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ABSTRACT

The magnetorotational instability (MRI) plays a key role for cosmic structure formation by triggering turbulence in
the rotating flows of accretion disks that would be otherwise hydrodynamically stable. In the limit of small magnetic
Prandtl number, the helical and the azimuthal versions of MRI are known to be governed by a quite different scaling
behavior than the standard MRI with a vertical applied magnetic field. Using the short-wavelength approximation
for an incompressible, resistive, and viscous rotating fluid, we present a unified description of helical and azimuthal

MRI, and we identify the universal character of the Liu limit 2(1 −
√

2) ≈ −0.8284 for the critical Rossby number.
From this universal behavior we are also led to the prediction that the instability will be governed by a mode with
an azimuthal wavenumber that is proportional to the ratio of axial to azimuthal applied magnetic field, when this
ratio becomes large and the Rossby number is close to the Liu limit.
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1. INTRODUCTION

The magnetorotational instability (MRI) is widely accepted as
the main source of turbulence and outward angular momentum
transport that is needed for the matter in accretion disks to
spiral inward onto the central protostar or black hole (Balbus
& Hawley 1991). While the early work on MRI was mainly
concerned with ideal magnetohydrodynamics, the last years
have seen an increasing interest in the influence of viscosity
and electrical resistivity on the MRI (Pessah & Chan 2008). A
particular role is thought to be played by the magnetic Prandtl
number (Pm), which measures the ratio of viscosity to resistivity.
For accretion disks around black holes (BHs), Balbus & Henri
(2008) had discussed the transition from large values of Pm,
in the vicinity of the BH, to small values in the outer part
of the disk, with Pm reaching unity for approximately 100
Schwarzschild radii (depending on several parameters, among
them the mass of the BH). By invoking a thermal runaway
process at the unstable interface between regions with Pm > 1
and Pm < 1, the authors associated this boundary with the
existence of high and low X-ray states (see Remillard &
McClintock 2006).

In recent years, a vivid discussion (Lesur & Longaretti
2007; Fromang et al. 2007; Käpylä & Korpi 2011; Oishi &
Mac Low 2011) was devoted to the possible decline of the
angular momentum transport rate with decreasing Pm, and to
the intricate roles that are played here by the magnetic Reynolds
number, the detailed boundary conditions, and the stratification
of the disk.

Besides this relevance to the outer part of accretion disks,
to protoplanetary disks (Turner & Sano 2008), and possibly
even to planetary cores (Petitdemange et al. 2008), the limit of
low and vanishing Pm has acquired some additional interest in
connection with the recent liquid metal experiments devoted to
the study of MRI (Sisan et al. 2004; Stefani et al. 2006; Nornberg
et al. 2010).

While for the standard version of MRI (SMRI), characterized
by only a vertical field being applied, the low Pm limit is rather

smooth and unspectacular (Pessah & Chan 2008), the addition
of an azimuthal field leads to dramatic effects as revealed for the
first time by Hollerbach & Rüdiger (2005). The arising helical
MRI (HMRI), as we call it now, was shown to work also in
the limit of vanishing Pm since it is governed by the Reynolds
and Hartmann number, quite in contrast to SMRI, which is
governed by the magnetic Reynolds number and the Lundquist
number. In this inductionless limit the induced magnetic field
can be neglected with respect to the imposed one, whereas
the corresponding induced currents have still to be taken into
account in the Lorentz force term (see Hollerbach & Rüdiger
2005; Priede 2011).

However, as it was early shown by Liu et al. (2006), the func-
tioning of HMRI is limited to comparably steep rotation profiles

with Rossby numbers Ro < RoLiu = 2(1 −
√

2) ≈ −0.8284
(which we henceforth will call the “Liu limit”) and therefore
does not extend to the astrophysically important Kepler profiles
characterized by Ro = −0.75. This essential limitation of the
HMRI, together with a variety of further parameter dependen-
cies, was confirmed in the PROMISE experiment by Stefani
et al. (2006, 2007, 2009). The intricate, though continuous,
transition between SMRI and HMRI, which involves a spectral
exceptional point at which the inertial wave branch coalesces
with the branch of the slow magnetocoriolis wave, was clarified
only recently by Kirillov & Stefani (2010, 2011).

Another surprise in the limit of low Pm was, for the case
of a purely or strongly dominant azimuthal magnetic field, the
numerical prediction of a non-axisymmetric version of MRI,
working apparently in a similar parameter region as HMRI
(Hollerbach et al. 2010). Although the occurrence of MRI under
the influence of a purely azimuthal magnetic field had been
studied much earlier (see Hawley et al. 1995; Ogilvie & Pringle
1996; Papaloizou & Terquem 1997), the crucial effect arose
again for the particular combination of low Pm and slightly
steeper than Keplerian shear profiles. It has to be noticed that this
azimuthal MRI (AMRI), as we call it now, works for azimuthal
magnetic fields that are current-free in the considered fluid, quite
in contrast to the Tayler instability (Tayler 1973; Seilmayer et al.

1

http://dx.doi.org/10.1088/0004-637X/756/1/83
mailto:o.kirillov@hzdr.de
mailto:f.stefani@hzdr.de
mailto:yasuhide@imi.kyushu-u.ac.jp


The Astrophysical Journal, 756:83 (6pp), 2012 September 1 Kirillov, Stefani, & Fukumoto

2012), which is a pinch-type instability in a current-carrying
conducting medium.

The aim of this paper is to better understand why the scaling
behavior of HMRI and AMRI, as well as their restriction to
rather steep rotation profiles, is so similar. In order to clarify this
point, we restrict our work completely to the short-wavelength
approximation (Friedlander & Lipton-Lifschitz 2003; Hattori &
Fukumoto 2003), keeping in mind that some of our conclusions
will need further confirmation in more realistic simulations.

2. SHORT-WAVELENGTH ANALYSIS OF VISCOUS,
RESISTIVE MRI FOR ARBITRARY

AZIMUTHAL WAVENUMBERS

We start from the equations of incompressible, viscous, and
resistive magnetohydrodynamics, composing the Navier–Stokes
equation for the velocity field u and the induction equation for
the magnetic field B,

∂u

∂t
+ u · ∇u = B · ∇B

µ0ρ
− ∇P

ρ
+ ν∇2u (1)

∂B

∂t
= B · ∇u − u · ∇B + η∇2B, (2)

where P = p + B2/2µ0 is the total pressure, ρ = const
the density, ν = const the kinematic viscosity, η = (µ0σ )−1

the magnetic diffusivity, σ the conductivity of the fluid, and
µ0 the magnetic permeability of free space. Additionally, the
mass continuity equation for incompressible flows and the
divergence-free condition for the magnetic induction are used:

∇ · u = 0, ∇ · B = 0. (3)

In the following we consider a rotational flow in the gap be-
tween the radii R1 and R2 > R1, with an imposed magnetic field
sustained by currents external to the fluid (hence we disregard
any version of the Tayler instability and its combination with
MRI). Introducing the cylindrical coordinates (R, φ, z), we con-
sider the stability of a magnetized Taylor–Couette (TC) flow, i.e.,
a steady-state background flow with the angular velocity profile
Ω(R) in a (generally helical) background magnetic field,

u0(R) = R Ω(R) eφ, p = p0(R), B0(R) = B0
φ(R)eφ + B0

z ez,

(4)

with the azimuthal field component

B0
φ(R) = µ0I

2πR
, (5)

supposed to be produced by an axial current I, external to the
fluid.

The angular velocity profile of the background TC flow is
known to have the form

Ω(R) = a +
b

R2
, (6)

where a and b are defined as

a = µΩ − η̂2

1 − η̂2
Ω1, b = 1 − µΩ

1 − η̂2
R2

1Ω1 (7)

with the definitions

η̂ = R1

R2

, µΩ = Ω2

Ω1

. (8)

Introducing, as a measure of the steepness of the rotation profile,
the Rossby number (Ro),

Ro = R

2Ω

∂Ω

∂R
, (9)

we find
a = Ω(1 + Ro), b = −ΩR2Ro. (10)

To study flow and magnetic field perturbations on the
background of the magnetized TC flow, we linearize
the Navier–Stokes and induction equation in the vicinity
of the stationary solution by assuming u = u0 + u′, p = p0 +p′,
and B = B0 + B′ and leaving only terms of first order with
respect to the primed quantities.

Then, by using a short-wavelength approximation (the details
of the derivation will be published elsewhere) in the frame of
the geometrical optics approach (see, e.g., Landman & Saffman
1987; Dobrokhotov & Shafarevich 1992; Friedlander & Lipton-
Lifschitz 2003; Hattori & Fukumoto 2003; Lebowitz & Zweibel
2004; Mizerski & Lyra 2012), we end up with a system of four
coupled equations for the perturbations of arbitrary azimuthal
dependency that generalize the corresponding equations derived
in Kirillov & Stefani (2010). From those four coupled equations,
we can deduce the dispersion relation

p(γ ) := det(H − γE) = 0, (11)

where E is the unit matrix and the matrix H has the form

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−imΩ − ων 2α2Ω i
mωAφ

+ ωA√
ρµ0

−
2ωAφ

α2

√
ρµ0

−2Ω(1 + Ro) −imΩ − ων 0 i
mωAφ

+ ωA√
ρµ0

i(mωAφ
+ ωA)

√
ρµ0 0 −imΩ − ωη 0

2ωAφ

√
ρµ0 i(mωAφ

+ ωA)
√

ρµ0 2ΩRo −imΩ − ωη

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(12)

In Equation (12) we have used the following definitions for the
viscous, resistive, and the two Alfvén frequencies corresponding
to the vertical and the azimuthal magnetic field:

ων = ν|k|2 (13)

ωη = η|k|2 (14)

ω2
A =

k2
zB

0
z

2

ρµ0

(15)

ω2
Aφ

=
(

B0
φ

)2

ρµ0R2
. (16)

Note that |k|2 = k2
R + k2

z and α = kz/|k|, where kR, m,
and kz are the radial, azimuthal, and axial wavenumbers of
the perturbation. In the absence of the magnetic fields, the
dispersion relation determined by the matrix H reduces to
that derived already by Krueger et al. (1966) for the non-
axisymmetric perturbations of the hydrodynamical TC flow.
Choosing, additionally, m = 0, we reproduce the result of
Eckhardt & Yao (1995). In the presence of the magnetic fields
and m = 0, we arrive at the dispersion relation derived by
Kirillov & Stefani (2010).
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The dispersion relation (11) generated by the matrix (12) can
be rewritten completely in terms of dimensionless numbers, i.e.,
Rossby number (Ro), magnetic Prandtl number (Pm), ratio of the
two Alfvén frequencies (β), Hartmann number (Ha), Reynolds
number (Re), and a rescaled azimuthal wavenumber n:

Pm = ν

η
= ων

ωη

(17)

β = α
ωAφ

ωA

(18)

Re = α
Ω

ων

(19)

Ha = α
B0

z

k
√

µ0ρνη
(20)

n = m

α
. (21)

We stress that in this paper β must not be confused with the
so-called plasma beta, i.e., the ratio of gas pressure to magnetic
pressure.

After rescaling the spectral parameter as γ = λ
√

ωνωη, we
end up with the complex polynomial dispersion relation

p(λ) = a0λ
4 + (a1 + ib1)λ3 + (a2 + ib2)λ2

+ (a3 + ib3)λ + a4 + ib4 = 0 (22)

with the following coefficients:

a0 = 1

a1 = 2

(√
Pm +

1√
Pm

)

b1 = 4nRe
√

Pm,

a2 = 2(β2Ha2 − 3Re2Pm)n2 + 4βHa2n + 2(1 + (1 + 2β2)Ha2)

+ 4Re2(1 + Ro)Pm +
a2

1

4
b2 = 6nRe(1 + Pm)

a3 = a1(β2Ha2 − 3Re2Pm)n2 + 2a1βHa2n

+ a1(1 + (1 + 2β2)Ha2) + 8Re2(1 + Ro)
√

Pm

b3 = 4n3
√

PmRe(β2Ha2 − Re2Pm)

+ 2nRe(4Pm2Re2(1 + Ro) + (1 + Pm)2

+ 2Pm(1 + Ha2))/
√

Pm − 8(1 − n2)βHa2Re
√

Pm

a4 = ((β2Ha2 − Re2Pm)n2 + 2Ha2βn + Ha2 + 2PmRe2)2

+ 2(2Re2PmRo + 1)((Ha2β2 − Re2Pm)n2

+ 2Ha2βn + Ha2) − (1 + Pm)2Re2n2

+ 4Re2(1 + Ro) − (Ha2 + 2PmRe2)2 + Ha4 + 1 + 4β2Ha2

b4 = 2Re(1 + Pm)(β2Ha2 − Re2Pm)n3 + 4ReHa2β(1 + Pm)n2

+ 2Re(2(1 + Ro)(2Re2Pm − β2Ha2(1 − Pm))

+ (1 + Ha2)(1 + Pm))n − 4βHa2Re(2 + (1 − Pm)Ro).

(23)

Note again that this complex algebraic equation of fourth or-
der is valid for perturbations of arbitrary azimuthal wavenumber
in magnetized incompressible, viscous, resistive rotating fluids

exposed to current-free axial and azimuthal magnetic fields.
When n = 0, it reduces to the dispersion relation of HMRI
derived by Kirillov & Stefani (2010).

3. INDUCTIONLESS LIMIT

Proceeding quite similarly as in Kirillov & Stefani (2010),
we apply the Bilharz criterion (Bilharz 1944) to the complex
polynomial (22) and derive the maximum Rossby number, at
which flows are prone to MRI, as a function of the remaining
dimensionless numbers. In the following, we concentrate on the
inductionless limit, i.e., we take the limit Pm → 0.

After verifying the facts that the inductionless threshold value
of Ro increases monotonically with Re, so that we can take
the limit Re → ∞, and that in this limit the threshold value
of Ro increases monotonically with Ha (see Figure 1(a)), so
that we can take the limit Ha → ∞, we obtain the following
explicit expression for this maximized (with respect to Ha and
Re) critical Rossby number at the threshold of MRI in the
inductionless limit:

Rocr(β, n)

= 4β4 + (βn + 1)4 − (2β2 + (βn + 1)2)
√

4β4 + (βn + 1)4

2β2(βn + 1)2
.

(24)

The maximum value of the Rossby number, Rocr, is shown as a
red dot in Figure 1(a). When n = 0, Equation (24) reduces to the
threshold of HMRI in the inductionless limit found in Kirillov
& Stefani (2011). Given n and β, the critical Rossby number
calculated with finite values of Re and Ha is always below the
majorating value, Rocr(β, n), determined by Equation (24) (see
Figure 1(b)). With the increase of Ha and Re, constrained by the
scaling law

Re = 2(1 +
√

2)β3Ha3, (25)

the threshold shown in Figure 1(b) tends to the majorating
surface Rocr(β, n) shown in Figure 2(a).

The remarkably simple dependence (24) of Rocr, only on
the ratio β of azimuthal to axial field and on the rescaled
azimuthal wavenumber n, relies on the appropriate choice of
the dimensionless parameters, in particular on “hiding” the
wavenumber ratio α in them. Assuming that we have fixed the
sign of β, the functional dependence of the maximum critical
Rossby number (24) on β and n has a two-saddle line structure
as shown in Figure 2(a).

Now, the most important result of this paper is that both saddle
lines have the same height everywhere, namely, the Liu limit

RoLiu = 2(1 −
√

2), independent of the particular combination
of β and n. From Equation (24) it can be proved that these saddle

lines, with RoLiu = 2−2
√

2, are governed by the two equations

βmax,1(n) = 1√
2 − n

, Rocr(βmax,1) = 2 − 2
√

2

βmax,2(n) = −1√
2 + n

, Rocr(βmax,2) = 2 − 2
√

2. (26)

In Figure 2(b) the curves βmax,1(n) and βmax,2(n) are shown in
green and red colors, respectively. Note that according to the first

of Equations (26), n = 0 (HMRI) corresponds to β = 1/
√

2,
which, being substituted into Equation (25), yields the following
scaling law for the optimum combination of Re and Ha in HMRI

3
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Figure 1. Inductionless limit Pm → 0: (a) At the given n =
√

2 − 1/20 and β = 20 the threshold of MRI in the (Re−1, Ha−1, Ro) space with the maximum at the

singular (red) point (0, 0, Rocr = 2 − 2
√

2). The red line leading to the maximum projects into a curve approximated in the vicinity of the origin by the scaling law
(25). (b) The threshold of MRI in the (β, n, Ro) space with Ha = 6 and Re determined by the scaling law (25) reaches its upper bound at β → ∞ (AMRI), which is

still below the Liu limit RoLiu = 2 − 2
√

2.

(A color version of this figure is available in the online journal.)

Figure 2. (a) The critical Rossby number maximized with respect to Ha and Re, given by Equation (24), in dependence on β and n. (b) The lines βmax,1 (green) and

βmax,2 (red) at which the function Rocr(β, n) attains its maximal value RoLiu = 2 − 2
√

2.

(A color version of this figure is available in the online journal.)

(Kirillov & Stefani 2010):

Re = 2 +
√

2

2
Ha3. (27)

Therefore, even in the case of non-axisymmetric perturba-
tions, the maximum possible value of the Rossby number prone
to the MRI caused by the helical magnetic field in the induc-

tionless limit is still RoLiu = 2 − 2
√

2, exactly as in the case
of HMRI, which is an instability with respect to the axisym-
metric perturbations (n = 0). The relations (26) between β
and n that correspond to the Liu limit give a sort of the reso-
nance conditions between the components of the wavevector of
the three-dimensional perturbation and the components of the
helical magnetic field.

On the basis of Equations (26) connecting β and the rescaled
azimuthal wavenumber n, we can ask now for the structure
of the solution in terms of the original, “physical” azimuthal
wavenumber m. From the definition α = kz/|k| we see
immediately that α can take on only values between −1 and
+1. The solution structure can thus be visualized as in Figure 3.
For example, from the first of Equations (26) we see that for
large values of β (AMRI), the only possible integer solution
is the m = 1 mode, whose corresponding wavenumber ratio

 0
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Figure 3. Range of α for the different m modes, in dependence on β.

(A color version of this figure is available in the online journal.)

converges to α = 1/
√

2 (see also Figure 2(b)). There is a

lower limit of β = 1 +
√

2 ≈ 2.41 for this m = 1 mode.
Lowering β further, we find next the m = 0 mode (HMRI) to

dominate at the Liu limit, restricted only to β = 1/
√

2 (Kirillov

4
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Figure 4. Range of α for the different m modes, in dependence on β/α: m = 1
(red line), m = 0 (black line), m = −1, −2,−3,−4,−5 (green lines).

(A color version of this figure is available in the online journal.)

& Stefani 2010). Interestingly, decreasing β > 0 even further
to zero, we find a sequence of higher azimuthal modes with the
sign of m that is opposite to the sign of β that maximize the
critical Rossby number, illustrating the resonance phenomenon
mentioned above.

Since α enters also the definition of β, it might be instructive
to illustrate the mode structure also in dependence on β/α =
ωAφ

/ωA. From Equations (26) we derive

α = ±
√

2

2

(

m +
ωA

ωAφ

)

, (28)

where the positive sign corresponds to the first of Equations (26)
and the negative sign to the second one. This means that with a
given azimuthal wavenumber m, two axial wavenumbers, kz, are
associated following from Equation (28) that differ by sign only.
Such combinations of wavenumbers are the most destabilizing
in the sense that the magnetized TC flow is unstable at the
highest possible Rossby number.

In Figure 4 we plot the positive branch of Equation (28) be-
cause the negative one is simply its reflection about the horizon-
tal coordinate axis. We see now that the HMRI mode (m = 0)

starts at ωAφ
/ωA = 1/

√
2 and remains for arbitrary large val-

ues of β/α, although with an ever-decreasing wavenumber ra-
tio, which would correspond to ever-increasing wavelengths in
the z-direction. Again it is only the AMRI modes (m = ±1)
that, for large β/α, maintain a physically sensible wavenumber

α = ±1/
√

2. The higher modes with m � −2 are obtained for
smaller values of β/α.

Hence, when the azimuthal magnetic field is directed along
the basic flow that rotates counterclockwise with respect to
the z-axis, among the modes that are MRI-unstable at the
Liu limit there are only two (AMRI) that corotate with the
flow (m = 1) and simultaneously propagate along either
the positive or negative z-direction. These modes are dominant

when ωAφ
/ωA > 1 +

√
2 (see the red curve in Figure 4). At

moderate ratios ωAφ
/ωA, the Liu limit is at the axisymmetric

HMRI mode. When ωAφ
/ωA → 0, infinitely many modes with

m � −1 that propagate in either the negative or positive z-
direction and counter-rotate with respect to the basic flow can
cause instability at the Liu limit. Note, however, that at finite Re
and Ha the highest modes will be inhibited (see Figure 1(b)).

4. CONCLUSION

Using a short-wavelength approach, we have presented a
unifying picture of the inductionless forms of MRI. We have
identified a continuous function of the maximum critical Rossby
number that incorporates both types of instability. We were lead
to the conclusion that in the limit of small ratios of azimuthal
to axial field there should be inductionless MRI versions with
higher m modes, counter-rotating with respect to the basic flow,
although this needs further confirmation at least by a one-
dimensional linear stability analysis. Most interestingly, the Liu
limit has turned out to be of quite universal significance, since
the range of its validity has been extended from the realm of
axisymmetric HMRI to that of non-axisymmetric MRI versions.
Actually, soon after its derivation in the WKB approximation,
the relevance of the Liu limit had been questioned by Rüdiger
& Hollerbach (2007), who had found an apparent extension of
this limit in global simulations when at least one of the radial
boundary conditions was assumed to be electrically conducting.
Later, though, utilizing another definition of the notion “quasi-
Keplerian” for TC flows, the Liu limit was rehabilitated by
Priede (2011).

Going beyond the inductionless limit, for small but finite Pm
Kirillov & Stefani (2011) had shown that the Liu limit can be
slightly extended to a new limiting value Ro ≈ −0.802, which
is, however, still below the Kepler value. To bridge the remaining
gap between HMRI/AMRI at small Pm and the corresponding
versions of MRI at larger Pm (including 1) is a more intricate
task, though. It had been shown by Kirillov & Stefani (2010)
that the transition between standard MRI and HMRI involves a
spectral exceptional point at which the branches of the inertial
wave and the slow magneto-Coriolis wave coalesce. It is this
exceptional point that resolves the apparent paradox that the
transition between the two versions is continuous (Hollerbach
& Rüdiger 2005) despite the fact that HMRI can be characterized
as a weakly destabilized inertial wave (Liu et al. 2006), while
standard MRI is known to be a destabilized slow magneto-
Coriolis wave. We believe that, with varying Pm, quite similar
transitions will also occur for AMRI (and the higher m-modes
discussed in this paper), although we have to leave the detailed
investigation for further work.

As a side remark, the determination of such limits is even
more complicated by the necessity to distinguish, for traveling
waves as in HMRI, between convective and absolute (or global)
instabilities, which has been thoroughly discussed by Priede &
Gerbeth (2009) and was shown to be experimentally important
by Stefani et al. (2009).

From the strictly astrophysical point of view, our support for
the Liu limit may appear disappointing, since it would exclude
any relevance of the inductionless versions of MRI to accretion
disks with Keplerian rotation. A subtle question in this respect
is, however, connected with the saturation mechanism of the
MRI that could, possibly, lead to modified shear profiles. With
the main focus on low Pm flows, Umurhan (2010) considered
the possibility that the saturation of MRI could lead to modified
flow structures within parts of steeper shear, sandwiched with
parts of shallower shear. Moreover, for protoplanetary disks
(characterized by low Pm) the simulations of Kato et al. (2009)
had also shown the appearance of layers with increased shear.
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By virtue of a possible sudden onset within such segments of
steepening shear, the low Pm and inductionless MRI versions
could thus play a certain role in real astrophysical settings.
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