whether the capacity to regulate regional muscle Q relative to VO2 is 

disturbed a) at rest b) during progressive exercise and c) as a function of arterial oxygenation in 

patients with COPD. 
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We reasoned that if with increasing exercise loading in normoxia local muscle VO2/Q 

heterogeneity increased, this would suggest that the peripheral muscles of patients with COPD 

do not possess the capacity to adequately regulate oxygen supply relative to metabolic demand. 

However, if in normoxia local muscle VO2/Q heterogeneity was unaffected by progressively 

increasing exercise intensity or systemic oxygen delivery, this would suggest tight matching 

between local muscle Q and VO2 during exercise in COPD. We tested our hypotheses by 

performing two identical protocols of progressive exercise loading (i.e., 20%, 50% and 80% of 

peak watts) in both normoxia and hyperoxia (FIO2: 1.0). We used hyperoxia as in the latter 

condition alleviation of ventilatory constraints along with an increase in local muscle oxygen 

delivery by oxygen administration (Maltais et al., 2001, Richardson et al., 1999) would be 

expected to mitigate regional muscle VO2/Q heterogeneity compared to normoxia. 

2. Materials and Methods 

2.1 Study Group 

Six clinically stable patients with COPD classified by the Global Initiative for Chronic 

Obstructive Lung Disease (18) as spirometric stages II (n=2) and III (n=4) were recruited for the 

study according to the following inclusion criteria: 1) a post-bronchodilator forced expiratory 

volume in one second (FEV1) < 80% predicted without significant reversibility (<12% change of 

the initial FEV1 value or < 200 ml) and 2) optimal medical therapy according to GOLD (GOLD, 

2016). Patients had a history compatible with COPD, and at least 10 pack/years of smoking 

history. Exclusion criteria included: 1) Orthopedic, neurological, and other pathologic conditions 

or severe pain syndromes that could interfere with exercise, 2) respiratory diseases other than 

COPD (i.e. asthma), 3) clinical signs of acute heart failure, known unstable or moderate-severe 

heart disease (i.e. arrhythmia, ischemic heart disease or cardiomyopathy), 4) patients under 

administration of vaso-active medications, 5) engagement in any exercise-training program in 

the last 3 months, and 6) any hospital admission or COPD exacerbation within the previous 4 
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weeks. Patients were informed of any risks and discomfort associated with the protocol, and 

written informed consent was obtained prior to the start of the study. The study was approved by 

University Chest Hospital Ethics Committee and conformed to the guidelines of the Declaration 

of Helsinki. 

2.2 Experimental Design 

Experiments were conducted in two visits. In visit 1, patients underwent an incremental 

exercise test in atmospheric air (normoxia, FIO2: 0.21) to the limit of tolerance to establish peak 

work rate (WRpeak). The incremental exercise tests were performed on an electromagnetically 

braked cycle ergometer (Ergo-line 800; Sensor Medics, Anaheim CA) with ramp load 

increments of 5 or 10 W/min to the limit of tolerance (the point at which the work rate could not 

be tolerated due to severe sensations of dyspnea and/or leg discomfort) with the patients 

maintaining a pedaling frequency of 40-50 rpm. Tests were preceded by a 3-min rest period, 

followed by 3-min of unloaded pedaling. Pulmonary gas exchange and ventilatory variables 

were recorded breath-by-breath (Vmax 229; Sensor Medics), heart rate and arterial oxygen 

saturation (SpO2) were determined using the R-R interval from a 12-lead on-line 

electrocardiogram (Marquette Max; Marquette Hellige, Freiburg, Germany) and a pulse 

oximeter (Nonin 8600; Nonin Medical, North Plymouth, MN), respectively. Intensity of dyspnea 

and leg discomfort during the tests was assessed using the modified Borg scale (Borg, 1982). 

In visit 2, following resting measurements, patients performed, in a balanced order 

sequence, two graded exercise tests, separated by 120 min of rest, breathing either atmospheric 

air (FIO2: 0.21, normoxia) or pure oxygen (FIO2: 1.0, hyperoxia). Exercise in normoxia and 

hyperoxia was sustained for 5 minutes at each of four work rates, corresponding to unloaded 

pedaling and then 20%, 50% and 80% of WRpeak. Including the resting measurements at each 

condition (i.e., normoxia and hyperoxia) this protocol, therefore, produced 10 measurement 

conditions in each of the six patients.  
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2.3 Preliminary assessment 

All patients underwent the following baseline measurements prior to the study: 

anthropometric indices, pulmonary function parameters, six–minute walking distance test and 

quadriceps muscle strength and endurance assessment. Body composition was estimated by a 

bioelectric impedance device (Maltron BF 907, Essex, UK). Fat free mass index was obtained by 

dividing fat free mass (FFM) in kg by height. Spirometry and single breath transfer factor for 

carbon monoxide was measured according to the American Thoracic Society (ATS) and 

European Respiratory Society (ERS) standards (GOLD, 2016). Post bronchodilator static lung 

volumes were assessed using whole body plethysmography (Table 1). The six-minute walking 

distance test was performed according to ATS guidelines (ATS, 2002) and was expressed as 

fraction of reference values (Troosters et al., 1999). Quadriceps muscle strength and endurance 

was assessed using the maximal isometric voluntary contraction technique of the knee extensors 

following a standardized protocol and was expressed as fraction of reference values (Allaire et 

al., 2004, Swallow et al., 2007). Furthermore, subjects were instructed to maintain a tension 

representing 60% of their maximal voluntary contraction (MVC) until exhaustion. A computer 

screen served as a feedback mechanism to help subjects maintain the determined submaximal 

tension. Subjects were strongly encouraged to pursue until tension dropped to 50% of MVC. 

Peripheral muscle endurance was thus assessed by the time to fatigue, defined as the time at 

which the isometric contraction reached 50% MVC (Allaire et al., 2004).  

2.4 Subject preparation 

Subjects were prepared with peripheral venous and arterial catheters. In brief, using local 

anesthesia (2% lidocaine) and sterile technique, catheters were introduced percutaneously into 

the left femoral vein (central venous catheter model AK-04301 Arrow International, Durham, 

NC) and the right radial artery (Angiocath 20 gauge, 1.16 in., model 381134, Becton Dickinson), 
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both oriented in the proximal direction. The catheters were used a) to collect arterial and femoral 

venous blood samples, b) to inject indocyanine green dye (ICG) into the venous line and c) to 

continuously sample arterial blood after each ICG injection for muscle blood flow calculation. 

The catheters were kept patent throughout the experiment by periodic flushing with heparinized 

(1 unit/ml) saline. 

Within an hour after execution of the exercise protocol, subcutaneous fat thickness in 

the upper, middle and lower part of vastus lateralis muscle was assessed by Ultrasound imaging 

(LOGIQ Book XP; GE Healthcare Products, Milwaukee, WI). An 8-MHz linear array was used 

while capturing the image in B-mode. Ultrasound gel was applied to the center of the template 

before placing the transducer on the skin. The skin was marked after removal of each of the six 

optodes to verify the correct placement of the transducer. After a clear image was identified, the 

image was saved. This procedure was repeated 3 times for each of the six-optode locations and 

a mean value was calculated. The images were labeled with the participant’s number and 

optode location of measurement. 

2.5 Regional O2 saturation (StiO2) measured by NIRS.  

Three pairs of NIRS optodes were placed on the skin over the upper, middle, and lower 

vastus lateralis (Figure 1) and secured by double-sided adhesive tape to measure muscle Q and 

oxygenated hemoglobin/myoglobin (Hb/Mb) signals using three identical spectrophotometers 

(NIRO 200 spectrophotometer, Hamamatsu Photonics, Hamamatsu, Japan), because these 

devices have only two channels each, thus requiring three separate spectrophotometers. The light 

emission and collection points in each optode were 40 mm apart, corresponding to a penetration 

depth of 20 mm. The oxygenation data assessed by NIRS (Spatially Resolved Technique) were 

the changes in the ratio of oxygenated to total haemoglobin, an absolute index of local oxygen 

saturation (StiO2). StiO2 takes into account changes in blood volume during exercise whilst it 

reflects the dynamic balance between oxygen delivery and demand (Boushel et al., 2001, Tew et 
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al., 2010). StiO2 data were weighted by the measured blood flow beneath the probe of 

measurement in order to correct also potential influence of skin blood flow changes during the 

exercise (Grassi and Quaresima 2016, Tew et al., 2010). For the analysis StiO2 data were 

averaged over 10 s immediately before ICG injection (Vogiatzis et al., 2015). 

2.6 Estimation of the regional SvO2 

To estimate regional oxygen saturation in venous blood (SvO2) from the regional NIRS 

oxygen signal (StiO2), we used the linear relationship [SvO2 = -40.5 + 1.265 x StiO2] between 

directly measured femoral venous oxygen saturation (SfvO2) and the blood flow - weighted 

average StiO2 over the six optodes (Figure 2) previously derived in healthy subjects (Vogiatzis et 

al., 2015). The relationship between directly measured SfvO2 and the perfusion - weighted 

average StiO2 over the six optodes for the COPD patients at rest and during exercise was also 

found to be linear in COPD [SvO2 = 3.40 + 0.533 x StiO2] with the values superimposed on 

those of healthy subjects (Figure 2). The reason we used the healthy subject regression 

relationship was because of their wider range of venous oxygen saturation and StiO2 values 

(Figure 2). Unfortunately, the range of both of these variables in each of COPD patients over all 

conditions was insufficient to reliably determine individual relationships (Figure 2).  

Estimation of the regional ratio of VO2 to Q (VO2/Q). 

For the estimation of the regional VO2 to Q the following equation was applied (61): 

VO2 ⁄Q= CaO2 - CvO2 = 0.000139 x [Hb] x (SaO2 - SvO2) 

where, VO2 is the local (regional) VO2, Q is the local blood flow rate (each in ml/min), CaO2 is 

the inflowing arterial oxygen concentration, CvO2 is the local out-flowing venous oxygen 

concentration; [Hb] is hemoglobin concentration, g/dl, SaO2 is the percentage arterial oxygen 

saturation, and SvO2 is the percentage local venous oxygen saturation as estimated according to 

the formula presented in the previous paragraph. 
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2.7 Regional muscle blood flow (Q) measured by NIRS.  

 

To measure regional Q under each optode, a 5-mg/ml bolus of ICG (Pulsion ICG, ViCare 

Medical) was injected into the femoral vein followed by a rapid 10-ml flush of isotonic saline 

(Boushel et al., 2000). Tissue microcirculatory ICG following the injection was detected 

transcutaneously by the NIRO 200, measuring light attenuation at 775, 813, 850, and 913 nm, 

and was analyzed using an algorithm incorporating the modified Beer-Lambert law (Duncan et 

al., 1995, van der Zee et al., 1992). Since the measured light attenuation in the tissue is 

influenced by ICG as well as oxy- and deoxyhemoglobin and myoglobin concentration, the 

contribution of ICG to the light absorption signal was determined using dedicated NIRS 

software (N200ICG MFC Application) (Vogiatzis et al., 2015).  

Blood flow under each of the six optodes was calculated from the rate of tissue ICG 

accumulation over time according to the Sapirstein principle (Saperstein, 1956). 

2.8 Estimation of the Regional VO2 

Regional VO2 was calculated as the product of regional VO2/Q and the corresponding 

value of regional Q (Vogiatzis et al., 2015): VO2= (VO2 ⁄ Q) x Q 

2.9 Blood-gas analysis and calculations.  

Percentage of arterial and venous oxygen saturation (SaO2, SvO2), arterial and venous 

tensions of O2 (PaO2, PvO2) and CO2 (PaCO2, PvCO2) and pH, haemoglobin concentration and 

lactate concentration were measured from arterial and femoral venous blood samples by 

electrodes and CO-oximetry (ABL 625, Radiometer, Copenhagen, Denmark). Arterial and 

venous oxygen content (CaO2, CvO2) were computed as follows: [C(z)O2 = (1.39 x Hb x SxO2) 

+ (0.003 x PxO2)] where the symbol (z) denotes either arterial (a) or femoral venous (v) blood. 

The blood-gas analyzer was auto-calibrated every 4 h throughout the day, and calibrating gases 

of known concentrations were run before each set of measurements. Blood-gas measurements 

were corrected for subject’s tympanic temperature taken during withdrawal of each arterial 
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blood gas sample. The product of regional muscle blood flow and arterial oxygen content was 

used to calculate regional muscle oxygen delivery. Regional muscle fractional oxygen extraction 

was calculated by dividing regional arterio-venous oxygen difference by arterial oxygen content 

multiplied by 100. 

2.10 Statistical analysis.  

Data are reported as means ± SD or SEM. The Shapiro-Wilk test revealed that all data 

were normally distributed. As an index of regional heterogeneity, we calculated the coefficient 

of variation (the ratio of standard deviation to mean), also termed relative dispersion (RD), of all 

components (i.e., VO2, Q, VO2/Q, StiO2) individually over the six optodes for each condition in 

each COPD patient. Paired sample t-test was used to compare mean values of subcutaneous 

adipose tissue thickness among different sites of vastus lateralis. Linear regression was used to 

determine the relationship between SfvO2 and StiO2 as well as the relationship between the RDs 

of StiO2 and VO2/Q across all subjects, exercise intensities and conditions. Two-way ANOVA 

with repeated measures was applied to detect differences across the various workloads between 

normoxia and hyperoxia for all the aforementioned dispersion indexes and physiological 

responses. When ANOVA detected statistical significance, pair-wise differences were identified 

using Tukey’s honestly significant difference post hoc procedure. Data were analyzed using the 

SPSS statistical program, version 18 (SPSS Inc., Chicago, IL). The level of significance was set 

at p<0.05. 

3. Results 

3.1 Subject characteristics  

Subject demographic and peak exercise performance characteristics are shown in Tables 1 

and 2. Patients exhibited moderate to severe airway obstruction with increased static lung 

volumes (i.e., residual volume, functional residual capacity and total lung capacity), moderate to 

severe reduction in carbon monoxide diffusion capacity, and mildly reduced arterial oxygen 
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tension (Table 1). Patients were characterized by reduced peak exercise capacity with moderate 

hemoglobin desaturation, and impaired functional capacity (Table 2).  

Subcutaneous adipose tissue thickness was greater (p<0.001-0.05) in the upper part of 

vastus lateralis (A1=10.41 ± 1.97 mm and A2= 10.40 ± 1.33 mm) compared to the middle (B1= 

5.10 ± 1.64 mm and B2=6.50 ± 2.02 mm) and the lower (C1= 3.93±1.30 mm and C2=5.16 ± 

1.60 mm) part of vastus lateralis (Figure 1), whilst there were no significant differences in 

adipose tissue thickness between the medial and lateral site of the muscle.    

3.2 Ventilatory, hemodynamic, blood gases and metabolic responses to exercise 

 Table 3 summarizes ventilatory, cardiovascular, gas exchange and metabolic responses at 

rest and during exercise in normoxia and hyperoxia. Mean arterial blood pressure, minute 

ventilation, arterial, and venous lactate concentration were lower in hyperoxic compared to 

normoxic exercise (p<0.05-0.001), whilst arterial and venous partial tensions of both oxygen and 

carbon dioxide as well as arterial oxygen content were greater in hyperoxia compared to 

normoxia (p<0.05-0.001). Heart rate, arterio-venous oxygen difference and pH did not 

significantly differ between the two FIO2 conditions during exercise (Table 3).  

3.3 Effect of exercise intensity and site of measurement on vastus lateralis muscle VO2 and Q  

Mean values for all COPD patients for regional muscle VO2, Q, arterio-venous oxygen 

difference, oxygen delivery, fractional oxygen extraction and StiO2 across all exercise intensities 

in normoxia and hyperoxia are shown for all six-probe positions in Table 4. Looking at mean 

values, regional muscle VO2, Q and oxygen delivery increased from rest up to 50% of WRpeak 

and decreased at 80% of WRpeak in normoxia. In contrast, in hyperoxia, regional muscle VO2, 

Q and oxygen delivery increased throughout the exercise protocol (p<0.01-0.001). In hyperoxia 

compared to normoxia across the various workloads mean values for regional fractional oxygen 

extraction were lower, whereas regional muscle VO2, Q, oxygen delivery, arterio-venous oxygen 

difference and StiO2 were greater (p<0.01-0.001). Regional muscle VO2, Q, oxygen delivery, 
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fractional oxygen extraction and arterio-venous oxygen difference were lower in the upper 

compared with the lower part of vastus lateralis; StiO2 was higher in the upper part of vastus 

lateralis muscle (Table 4). In addition, during normoxia the average local muscle VO2/Q ratio 

was 0.12±0.02 whilst during hyperoxia it was 0.10±0.01 with no significant difference between 

the two conditions. 

3.4 Distribution of regional muscle VO2, Q, VO2/Q.  

Figure 3 summarizes the relative dispersion (RD) of regional muscle Q, VO2, StiO2, and 

VO2/Q during the exercise for every condition for each COPD patient. Figure 3 displays how 

well VO2 and Q were correlated across the different exercises intensities in each condition such 

that RD of VO2/Q and StiO2 were much lower and independent of exercise intensity or FIO2. In 

addition, the correlations between the RDs of StiO2 and VO2/Q across all subjects, rest, exercise 

intensities and environmental conditions were linear with an R2 value of 0.80 (p<0.001). 

Figure 4 shows the mean RD values for the six patients for the following indexes: i.e., Q, 

VO2, VO2/Q and StiO2 during rest and across the four exercise intensities in normoxia and 

hyperoxia. For Q, RD increased with increasing exercise intensity exercise (p<0.001) in both 

normoxia and hyperoxia, whilst RD of Q was greater in normoxia compared to hyperoxia 

(p=0.024). For VO2, RD increased in both normoxia and hyperoxia with increasing exercise 

intensity (p<0.001), with no difference between the two conditions (p=0.096). Mean RDs for 

both VO2/Q (mean RD ranged between 0.12 and 0.08 in normoxia vs 0.13 to 0.09 in hyperoxia) 

and StiO2 (mean RD ranged between 0.11 and 0.07 in normoxia vs 0.10 to 0.07 in hyperoxia) 

were small and moreover were unaffected by exercise intensity or FIO2 (p>0.05).  

4. Discussion 

4.1 Main findings 

The present study constitutes the first experimental attempt to simultaneously measure 

regional locomotor muscle Q and VO2 and their ratio (VO2/Q) at rest and during progressive 
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exercise in patients with COPD. The main finding of the study is that in normoxia despite 

considerable heterogeneity of Q and VO2 within the different regions of vastus lateralis muscle, 

local muscle ratio of VO2/Q (~0.12) as well as average RD of VO2/Q (~0.10) was minimal and 

unaffected by increased exercise intensity, thus representing a small amount of heterogeneity 

and possibly minimal impact of heterogeneity on muscle oxygen availability. This notion is also 

supported by the finding that neither local muscle ratio of VO2/Q (~0.10) nor average RD of 

VO2/Q (~0.11) differed when regional muscle oxygen delivery significantly increased during 

hyperoxia (control condition) compared to normoxia. These findings expand previous 

suggestions (Maltais et al., 2001, Richardson et al., 1999) that patients with COPD posses the 

capacity to tightly regulate regional muscle Q relative to VO2, albeit at submaximal levels of 

exercise.  

4.2 Physiological implications of regional muscle VO2/Q heterogeneity 

The present study constitutes the first experimental attempt of simultaneously measuring 

regional muscle Q and metabolism and their ratio (VO2/Q) at rest and during progressive 

exercise in patients with COPD. The findings of the present study indicate a very small average 

local muscle ratio of VO2/Q (~0.11) and average RD of VO2/Q (0.10) in quadriceps muscles of 

patients with COPD, whilst both values are highly comparable with those obtained from studies 

in healthy subjects (30-32, 44, 61). Indeed, studies by Kalliokoski (30-32) and Mizuno (44) 

using PET imaging, reported average local muscle ratio of VO2/Q ranging from 0.04 to 0.08 

during one-legged isometric or cycling exercise. Recently, a study from our group that employed 

NIRS to assess VO2/Q heterogeneity across six locations over the vastus lateralis, reported an 

average RD of VO2/Q of 0.13 that was unaffected by progressive exercise loading or 

environmental condition (normoxia and hypoxia) (61). Taking into consideration the findings of 

the present and previous studies in healthy subjects, it is suggested that in patients with COPD 

local muscle Q remains closely matched to local muscle VO2. This is indicative of little 
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functional heterogeneity of Q to metabolism at least over the range of submaximal levels of 

exercise imposed on COPD in the present study. 

4.2 Potential mechanisms accounting for the low heterogeneity of local muscle VO2/Q ratio 

Tight matching between Q and VO2 across progressively increasing levels of exercise was 

manifested despite a considerable increase in heterogeneity of Q and VO2 (Figures 3 and 4). It 

has previously been demonstrated that heterogeneity of Q within the exercising muscles may 

induce a decrease in oxygen delivery of less well perfused tissues leading to a fall in 

mitochondrial PO2 (Heionen et al., 2015, Kalliokoski et al., 2000, 2001, Koga et al., 2014, Piiper 

and Haab, 1991, Piiper, 2000, Walley, 1996). However, recent evidence suggests (Cano et al., 

2015) that human muscles may exhibit an automatic compensatory mechanism that works in the 

direction of restoring muscle VO2 when oxygen availability is reduced. Indeed, Cano et al.  

(2015) recently demonstrated that the lower the mitochondrial PO2, the higher will be the PO2 

difference between the muscle microvasculature and the mitochondria, when other factors are 

equal. This would facilitate the diffusion process and provide an autonomic compensatory 

mechanism to restore VO2 by extracting more oxygen from the arterial oxygenation. This in turn 

pushes the VO2/Q ratio back towards normal levels (Cano et al., 2015).  

This self-limited mechanism is reinforced by our findings as we have demonstrated that 

regional muscle arterio-venous oxygen difference and regional muscle fractional oxygen 

extraction were greater in normoxia compared to hyperoxia (Table 4) most likely to mitigate the 

lower regional muscle oxygen delivery in normoxia (Table 4) (Maltais et al., 2001) and 

normalize the VO2/Q ratio. Adversely, during hyperoxia, as the PaO2 increases (Table 3), the 

proposed self-correcting mechanism of the exercising muscles may reduce the capillary-to-

mitochondrial PO2 diffusion gradient, thus normalizing the balance between regional muscle 

oxygen supply and demand (Cano et al., 2015). This may provide an additional mechanism, 
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which may explain the similar RDs of VO2/Q observed between the two environmental 

conditions accross different exercise intensities in patients with COPD (Figure 4). 

Interestingly, the reported heterogeneity of local muscle VO2/Q (Figure 4) in the present 

study appears to be much less than that observed between alveolar ventilation and perfusion 

(VA/Q) in the lungs of patients with COPD (Wagner et al., 1977). Indeed, RD of VO2/Q ratio 

reported in the present study appears to be only about 1/10 of that of VA/Q in the lung of patients 

with COPD (Wagner et al., 1977) indicating that muscle heterogeneity of VO2/Q has less of an 

impact on O2 transport than that observed in lung VA/Q heterogeneity (Cano et al., 2015). 

4.3 NIRS-based StiO2 for assessing muscle VO2/Q heterogeneity 

The study of matching local muscle Q to VO2 in humans during exercise has been 

challenging and several techniques have been employed such as PET and MRI (Kalliokoski et 

al., 2006). Although the abovementioned techniques are non-invasive, both are sensitive to 

motion artifact and require well-established laboratories and experienced personnel for data 

analysis and interpretation. NIRS is an optical, noninvasive technique that can be easily used in 

the human muscles either during static or dynamic exercise whilst offers real-time and rapidly 

responsive absolute index of local oxygen saturation (StiO2). 

Along these lines, we have demonstrated that RDs of StiO2 and VO2/Q were almost 

identical (Figures 3 and 4) whilst the correlation between the RDs of StiO2 and VO2/Q across all 

subjects, exercise intensities and environmental conditions was linear, positive and highly 

significant with an R2 value of 0.80. Note, however, that the RD of StiO2 does not depend on the 

equation relating femoral vein O2 saturation to StiO2. Whilst NIRS reflects 70% of venular blood 

and 30% arterial blood (Boushel et al., 2001), however, regional StiO2 must reflect regional 

venous/intracellular oxygenation since all regions see the same arterial value. Furthermore, the 

RD of StiO2 itself is a direct measure of heterogeneity in local muscle oxygenation and can thus 
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be employed as a non-invasive surrogate to VO2/Q heterogeneity given that the RD of StiO2 

closely mirrors the RD of VO2/Q in patients with chronic diseases (Figures 3 and 4).  

4.4 Heterogeneity of regional muscle Q and VO2 

In the present study, we found that heterogeneity of regional muscle Q significantly 

increased with exercise intensity (Figures 3 and 4) in both environmental conditions. This is 

different to what we and others have so far reported in healthy individuals across progressive 

exercise loading where regional muscle Q and VO2 heterogeneity was unaffected by exercise 

intensity or environmental condition (Heinonen et al., 2010, 2011, 2012, Kalliokoski et al., 2000, 

2001, 2003, 2005, Laaksonen et al., 2003, Mizuno et al., 2003, Vogiatzis et al., 2015). A 

possible explanation for this discrepancy is that intrinsic abnormalities previously reported in the 

muscles of COPD patients (Maltais et al., 2014) may impair homogeneous distribution of blood 

flow within different muscle regions. Indeed, the total number of capillaries and number of 

capillaries per muscle fiber has been reported as reduced in patients with COPD (Eliason et al., 

2010, Gosker et al., 2007a, Maltais et al., 2000). Recently Eliason et al. (2010) demonstrated that 

muscle-to-capillary interface - a sensitive marker for changes in capillary network of limb 

muscles - is disturbed in patients with moderate and severe COPD compared to age-matched 

healthy individuals. Such a structural disturbance would be expected to impair homogeneous 

perfusion within the exercising muscles during exercise of progressive intensity (Eliason et al., 

2010). In addition, it is known that type I fibres demonstrate lower regional muscle Q 

heterogeneity during exercise (Laughlin et al., 2012), because this fibre type exhibits up-

regulation of vasodilation mechanisms and reduced alpha-adrenergic-mediated vasoconstriction 

compared to type II fibres (Behnke et al., 2011, McAllister, 2003). Thus, the well-documented 

alternations in muscle fiber composition in COPD (e.g. decrease in proportion of type I fibres 

and increase in proportion of type II fibres) (Eliason et al., 2010, Gosker et al., 2007a, Maltais et 
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al., 2000) may further explain inhomogeneous distribution of blood flow within the vastus 

lateralis muscle during exercise of increasing intensity.  

We have also demonstrated that heterogeneity of local muscle VO2 increased with exercise 

intensity (Figure 4) under both environmental conditions. A possible explanation is that in 

patients with COPD the decreased energy dependence on oxidation possibly disrupts the 

homogeneous distribution of VO2 as exercise intensity increases (Coyle et al., 1992, Hunter et 

al., 2001). It is recognized that different muscle fiber types have different metabolic potential 

and O2 demands during exercise (Coyle et al., 1992, Hunter et al., 2001). In COPD, the decrease 

in oxidative type I fiber distribution shifts the metabolic dependence of muscle contraction 

towards glycolytic metabolism and thus energy production from oxidative ATP formation is 

much less (Picard et al., 2008, Richardson et al., 1999, Sala et al., 1999, van den Borst et al., 

2013). In addition, metabolic alternations in muscle fibres, namely reduced oxidative enzyme 

activity and mitochondrial dysfunction, may further compromise the oxidative metabolic 

capacity and therefore may increase the heterogeneity of regional muscle VO2 in the exercising 

muscles (Grosker et al., 2007a,b, Maltais et al, 2000, Picard et al., 2008). Another potential 

explanation for greater heterogeneity of local muscle VO2 in COPD compared to healthy 

individuals may be different muscle recruitment patterns during exercise. Specifically, in healthy 

individuals, it is expected that oxidative type I fibres are activated from the beginning of 

exercise, whilst type II are expected to be recruited at higher work rates (Jones et al., 2004). 

However, this may not be the case for the COPD population, where due to alternations in muscle 

fibre composition (Grosker et al., 2007a,b, Maltais et al, 2000, van den Borst et al., 2013), it is 

expected that type II fibres be recruited earlier during the exercise task compared to healthy 

individuals.    

The present findings also demonstrate that heterogeneity of Q and VO2 at moderate and 

intense exercise loads (50 and 80 % peak) was lower in hyperoxia compared to normoxia 
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(Figure 5). Two potential mechanisms most likely accounted for this finding. Firstly, by 

inspiring pure oxygen (i.e., FIO2: 1.0), the greater increase in arterial oxygen content and in 

oxygen delivery observed (Maltais et al., 2001, Richardson et al., 1999) (Table 4), possibly 

enhanced evenness of oxygen supply to the working muscles, thus resulting in less heterogeneity 

within the different muscle regions. In addition, it is well documented that hyperoxia causes 

peripheral vasoconstriction (Welch et al., 1997), which would be expected to preferentially 

constrict the most well-oxygenated regions, and thereby even out flow differences, especially 

when metabolic demand is increased during exercise.  

4.5 Methodological considerations 

In our earlier study (Vogiatzis et al., 2015) we demonstrated that NIRS could be used to 

assess the distribution of local muscle VO2 with respect to local muscle Q in healthy individuals. 

In the present study regional SvO2 was inferred from the regional NIRS oxygen saturation signal 

(StiO2) using a linear relationship between mean StiO2 and femoral venous oxygen saturation 

established by varying both exercise intensities and FIO2 (Figure 2). Although NIRS has been 

advocated for use in physiological and clinical studies there are, however, limitations in 

extrapolating regional SvO2 from StiO2. Specifically, a possible contributor to the NIRS signal is 

the level of intracellular MbO2 desaturation during exercise. Evidence exists that MbO2 

desaturation proportionally increases with progressive exercise intensity (Belardinelli et al., 

1995), whilst a 50–60% of MbO2 desaturation can occur only at 50% of maximal VO2 

(Richardson et al., 1995). In addition, femoral venous O2 represents the sum of all blood 

returning from the exercising leg, whereas the NIRS based StiO2 signal originates in the 

exercising vastus lateralis muscle only (Chance et al., 1998) and thus it is possible that the 

venous blood sampled did not accurately represent quadriceps muscle because of contamination 

by blood originating from non-exercising tissues. Nevertheless, Mancini et al. (1994) 

demonstrated an almost identical correlation between SvO2 and StiO2 during forearm exercise, 
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when sampling blood from a vein that was closely drained the exercising muscle (Mancini et al., 

1994).  

In the current study the range of SvO2 and StiO2 was not sufficiently great to give a 

reliable relationship, although overall it was highly significant (r=0.38, p=0.003) and the data 

completely overlaid those previously seen in healthy subjects (Vogiatzis et al., 2015) (Figure 2). 

For this reason, we used the empirical equation previously found in healthy subjects (Vogiatzis 

et al., 2015) to estimate local venous oxygen saturation from local StiO2.  

Another issue that merits consideration is that microvascular, cutaneous circulation and 

subcutaneous adipose tissues may affect NIRS muscle signals. Indeed, skin blood flow can 

increase markedly as core temperature increases during high intensity and prolonged exercise; 

however, both these exercise conditions were not applied in the present study and thus the 

potential influence of cutaneous vasodilation on NIRS-derived measures of StiO2 should have 

been minimal if any. Morover, the study by Tew et al. (2010) as well as a recent study by 

Messere and Roatta (2013) indicated that the NIRS method used in the present study (Spatially 

Resolved Spectroscopy) effectively rejects interference by alterations in muscle blood volume 

and skin blood flow, effectively eliminating contamination from skin and subcutaneous tissues 

during both static or dynamic exercise (Messere and Roatta, 2013, Tew et al., 2010). Moreover, 

even the fact that our subjects were elderly and untrained, subcutaneous adipose tissue was only 

10 mm in the upper part of vastus lateralis and ranged between 4-6 mm in the middle and lower 

part of vastus lateralis.  These values are lower from the suggested cut off point of 20 mm, which 

is reported to make NIRS measurements meaningless in terms of investigating skeletal muscle 

oxygenation profile responses at rest and during exercise (Grassi and Quaresima 2016). 

The present study focused on six regions of vastus lateralis muscle and thus the full extent 

of heterogeneity of VO2, Q and VO2/Q may not have been captured. The reason for choosing 

just 6 regions was limitation in technology availability of multichannel NIRS. This study 
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required three separate NIR spectrophotometers, each with two measuring optodes. In addition, 

there is limited space on the thigh to place a large number of optodes, and also there is potential 

for light interference between optodes when these are placed too closely to each other (Vogiatzis 

et al., 2015). Thus, given the current state of technical development, placing additional optodes 

may not have been helpful. However, if an array of optodes and supporting software and 

hardware could be developed to increase the spatial resolution, without interference, better 

capture of the extent of heterogeneity would likely be possible.  

Potential contribution to heterogeneity of other currently inaccessible regions of 

quadriceps muscle by NIRS needs to be further considered. Indeed, the study by Kalliokoski et 

al. (2000) in healthy individuals showed differences in heterogeneity of Q among the quadriceps 

muscle regions that was characterized by a decrease in the heterogeneity of Q in those exercising 

muscles in which Q was the highest (vastus intermedius and vastus medialis) as compared to 

those muscles with the lowest Q (vastus lateralis and rectus femoris) during exercise. More 

recently, it was shown that superficial and deep muscle NIRS readings are different in healthy 

individuals at rest and during exercise (Okushima et al., 2015).  

4.6 Conclusions 

In conclusion, this study provides evidence that patients with moderately severe COPD 

maintain the capacity to tightly regulate regional muscle blood flow relative to metabolic 

demand during submaximal intense exercise loads. Our findings reinforces the notion of a 

skeletal muscle metabolic reserve previously proposed in these patients. It also indicate that 

regional muscle metabolism/blood flow heterogeneity is unlikely to be a significant contributor 

to the overall muscle O2 availability during the range of submaximal exercise intensities that are 

often employed in the pulmonary rehabilitation setting.  
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Table 1.  Demographic, anthropometric and baseline pulmonary function data 

 Demographic/Anthropometric 

Age, yr 67 ± 7    

Gender, m/f 4/2 

Height, cm 168 ± 8    

Weight, kg 71 ± 3    

BMI, kg/m2 25.4 ± 3.1    

FFMI, kg/m2 18.1 ± 0.9    

 Pulmonary function 

FEV1, liters 1.10 ± 0.2    

FEV1, % predicted 46 ± 12    

FVC, liters 2.8 ± 0.6     

FVC, % predicted 77 ± 13   

FEV1 / FVC 39 ± 9    

IC, liters 2.0 ± 0.6    

IC, % predicted 74 ± 25    

RV, liters 4.3 ± 1.4    

RV, % predicted 207 ± 51    

FRC, liters 5.9 ± 1.1    

FRC, % predicted 181 ± 47    

TLC, liters 7.9 ± 1.9    

TLC, % predicted 130 ± 14    

RV/TLC, % 56 ± 12    

IC/TLC, %  27 ± 9    

TLCO, % predicted 54 ± 11    

PaO2, mmHg 84 ± 8    

PaCO2, mmHg 41 ± 6   

SaO2, % 94 ± 2    
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Values are expressed as means ± SD for 6 subjects. BMI, body mass index; FFMI, fat free mass 

index; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; IC, inspiratory 

capacity; RV, residual volume; FRC, functional residual capacity; TLC, total lung capacity; 

TLCO, diffusing capacity of the lung for carbon monoxide; PaO2, partial tension of arterial 

oxygen; PaCO2, partial tension of arterial carbon dioxide; SaO2, arterial oxygen saturation.   
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Table 2. Peak exercise data and functional capacity 

WRpeak, W 59 ± 16    

VO2peak, l /min 1.10 ± 0.4    

VO2peak, % predicted 46 ± 7   

HRpeak, beats/min 121 ± 14    

VEpeak, l/min 41 ± 12    

VTpeak, liters 1.21 ± 0.4    

fpeak, breaths/min 33 ± 3    

SpO2, % 89 ± 2    

Borg dyspnoea scores 7 ± 2    

Borg leg effort scores  5 ± 3  

6-minute walking test, m 419 ± 34   

6-minute walking test, % predicted 73 ± 9  

Quadriceps muscle force, kg 28 ± 6    

Quadriceps muscle force, % predicted 61 ± 12  

Quadriceps muscle endurance, sec 35 ± 17  

Quadriceps muscle endurance, % predicted 43 ± 15  

 

Values are expressed as means ± SD for 6 subjects. WRpeak, peak work 

rate; VO2peak, peak oxygen uptake; HRpeak, peak heart rate; VEpeak, peak 

minute ventilation; VTpeak, peak tidal volume; fpeak, peak breathing 

frequency; SpO2, arterial oxygen saturation assessed by pulse oximetry.  
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Table 3. Ventilatoty, hemodynamic, blood gases and metabolic responses to exercise

 Normoxia Hyperoxia 

 Rest Unload 20% 50% 80% Rest Unload 20% 50% 80% 

Watts - 5 14±3 33±5 48±6 - 5 14±3 33±5 48±6 

HR, beats/min 72±3 78±3 84±4 95±4 109±6 68±3 74±3 79±4 94±3 105±5 

MAP, mmHg 94±8 109±8 112±9 124±11 133±10 94±9 108±0 110±11 116±11† 122±10† 

VE, l/min 13±1 18±2 22±3 29±3 35±4 11±1† 16±2† 20±2† 27±2† 32±2† 

VT, l 0.79±0.07 0.94±0.09 1.06±0.11 1.23±0.13 1.30±0.11 0.69±0.06 0.91±0.09 1.02±0.08 1.18±0.11 1.25±0.13 

Bf, breaths/min 17±1 19±2 22±2 24±2 27±3 17±1 18±1 20±2 23±2 27±2 

PaO2, mmHg 85±5 73±3 78±6 75±5 72±3 420±22† 441±25† 450±18† 483±11† 455±15† 

PvO2, mmHg 27±1 23±1 23±1 24±1 25±2 29±1 27±1† 28±2† 28±1† 29±1† 

PaCO2, mmHg 39±3 42±2 43±2 43±2 42±2 40±2 43±2 44±2 47±2† 48±3† 

PvCO2, mmHg 51±2 55±2 59±2 63±3 64±2 52±2 59±2† 63±3† 69±3† 75±3† 

CaO2, ml/l 192±6 194±7 192±5 190±6 187±8 201±7† 201±5† 199±7† 201±5† 205±6† 

C(a-v)O2, ml/l 110±5 130±7 132±6 131±5 129±5 108±7 123±6 127±7 128±5 129±5 

Arterial PH 7.37±0.01 7.36±0.01 7.34±0.01 7.33±0.01 7.38±0.01 7.38±0.01 7.36±0.01 7.35±0.01 7.33±0.01 7.31±0.01 

Arterial La, mmol/l 0.82±0.11 1.00±0.06 1.13±0.11 2.18±0.31 3.94±0.54 0.77±0.08 0.87±0.07 0.98±0.10 1.95±0.46 2.77±0.58† 

Venous pH 7.34±0.01 7.32±0.01 7.29±0.01 7.25±0.02 7.24±0.01 7.33±0.01 7.30±0.01 7.27±0.01 7.24±0.02 7.20±0.01 

Venous La, mmol/l 1.12±0.09 1.25±0.06 1.52±0.15 3.18±0.55 4.50±0.62 1.15±0.08 1.20±0.07 1.25±0.13 2.60±0.66 3.36±0.58† 
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Values are expressed as means ± SEM for 6 subjects. HR, heart rate; MAP, mean arterial blood 

pressure, VE, minute ventilation; VT, tidal volume; Bf, breathing frequency; PaO2, partial tension 

of arterial oxygen, PvO2, partial tension of venous oxygen, PaCO2, partial tension of arterial 

carbon dioxide, PvCO2, partial tension of venous carbon dioxide; CaO2, arterial oxygen content; 

C(a-v)O2, arterio-venous oxygen content difference; La, lactate concentration. Crosses denote 

significant differences from normoxia at identical levels of exercise intensity. 
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Table 4. Effects of exercise for each site of measurement on vastus lateralis muscle 

    Normoxia Hyperoxia 

  Probes Rest Unload 20% 50% 80% Rest Unload 20% 50% 80% 

  VO2 (ml/min/100g) 

Upper 
A1 0.23 0.52‡ 0.71‡ 1.01‡ 0.59‡ 0.25 0.65‡ 0.81‡ 1.05‡ 1.16‡ 

A2 0.20 0.47‡ 0.52‡ 0.52‡ 0.26‡ 0.32 0.65‡ 0.66‡ 0.67‡ 0.49‡ 

Middle 
B1 0.32 0.98 1.84 3.46 2.30 0.31 1.25 2.02 3.20 3.26 

B2 0.26 0.66 1.15 2.03 1.05 0.29 0.95 1.43 2.39 2.49 

Lower 
C1 0.22 1.04 2.33 5.21 4.32 0.32 1.52‡ 2.78 5.37 7.07 

C2 0.26 0.93 1.67 3.92 2.27 0.30 1.26‡ 2.04 3.49 4.65 

 mean  0.25*  0.77*  1.37*  2.69* 1.80   0.30*†   1.05*†   1.62*† 2.69  3.19† 

  SEM 0.02 0.10 0.28 0.74 0.61 0.01 0.15 0.33 0.71 0.98 

  Q (ml/min/100g) 

Upper 
A1 1.9 4.5‡ 6.2‡ 8.7‡ 5.2‡ 2.0 5.2‡ 6.6‡ 8.2‡ 8.5‡ 

A2 1.8 4.1‡ 4.7‡ 4.6‡ 2.3‡ 2.6 5.3‡ 5.5‡ 5.4‡ 3.8‡ 

Middle 
B1 2.4 7.6 14.1 27.3 18.4 2.2 8.7 14.0 22.4 22.3 

B2 2.1 5.5 9.5 17.2 8.7 2.1 7.0 10.5 17.1 17.3 

Lower 
C1 1.4 7.4 16.1 35.7 30.6 1.9 9.7 17.5 33.4 41.8 

C2 1.8 7.0 12.5 29.9 18.6 2.0 8.6 13.7 23.4 30.0 

  mean 1.9* 6.0* 10.5* 20.6* 14.0  2.1*  7.4*†  11.3*†  18.3†  20.6† 

  SEM 0.1 0.6 1.8 5.1 4.3 0.1 0.8 1.9 4.2 5.7 

    Oxygen delivery (ml/min/100g) 

Upper 
A1 0.38 0.90‡ 1.22‡ 1.69‡ 0.95‡ 0.42 1.13‡ 1.42‡ 1.80‡ 1.94‡ 

A2 0.34 0.84‡ 0.95‡ 0.91‡ 0.43‡ 0.54 1.15‡ 1.18‡ 1.18‡ 0.85‡ 

Middle 
B1 0.45 1.50 2.73 5.24 3.39 0.45 1.88 3.06 4.84 4.97 

B2 0.40 1.10 1.87 3.32 1.57 0.43 1.51 2.26 3.71 3.92 

Lower 
C1 0.26 1.42 3.12 6.93 5.79 0.40 2.10 3.80‡ 7.32‡ 9.45 

C2 0.34 1.38 2.43 5.73 3.36 0.41 1.86 2.99‡ 5.12‡ 6.82 

  mean  0.36*  1.19* 2.05   3.97* 2.58  0.44*†  1.60*†   2.45*†       3.99 4.66† 

  SEM 0.03 0.12 0.35 0.97 0.81 0.02 0.17 0.42 0.93 1.29 

  Arterio-venous oxygen difference (ml/100ml)  

Upper 
A1 11.8 11.5 11.4 11.6 11.9 13.0 12.4 11.8 12.3 12.6 

A2 11.1 10.9 10.8 11.0 11.4 12.4 12.1 11.8 12.4 12.6 

Middle 
B1 12.9 12.1 12.2 12.2 12.1 13.9 13.3 13.0 13.2 13.4 

B2 12.2 11.5 11.5 11.6 11.9 13.9 13.2 12.8 13.2 13.4 

Lower 
C1 15.2 13.7 13.8 13.8 13.6 16.2 15.0 14.7 15.0 15.3 

C2 13.7 12.5 12.5 12.5 12.5 14.7 13.9 13.5 13.8 13.9 

 mean 12.8 12.0 12.0 12.1 12.2  14.0†  13.3†  12.9†  13.3†  13.5† 

  SEM 0.6 0.4 0.4 0.4 0.3 0.5 0.4 0.4 0.4 0.4 

   Oxygen extraction (%) 

Upper 
A1 60.8‡ 58.3‡ 58.4‡ 60.2‡ 62.7‡ 60.6‡ 57.7‡ 55.6‡ 56.9‡ 57.5‡ 

A2 57.3‡ 55.6‡ 55.5‡ 57.4‡ 60.5‡ 58.4‡ 56.1‡ 55.8‡ 57.5‡ 57.7‡ 

Middle 
B1 66.3 61.9 62.6 63.2 63.9 64.8 61.7 60.9 60.9 60.9 

B2 62.9 58.7 59.3 60.3 63.0 64.9 61.3 60.4 61.2 61.1 

Lower 
C1 77.9 69.5 70.9 71.8 71.4 75.6 70.0 69.0 69.6 69.8 

C2 70.8 64.0 64.5 65.2 66.0 68.7 64.8 63.3 63.9 63.3 

  mean 66.0 61.3 61.9 63.0 64.6 65.5 61.9 60.8 61.7† 61.7† 

  SEM 3.0 2.0 2.2 2.1 1.5 2.5 2.0 2.0 1.9 1.9 

  StiO2 

Upper 
A1 62.0‡ 63.1‡ 63.1‡ 61.5‡ 59.6‡ 64.7‡ 67.2‡ 69.1‡ 68.1‡ 67.4‡ 

A2 64.7‡ 65.1‡ 65.3‡ 63.6‡ 61.3‡ 66.5‡ 68.5‡ 68.9‡ 67.6‡ 67.2‡ 

Middle 
B1 57.9 60.4 60.0 59.3 58.8 61.2 63.9 64.6 64.7 64.5 

B2 60.5 62.8 62.5 61.5 59.5 61.2 64.3 65.0 64.5 64.4 

Lower 
C1 48.9 54.8 53.8 52.9 53.1 52.3 57.0 57.9 57.4 57.1 

C2 54.4 58.9 58.7 57.9 57.2 58.0 61.3 62.6 62.2 62.5 

  mean 58.1 60.9 60.6 59.5 58.3  60.6†  63.7†   64.7†   64.1†   63.8† 

  SEM 2.3 1.5 1.7 1.5 1.2 2.1 1.7 1.7 1.6 1.5 
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Values are expressed as means ± SEM for 6 subjects. Regional muscle oxygen consumption (VO2), 

blood flow (Q), arterio-venous oxygen difference, oxygen delivery, fractional oxygen extraction and 

tissue oxygen saturation (StiO2) for all subjects across all exercise intensities in normoxia and hyperoxia 

are displayed for all 6 probe positions. The number displayed for each probe position represents the 

mean value of all patients. A1, B1, C1: lateral site; A2, B2, C2: medial site. Asterisks denote significant 

differences relative to 80% of peak work rate for each condition. Crosses denote significant differences 

relative to normoxia at identical levels of exercise intensity. Double crosses denote significant 

differences between upper and lower regions of the vastus lateralis muscle. 
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Figure captions 

Figure 1: Positioning of six optodes over the right vastus lateralis muscle of a patient with 

COPD. 

Figure 2: Linear relationships between measured femoral venous O2 saturation (SfvO2) and 

blood flow-weighted average NIRS O2 saturation (StiO2) over the six optodes for all COPD 

patients (closed circles) and healthy subjects (open triangles) (61). Τhe linear relationship and its 

corresponding Pearson correlation coefficient, r, were derived from the data previously obtained 

in healthy subjects (61). 

Figure 3: Heterogeneity by means of relative dispersion (RD) of StiO2 (closed triangles), VO2/Q 

ratio (open circles), and VO2 (closed circles) for all COPD patients under all conditions. 

Heterogeneity by means of RD of VO2 tracks that of Q across all conditions and subjects, while 

RD of StiO2 and VO2/Q are much lower and unrelated to RD of Q.  

Figure 4: Heterogeneity by means of relative dispersion (RD) of Q, VO2, StiO2 and VO2/Q as a 

function of exercise intensity in normoxia (closed circles) and hyperoxia (open circles). The 

VO2/Q dispersion appears unaffected by both exercise and hyperoxia, alone and in combination, 

reflecting tight matching between Q and VO2 across muscle regions. Values are expressed as 

means ± SEM for 6 subjects. Asterisks denote significant differences from hyperoxia at identical 

level of exercise intensities. Crosses denote significant differences from rest for both normoxia 

and hyperoxia. 

 

 

 


