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Abstract 

 

Since its discovery in 1985 by Alec Jeffreys, forensic DNA profiling has emerged as an immensely 

powerful technology. In this chapter, the development of genetic approaches to forensic human 

identification will be discussed in a variety of contexts, including the analysis of skeletal remains and 

other trace evidence. The use of autosomal, X and Y chromosome genetic loci and maternally-

inherited mitochondrial DNA in relationship analysis will be briefly reviewed. More recent advances 

in the application of single nucleotide polymorphisms (SNPs) and next-generation sequencing (NGS) 

to human identification, particularly in the development of ancestry informative markers (AIMS) and 

externally visible characteristics (EVCs) will also be introduced, with related socio-ethical issues. A 

range of case studies are used to illustrate application of these technologies. Forensic genetics has a 

range of roles in missing person cases, including homicides and human rights related investigations. It 

is also important in the investigation of living missing persons, including trafficked children and 

persons displaced due to conflict and migration. 
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20.1 Introduction 

 

Human identification by DNA analysis in missing person cases typically involves comparison of two 

categories of sample: a reference sample, which could be obtained from intimate items of the person 

in question or from family members, and the questioned sample from the unknown person—usually 

derived from the bones, teeth, or soft tissues of human remains. Exceptions include the analysis of 

archived tissues, such as those held by hospital pathology departments, and the analysis of samples 

relating to missing, but living persons. DNA is extracted from the questioned and reference samples 

and well characterized regions of the genetic code are amplified from each source using the 

Polymerase Chain Reaction (PCR), which generates sufficient copies of the target region for 

visualization and comparison of the genetic sequences obtained from each sample. If the DNA 

sequences of the questioned and reference samples differ, this is normally sufficient for the questioned 

DNA to be excluded as having come from the same source as the individual for whom the reference 

sample was provided. If the sequences are identical, statistical analysis is necessary to derive the 

probability that the match is a consequence of the questioned sequence coming from the same 

individual who provided the reference sample or from some other randomly-occurring individual in 

the general population. Match probabilities that are currently achievable are frequently greater than 1 

in 1 billion, allowing identity to be assigned with considerable confidence in many cases. 

 

The genetic analysis may interrogate all major classes of genetic material, including autosomal (non-

sex-chromosome), X-chromosome, and Y-chromosome targets in the nuclear genome, as well as from 

the mitochondrial genome. Statistical analysis is underpinned by theoretical and empirical research in 

population genetics, which allows the frequency of DNA sequences from these particular regions of 

the genome to be estimated with confidence for various populations. Where reference samples arise 
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from family members, a further level of complexity and inference is required. Nevertheless, statistical 

random match probabilities that are highly discriminating can still be obtained. 

 

In this chapter, the development of genetic approaches to forensic human identification will be 

discussed in a variety of contexts, including the analysis of skeletal remains and other trace evidence. 

The use of autosomal, X and Y chromosome genetic loci and maternally-inherited mitochondrial 

DNA in relationship analysis will be briefly reviewed. More recent advances in the application of 

single nucleotide polymorphisms (SNPs) and next-generation sequencing (NGS) to human 

identification, particularly in the development of ancestry informative markers (AIMS) and externally 

visible characteristics (EVCs) will also be introduced, with related socio-ethical issues. A range of 

case studies are used to illustrate application of these technologies. 

 

20.2 DNA extraction, purification and characterization 

 

Forensic DNA analysis requires the extraction and purification of DNA from both reference and 

questioned samples. These are intended to release the double-stranded helical DNA molecule from the 

cellular and biomolecular structures within which it is normally constrained—or from their break-

down products—and to accumulate it in sufficient quantity and purity that will allow sequences 

within it to be characterized. 

 

Methods for extraction and purification of DNA from biological samples collected in vivo are well 

established and routine (Lee and Ladd 2001). Sources may include blood, hair, hair roots, saliva, 

semen and so forth. Samples collected from post mortem remains may also be analyzed, although they 

may sometimes be problematic. DNA break-down or diagenesis following death may advance rapidly 

in a time and environment dependent process. In many cases, collection of peripheral blood samples is 

impaired, and viable material may be restricted to the soft and hard tissues. In hot and humid climates, 

skeletonization can occur in is little as a few days. DNA may be fragmented and chemically modified. 

In such conditions, ‘low-template’ DNA analysis may be necessary. 
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The quantity of DNA recovered varies according to the source. In peripheral blood, for example, 

20,000 to 40,000 ng/ml of DNA may be present and in semen 150,000 to 300,000 ng/ml. As sperm 

cells contain haploid DNA—having unpaired chromosomes, semen samples generally contain half the 

number of copies of a particular genetic target compared with their diploid counterparts found most 

other cells of the body.  

 

Hair and bone contain much smaller amounts of DNA. Plucked hair routes may yield 750 ng DNA, 

whereas naturally shed roots may yield only 1 to 12 ng. Bone may yield 3 to 10 ng/mg of DNA 

depending on the bone condition, which under a range of conditions may be sufficiently poor that 

little or no DNA may be detectable—typically this amount will be below a threshold of about 1 ng of 

DNA. 

 

In forensic investigations, DNA may be recovered from any of these sources and from biological 

material deposited at a scene of crime. Pathology specimens in the form of formalin fixed paraffin 

embedded (FFPE) tissues are preserved for decades and are sometimes an excellent source of DNA, if 

sometimes fragmented (Funabashi et al. 2012). 

 

Characterization of the purified DNA is targeted at well understood regions of the nuclear and 

mitochondrial genomes known to vary sufficiently in populations that they may permit individuals to 

be distinguished one-from-another. A powerfully discriminating method of human identification from 

DNA was first developed by Alec Jeffreys (1985) and was based on the observation of 

minisatellites—highly varying regions of the human genome that could have a unique pattern for each 

individual—that could be used as ‘DNA fingerprints’. At the same time, Kary Mullis (Saiki et al. 

1986, 1988) developed a method of amplifying DNA by enzyme catalyzed molecular copying of a 

target region in a process referred to as the Polymerase Chain Reaction (PCR). Combining the two 

methods permitted DNA fingerprints to be amplified from scene of crime trace evidence with the aim 
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of comparison with the same regions in the suspect, a breakthrough of enormous significance for 

forensic science and the justice system. 

 

Following Jeffreys’ discovery, other highly varying regions—microsatellites, specifically, short 

tandem repeats (STRs)—have been adopted as the target of choice in DNA profiling. As the name 

suggests, these consist of short sequences of DNA in which pairs of the four bases—Adenine, 

Guanine, Cytosine and Thymine—from which the molecule is constructed are repeated a number  

times in tandem—for example, ATATATATATAT or GCGCGCGCGCGCGC. STR loci can easily 

be amplified and distinguished by capillary electrophoresis (CE) which allows them to be separated 

on the basis of their molecular weight—which differs according to the base composition and repeat 

number of the STR allele concerned. STR loci have been chosen from different autosomes (non-sex- 

chromosomes) as this means loci are not linked as they would be in neighboring regions of the same 

chromosome and the product rule can be used in statistical estimates of frequencies in populations 

(Evett and Weir 1998). STRs have also been characterized and applied in analysis of the X and Y 

chromosomes (X- and Y-STRs, respectively). In each case, the surrounding DNA sequences are 

sufficiently well understood that known short flanking sequences can be used as templates for the 

DNA primers essential to initiate copying of the target region in PCR. 

 

20.3 DNA Profiling using Amelogenin and STR loci 

 

Current routine approaches to human identification using DNA profiling are largely based on STRs, 

supported by analysis of the amelogenin locus (see Butler 2005, 2012). Amelogenin a protein found in 

dental enamel. The amelogenin gene is located on the sex chromosomes and shows DNA sequence 

length differences between the X and Y chromosome analogues, which can be used to assign the sex 

of the individual. The X allele contains a deletion of 6 base pairs and produces a smaller fragment 

when amplified by PCR. When the PCR products are analyzed, the female individual with two X 

chromosomes will show a single band while the male will show two bands, equating to the X and Y 

chromosome products, respectively. Primers for amelogenin PCR are chosen to complement 
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templates that flank short sequences within the locus that will contain the 6 base pair deletion if 

present—for example, products of 106/112 or 212/218 base pairs—providing an advantage with 

respect to degraded DNA samples or when limited quantities of substrate are available. STR loci 

chosen are typically within a range of 120 to 350 base pairs. The simultaneous amplification or 

‘multiplexing’ of several different loci in a single PCR tube makes the approach economical with 

respect to time and material, and—importantly—efficient use of the available sample.  

 

In 1999, Chackraborty et al. regarded thirteen STR loci as adequate for most problems related to 

human identification and rightly predicated STRs would continue to be used as part of the DNA 

profiling and data banking projects that were growing around the world. The thirteen-locus combined 

DNA Index System (CODIS) emerged as a standard in the USA and several other jurisdictions. 

Multiplexes have continued to grow, however, due to their greater discriminating power. Various 

systems constructed around a shared set of core STR markers have arisen permitting some 

compatibility in databasing and statistical analysis (Butler 2015). In the UK, the ten-locus Second 

Generation Multiplex Plus (SGM Plus) system is currently being superseded by DNA-17 in England 

and Wales and DNA-20 in Scotland. These systems are highly optimized for reliability and efficiency 

in PCR amplification, and tend to target smaller substrate sequences than their precursors—increasing 

their sensitivity and utility, especially in the analysis of trace evidence. The systems incorporate 

selective fluorescent dye labelling of PCR products facilitating laser-based allele characterization and 

quantification—visualized as a peak on an electropherogram graph—and automated allele assignment 

during CE. Routine DNA profiling is now a largely automated process. Statistical match probabilities 

frequently exceed 1 in 1 billion, making human identification assignments—essentially, judicial rather 

than scientific decisions—straightforward, in criminal and civil cases, including those involving 

missing persons. 

 

20.4 Relationship analysis 
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Human identification can rely on comparison with DNA sequences amplified from near relatives, 

rather than from a directly-derived reference sample. In the case of a missing child, for example, the 

reference samples may arise from the father and mother. Because of the use of DNA analysis in 

paternity testing, procedures for relationship analysis are routine.  

 

The basis of paternity and maternity testing is the fact that in the absence of a mutation, the child 

receives from each of the parents one allele of each locus analyzed. The assignment of paternity or 

maternity is based on the observation of alleles shared and not-shared between the child and the 

known parent and—in the event the questioned individual cannot be excluded—on statistical 

calculations: the most common test used being the 'paternity index’. Occasionally, the genetic 

relationship analysis is complicated by the absence a reference sample from of one of the ‘trio’ of the 

mother, son and supposed father. Although uncertainties may arise, the analyses can achieve high 

levels of resolution. Adding profiles of other relatives of the first degree—such as grandmothers or 

grandfathers, or brothers of the alleged father—can increase the statistical reliability in these cases 

(Evett and Weir 1998). 

 

Relationship analysis can be applied to the identification of a person—living or deceased—by 

inference based on the known DNA profiles of near relatives. Lineage markers, such as the STRs of 

the X and Y chromosome may also be used. 

 

20.4.1 Y-STR analysis 

 

In forensic laboratory analyzes, the polymorphic STR markers of the Y chromosome are used because 

of their male specificity (Henke et al. 2001, Gill et al. 2001, Bosch et al. 2002). Initial studies with Y-

chromosome DNA used a set of 7 to 9 STR loci, which has increased to approximately 17 (see Martin 

et al. 2004 and Chemale et al. 2014 for recent studies) with a three-multiplex reaction available that 

amplifies 19 loci (Bosch et al. 2002). 
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These targets are particularly useful in cases of rape or sexual assault and in paternity investigations 

where the child is male. In the latter case, as a supplement—or, for example, in the absence of a 

reference sample from the father—inference may be made using other paternal lineage relatives, such 

as brothers or cousins, and so on. In missing person investigations, paternal lineage relationships may 

be assessed in a similar way.  

 

20.4.2 X-STR analysis 

 

The STR markers of chromosome X may efficiently complement the analysis of autosomal and Y 

chromosome STRs. Relative to autosomal markers, X-STR markers are characterized by higher 

values of the mean exclusion chance (MEC), the statistic used to estimate the power of exclusion. In 

other words, they have a higher exclusion capacity in some situations, such as in analyses involving 

blood relatives in the absence of a profile from the alleged father, among other scenarios. 

 

The X-STR loci applied in human identification tests (see Szibor et al. 2003) are located in regions 

where recombination between the X and Y chromosomes does not occur, but where recombination 

does occur between the paired X chromosomes of women, ensuring variability in the population of 

the markers concerned. Chosen X-STR regions recombine in the same way as the autosomes, 

permitting a model that allows to the haplotype to be directly determined. X-STR analysis can be 

applied the investigation of maternity and—in some situations—paternity.  

 

20.4.2.1 X-STR analysis in maternity testing 

 

In maternity testing, X-STR analysis can be applied in cases where kinship between a woman and 

supposed son is questioned. For males, the X chromosome is identical to one of the two X 

chromosomes possessed by the mother. For example, a case was reported in China (Li et al. 2012), 

where a woman wanted to adopt a child and was asked to undertake to a maternity test to see if there 

were chances that the woman could be the child's biological mother. A comparative test of forty-six 
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autosomal STRs was carried out and it was concluded that the woman and the boy shared at least one 

allele at all 46 loci tested. Nevertheless, actual motherhood could not be confirmed. Further tests were 

carried out using X-STR and maternally-inherited mitochondrial DNA (see below), essential to 

exclude motherhood. The X-STR loci were analyzed and maternity was excluded. Certain population 

groups appear relatively homogenous in X-STR variation, including the Chinese (Li et al. 2012). In 

contrast, recent studies by Ribeiro-Rodrigues et al. (2011) reveal heterogeneity of X-STR variation 

among Brazilian samples. 

 

20.4.2.2 X-STR analysis in paternity testing 

 

In paternity testing involving blood relatives, X-STR markers are more efficient than autosomal. An 

illustrative example is the case where suspicion about the paternity of a child involves both the father 

and son. That is, both the father and son are suspected of being a girl’s father. Father and son have X-

chromosomes of different maternal origin, as their X chromosomes are from different women. 

Differences in X-STR markers when compared to the child will allow identification of the real father 

from the two candidates. Another illustrative example is a case where the putative parent may be one 

of two brothers. In this case, the chance of inheriting a single reference allele X is 0.5 (50%), which is 

equal to the probability of two alleles of the same locus on an autosome, reducing the advantage of 

using X-STR loci to that of autosomal STRs. 

 

In certain cases of rape and incest, the woman may choose to opt for abortion. In this context, it is 

possible to undertake fetal paternity testing using X-STRs. There is no advantage to using X-STRs if 

the fetus is male. If the fetus is female, there are methodological complications with regard to the 

collection of samples from the fetus. In the 6 to 8 week period, fetal tissue may be difficult to 

exclusively identify, and dissection may yield a mixture of maternal blood and other tissues. The 

dissection of chorionic villi is usually undertaken, yielding samples consisting of a mixture of fetal 

and maternal DNA. To overcome these difficulties, both autosomal and X-STR analysis can be used 

for comparison with the suspect sample. The markers of the X have the greatest power of exclusion 
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under these circumstances. Although, in a case of incest, little can be expected from the analysis of X-

STR as all fetal alleles correspond to maternal alleles. 

 

So-called ‘deficient’ paternity cases show the greatest advantage for X-STRs (Trindade-Filho et al. 

2013). In the absence of a biological sample from the alleged father, DNA from relatives becomes a 

necessary prerequisite for X-STR analysis. The approach is based on the fact that sisters of the same 

father have the same paternal X chromosome. The investigation of two sisters or half-sisters X-STRs 

has the power of paternity exclusion when four different alleles or haplotypes are detected. That is, 

four alleles present on the X chromosome that are divergent from those present in the profiles inferred 

from relatives are sufficient to exclude the individual for whom there is no reference sample to be the 

biological father. In this scenario, the alleged paternal grandmother’s profile is helpful as all 

contributing alleles can be determined by investigating X-STRs and the MEC can be calculated in the 

same manner as that used for autosomal markers. If the grandmother’s profile is not available, the 

alleged father’s X-STR genotype can be reconstructed to some extent from offspring, if they include 

women. Better information can also be obtained if the alleged father’s brothers’ reference profiles are 

available and the grandmother is heterozygous for X-STR loci studied. This is because the brothers of 

the alleged father may carry different alleles. On the other hand, if siblings share the same alleles, the 

mother can be both homozygous as heterozygous for the corresponding locus. 

 

The discriminatory power of X-STR analysis depends on the sexes concerned and is normally of 

equal value to autosomal STRs when female samples are compared to others that are also female. 

However, when male individuals are investigated in comparison with reference samples that are also 

male, the discriminatory power of the X-STR markers is usually lower than that of autosomal STRs. 

This is due to the fact that the male X-chromosome analysis can rely on only one allele at each STR 

locus. 

 

It is important to note that despite current understanding of the genetics of X-STR markers and their 

considerable potential in complex cases of identification from relatives, they are not commonly in 
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routine use, but because X-STRs are especially efficient in cases where desired reference samples of 

supposed parents are unavailable, a growing demand for their use can be anticipated. X-STR markers 

also offer utility in efforts to reunite families separated in the context of war or migration. 

 

20.4.3 Mitochondrial DNA analysis 

 

Mitochondrial DNA (mtDNA) sequences are obtained from the mitochondria—energy producing 

organelles present in most human cells. Each mitochondrion contains a circular DNA molecule of 

16,569 base pairs, including a non-coding region—the D-loop, which is highly variable between 

individuals who do not share a maternal relative. As mtDNA is maternally inherited, sequences are 

essentially identical in individuals of the same maternal lineage. The first full mtDNA sequence was 

established from a single individual of European descent by Anderson et al. (1981), and is known as 

the Anderson sequence or Cambridge Reference Sequence (CRS). With improvements in DNA 

sequencing technology in subsequent decades, the original material evaluated by Anderson and co-

workers was re-sequenced to enable robust understanding of the reference sequence (Andrews et al. 

1999). 

  

About 1000 mitochondria are present in most cells, meaning that mtDNA sequences are present in 

two or three orders of magnitude more than their nuclear—autosomal, X-chromosome and Y-

chromosome—counterparts. This simple distinction means that they can more readily be recovered 

from highly degraded forensic and archaeological specimens. MtDNA analysis is a powerful tool for 

identifying individuals as a supplement to the analysis of nuclear DNA or when analysis of nuclear 

DNA is not possible.  

 

MtDNA analysis has been applied to DNA samples of archaeological age, showing that significant 

amounts of genetic information can survive for long periods in bone (Hagelberg and Clegg 1991). 

MtDNA analysis of bone fragments of 26 skeletons belonging to the Goeldi Museum collection in 

Pará, Brazil, for example, resulted in successful typing in 18 of the total of 26 individual Pre-
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Colombian Amerindians dated to 500 to 4000 years ago (Ribeiro-dos-Santos et al. 1996). In Sicily, 

both mtDNA and amelogenin sequences were analyzed to identify the remains of the family of Prince 

Branciforte Barresi—who lived in the sixteenth and seventeenth century. Molecular genetic analysis 

was consistent with historical expectations, although it was not possible to demonstrate directly that 

they were indeed the prince's remains, due to the unavailability of living maternal relatives. Bone 

microstructure showed evidence of good preservation (Rickards et al. 2001) 

 

In forensic investigations, human skeletal remains belonging to the US servicemen who were missing 

from the Vietnam War were identified by analysis of mitochondrial DNA (Holland et al. 1993). In 

Argentina, skeletons of individuals killed during the military dictatorship of 1976 to 1983 were 

recovered and having proved resistant to routine STR analysis, were more successfully analyzed using 

mtDNA (Corach et al. 1997).  

 

20.5 Single Nucleotide Polymorphisms 

 

A further class of genetic markers known as Single Nucleotide Polymorphisms (SNPs) have been 

described, which opening up further possibilities in forensic human identification (Daniel et al. 2015, 

Eduardoff et al. 2015). As their name implies, SNPs are normally the result of a single base difference 

and since each SNP locus typically has only two alleles, a greater number of targets are needed to 

achieve the discriminating power of STR loci—which have multiple alleles. Computer analysis has 

shown that an average of 25 to 45 SNPs loci would be required to produce a random match 

probability similar to the 13 core STR loci. The actual number may vary in practice, as many SNP 

loci have variable frequencies in different populations. A 50 to 100 SNP panel may be needed to 

achieve the same power of discrimination and problem solving ability that can be obtained with 10 to 

16 STR loci (Kidd et al. 2006). The prospects for typing 200 to 300 SNPs in a single reaction are 

promising, however, and are achievable using Next Generation Sequencing (NGS) systems (Seo et al. 

2013). 
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SNPs are abundant in the human genome and have been used in linkage studies of genetic diseases. 

PCR products of SNPs may have a size of less than 100 base pairs, making them most suitable for 

analysis of degraded samples, in which fragments of the sizes needed for STR PCR are not present. 

SNPs have the potential to be used in multiplexes and sample processing and data analysis can be 

automated, a process facilitated by the absence of extraneous ‘artifacts’ sometimes found in STRs.  

 

Furthermore, SNPs offer further potential for use in the prediction of the ethnic origin of the subject 

and of certain physical characteristics.  

 

20.6 Next Generation Sequencing (NGS) 

 

Next Generation Sequencing (NGS) is a technology via which amplified DNA may be rapidly and 

extensively sequenced, without the need for relatively time-consuming CE and with the advantage 

that the DNA sequence is analyzed directly rather than from the fragment size inferred from the peak 

position detected on an electropherogram. NGS-based genotyping has a range of potential 

applications in forensic science (Yang et al. 2014). It has been applied to forensic STR (Bornman et 

al. 2012) and mtDNA analysis (Parson et al. 2013), and offers the potential for analysis of whole 

mitochondrial genomes. Forensic NGS analysis of ChrY may offer greater resolution than routinely 

achievable using Y-STRs (Van Geystelen et al. 2013). NGS is more readily suited to SNP analysis as 

it can easily detect polymorphisms in sequences. NGS-based forensic systems may attempt to 

incorporate traditional STR assignment, however, due to the legacy of STR-based systems and 

databases, which are world-wide. 

 

20.7 Ancestry Informative Markers (AIMS) and Externally Visible Characteristics (EVCs) 

 

Recent and current research in forensic genetics offers the possibility of estimation of biogeographic 

ancestry and characteristics of physical appearance from trace evidence. It has been known for many 

years that gene frequencies vary in populations (Cavalli-Sforza et al. 1994), offering the potential for 
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localizing the source population from any particular profile (Novembre et al. 2008). Certain 

polymorphisms appear to be restricted to individual populations and are sometimes referred to as 

‘private polymorphisms’. A number of difficulties arise with ancestry estimation, however. Private 

polymorphisms, for example, tend by their very nature to be so rare that they are unlikely to have 

wide utility in forensic investigations, whereas more frequently occurring polymorphisms may lack 

sufficient resolution to any particular population to make an unequivocal assignment. Despite such 

drawbacks (Rosenberg et al. 2003), a number of studies have identified potential ancestry informative 

marker sets, including those based on SNPs (Phillips et al. 2014, Huckins et al. 2014, Kidd et al. 2011, 

Lao et al. 2006). 

 

The potential for estimation of characteristics of physical appearance have centered on research on 

melanin pigmentation, where polymorphism in the genes of melanogenesis has been investigated with 

the aim of identifying SNPs that can be used to estimate hair and iris colour (see Maroñas et al. 2015 

for a recent review). The genetics of face shape has also been studied—again with the aim of 

identifying candidate SNPs affecting facial appearance (Claes et al. 2014; Liu et al. 2012). 

 

A number of problems are likely to persist in the forensic application of AIMS and EVCs. Complex 

genetics means that—with certain exceptions, as may apply in the case of red hair (Valverde et al. 

1995)—assignment of colour or ancestry can only be made with limited resolution. Migration and 

admixture may confound investigative value, and ancestry can be based at least as much on culturally 

or cognitively held beliefs as on a genetic pedigree. The presumption of a relationship between 

pigmentation and genetic ancestry (Shriver et al. 2003) and perceived ancestry may be valid, but has 

the potential to profoundly confound understanding. In Brazil, for example, admixture has been such 

that assignments of ancestry on the basis of colour, STR, X-STR and mtDNA diversity are frequently 

contradictory (Soares-Vieira et al. 2008, Ribeiro-Rodrigues et al. 2011, Godoy et al. 2011). Ancestry 

can be perceived and self-perceived differently by different individuals, and investigators and forensic 

scientists are likely to have to negotiate the issue of ‘racism’, whether real or apparent (M’charek 

2013). 
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20.8 Low-template DNA analysis 

 

Forensic specimens encountered in missing person investigations arise predominantly from skeletal 

material and trace evidence, which is frequently a challenging target for DNA analysis due to post 

mortem diagenesis, which reduces the quantity and quality of DNA available for analysis. The DNA 

molecule is frequently fragmented and chemically modified, and is found in the presence of other 

molecules which impede extraction and purification, and inhibit the PCR reaction. 

 

A good deal of research has been dedicated to overcoming problems of DNA recovery and 

amplification from skeletal remains and trace evidence (Davoren et al. 2007, Evison et al. 1997). 

Extended-cycle PCR, widely used in ancient DNA studies, was adopted in forensic science in the 

1990s where it is typically described as ‘low-template’ or ‘low copy number’ DNA analysis (Gill et 

al. 2000). Careful optimisation of the parameters of the PCR reaction is accompanied by additional 

cycles, which theoretically double the quantity of DNA generated with each reiteration. 

 

Understanding of patterns of DNA diagenesis in different parts of the skeleton and in different 

environments may offer a route to improved low-template DNA analysis from challenging specimens. 

While histological studies of bone indicate that diagenesis is promoted by fungi and other 

microorganisms (Collins et al. 2002, Hackett 1981), and that these processes may advance rapidly in 

hot and humid climates (Iwamura et al. 2005), there is also evidence for DNA survival (Iwamura et al. 

2005, 2004), which may be greater in certain parts of the skeleton (see Callaway 2015). Progress has 

also been made on the recovery of DNA from historical FFPE specimens (Gillio-Tos et al. 2007). 

 

20.9 Standards and regulation 

 

In the United States, the old ‘RFLP’ technology was replaced with STRs in 1997, increasing 

efficiency in the order of four times (Schneider 1997). The Forensic Science Division of the FBI 
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selected 13 STRs loci of the CODIS system for inclusion in the American convicted individuals 

database. The thirteen STR loci that are part of this system are: VWA, FGA, D8S1179, D21S11, 

D18S51, D13S317, D7S820, D16S539, D3S1358, D5S818, TH01, TPOX, and CSF1PO. If there is a 

match between two samples at the 13 CODIS loci, statistical calculations typically indicate that these 

samples are from the same individual or from a random individual who is present in the population at 

a frequency of only one in several hundred million or more (Ban 2001). Use of standardized kits and 

instrumentation frequently improves efficiency in the analytical processes. Automation may permit 

analysis of 10,000 to 20,000 samples per year, with high levels of efficiency and quality, and with low 

costs and a minimal response or ‘turn around’ time (Steinlechner and Parson 2001). 

 

Recognition of a need for criteria and standards for DNA typing within the forensic community in the 

United States resulted in the formation of a national group of forensic scientists in the late 1990s, 

called TWGDAM (Technical Working Group on DNA Analysis Methods). This group published a 

series of standards for forensic DNA typing, including the Guidelines for Quality Assurance Program 

for DNA Analysis (NRC 1992, 1996). From October 1998, conformity with the national guidelines 

for forensic DNA testing in public laboratories—also known as the FBI standards or national 

standards—became mandatory for certification and accreditation. These standards include national 

quality assurance programs encompassing laboratory organization and administration, facilities, 

sample handling control of evidence, validation of laboratory methods and analytical procedures, 

calibration and maintenance, proficiency testing, and standards for evidential statements and standards 

of suppliers. The European DNA Profile Group (EDNAP) began in 1989 as an informal association of 

European laboratories, normally police organizations and University laboratories who performed 

forensic work. This group represents the European Community and non-member countries of Eastern 

Europe. Its main objective is the standardization of DNA typing, achieved by performing exercises 

among members of the group to ensure comparability of genotyping results (Schneider 1997). A 

Spanish and Portuguese Group (GEP) promotes standards via the International Society for Forensic 

Genetics (ISFG) and Latin American countries host a Latin American Working Group, as well as 

promoting national standards (CNP 2001). In Brazil, the Brazilian Society of Legal Medicine 
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established the first guidelines for paternity testing in 1999 (Bydlowski et al. 1999). The Integrated 

Network of Genetic Profile Banks (RIBPG) was formalized through the Law Decree No. 7950 of 12 

March 2013. The RIBPG is intended to support criminal investigation and the identification of 

missing persons, and facilitate the exchange of genetic profiles obtained in official laboratories in the 

interests of justice (MDJ 2014).  

 

A number of publically available online databases have been established containing reference 

population data for autosomal STRs (NIST 2016a), X-STRs (ChrX 2016), Y-STRs (YHRD 2016, Y-

STR 2016), SNPs (NIST 2016b) and mtDNA (MITOMAP 2016). The X-STR database (ChrX 2016), 

for example, contains X-STR data for use in forensic practice, anthropological studies and other 

genetic research. In the database, one can find various information such as genetic and physical 

location, repeat structure, nomenclature, allelic mutation rate and population frequency of the STRs. 

Population data are classified according to one of seven metapopulations—Europe, Asia, Latin 

America, North America, Africa, Oceania-Australia and Arctic—and imply information indicating 

ancestry. In addition, the site hosts software that calculates various statistical parameters of interest in 

forensic investigation.  

 

20.10 Case studies 

 

20.10.1 Idenifications of Joseph Mengele and the Romanov Family 

 

One of the earliest applications of forensic DNA fingerprinting analysis in the identification of 

missing persons was in the notorious case of Dr Josef Mengele of the Auschwitz death camp. Bones 

found in a grave in Embu, São Paulo, were examined by a Brazilian team1, who completed a 

biographic profile—estimating age, sex, ancestry, possible cause of death and so on—from the 

remains. They noted a conspicuous injury to the right acetabulum, corresponding to a fracture of the 

                                                           
1
 Dr Daniel Munoz, Dr Marcos de Almeida and Dr Moacir da Silva 
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superior margin which had ossified to form a spur. This injury was consistent with a motorcycle 

accident that Mengele was known to have been involved in. It was confirmed by orthopedic surgeons 

and pathologists to have been caused by indirect injury due to a violent impact to the knee having 

been projected up through the femur to its socket in the pelvis. The resulting fracture is typical of 

those encountered following impact to the flexed knee while in a sitting position riding a motorcycle. 

Histopathological analysis of a cavity observed in the right maxilla indicated inflammatory 

osteological reactions typical of a dental abscess. Repeated mixed agglutination tests showed the 

blood to type to be ABO-A, corresponding to the classification in Mengele’s SS records (Dr. Marcos 

de Almeida personal communication). DNA was extracted from the femoral shaft of remains 

exhumed in Brazil by Jeffreys et al. (1992). Comparison with reference samples from Mengele’s wife 

and son indicated a pattern consistent with paternity at 10 microsatellite loci with a random match 

probability in unrelated Caucasian individuals of 1 in 1800. The authors noted that their method was 

successful in overcoming the presence of strong inhibitors of PCR. 

 

In 1994, Gill et al. reported on the genetic analysis of remains recovered in Ekaterinburg believed to 

be those of the Russian royal family, the Romanovs. In this analysis, both autosomal STR and 

mtDNA analysis were undertaken allowing the results compared with reference sequences obtained 

from a living maternal relative. The findings were consistent with the remains being those of the Tsar, 

Tsarina and three of their five children. In a subsequent analysis of remains later found nearby, Coble 

et al. (2009) reported the probable identification of the two other missing Romanov children using 

mtDNA, and autosomal and Y-STR analysis. 

 

20.10.2 Missing, presumed dead—a fraudulent insurance claim 

 

The family of an adult white male (DLF) notified the police of their son's disappearance. After a few 

weeks, a corpse that presented characteristics similar to those of DLF was found in advanced stages of 

decay and was identified by the family as being DLF. The family then filed a claim for the life 

insurance that DLF had taken out just before he disappeared. Suspicions were raised about the identity 
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of the corpse, because identification had been done only visually, and because the insurance policy 

had been taken out just prior to DLF's disappearance. The insurance company requested a post 

mortem examination for identification. As the corpse had been cremated immediately after 

identification by the family, biological material that was encrusted on two projectiles removed from 

the body was used for analysis (see Figure 1).  The dried blood provided enough genomic DNA for 

PCR-based typing of HLA-DQA1, D1S80, HUMCSF1PO, HUMTPOX, HUMTH01, D3S1744, 

D12S1090, D18S849, and amelogenin (Soares-Vieira et al. 2000, 2001). Results of genotyping from 

the corpse presumed to be that of DLF were then compared with that of his alleged biological parents, 

revealing genetic incompatibility (Figure 1). 

 

20.10.3 X-STR analysis in the case of a missing child 

 

Relationship analysis relies heavily on the understanding of genetic variation in the relevant 

population. In Brazil, issues of historical admixture require collection of data for local comparison—

such as for X-STRs (Auler-Bittencourt et al. 2015).  

 

Tables 1 and 2 illustrate a relationship analysis conducted using a 15 autosomal STR analysis with an 

additional 12 X-STR multiplex, offering further statistical resolution. Table 1 shows the results of 

autosomal STR analysis of a the remains of a body believed to be a missing child, her paternal half-

sister SMIP, her mother and the reconstructed profile of the alleged father. Table 2 shows the results 

of X-STR analysis in the same case.  

 

20.10.4 Deficiency paternity testing in a suspected homicide where no body has been found 

 

Barbaro et al. (2006) report on the case of a girl who had been missing for several years in a case of 

deficient paternity testing—that is, when no reference sample is available for the supposed father. In 

this case, the authors used X-STR analysis to compare the profile of a sample of hair believed to have 

come from the girl with the profiles of her mother and sister. Analysis of the latter profiles allowed 
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the X alleles of the father to be reconstructed, and the X-STR profile obtained from the hair—

recovered from the premises of an individual implicated in another homicide—was found to share the 

same paternal X alleles, confirming identity in a case of ‘special reverse paternity’ testing. 

 

20.10.5 Missing persons and humanitarian investigations 

 

The latter part of the twentieth century saw a number of humanitarian investigations of alleged 

homicides committed during war or civil strife.  

 

In 1999, Spain commenced official implementation of a program to try to identify human remains 

from the Civil War of 1936 to 1939 that could not be identified by the use of traditional forensic 

methods. Recognizing the importance of accurate recording and retention of information, the Phoenix 

Program used two independent sources of mtDNA data that could automatically be compared and 

cross-matched at identical or similar sequences. Comparison was facilitated by the use of a reference 

database populated with sequences of mtDNA from volunteers who were maternal relatives of 

missing persons and a questioned database populated with mtDNA sequences obtained from the 

remains of unknown individuals (Lorente et al. 2001, 2002). 

 

In Yugoslavia, 30,000 people are believed missing as a result of the conflicts of the 1990s. In 2000, 

the International Commission on Missing Persons (ICMP) was established in an attempt to carry out 

human identification through a network of agencies in the former Yugoslavia. DNA laboratories in 

Bosnia and Herzegovina, Sarajevo and Banja Luka initially focused on blood typing from reference 

samples using multiplex STR and mtDNA systems using a ‘dot-blot’ method developed by Roche 

(Huffine et al. 2001).  

 

In Brazil, as in other Latin American countries, investigations have begun into alleged human rights 

abuses of the military governments of 1964 to 1985. In December 1995, President Fernando Henrique 

Cardoso signed Law 9140, providing for "the recognition of persons missing as a result of 
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participation or alleged participation in political activities in the period from September 2, 1961 to 

August 15, 1979". In the intervening 20 years, numerous investigations have been undertaken 

including some supported by forensic DNA analysis. This has led so far to the identification of only 

two individuals among 437 to 475 formally acknowledged to be missing persons—the true number 

may be much higher—leading relatives of victims, lawyers and other commentators to suggest that 

the Brazilian government is disingenuous in its claims to wish to offer justice to victims as part of the 

transition to democracy (Guimarães et al. 2016a, b). 

 

Also undertaken in Brazil is the Projeto Caminho de Volta (Pathway Home Project), directed at the 

identification of missing children and adolescents, many of whom have become homeless and 

involved in crime (CDV 2016). This programme also uses a database approach, in which an online 

system can be used to register the details of missing persons and their relatives, supported by DNA 

databases of profiles derived from reference. Although positive outcomes have so far been limited, the 

Brazilian integrated DNA database RIBPG (Rede Integrada de Bancos de Perfis Genéticos) is now 

being uploaded with CODIS profiles of missing persons by Brazilian Federal Police, which may be 

more promising for effective identification in future. 

 

20.11 Conclusion 

 

Applications of DNA technology in human identification and relationship analysis have grown 

rapidly since the work of Alec Jeffreys in 1985. Substantial efforts have been made to identify human 

remains following homicides and natural deaths, as well as following wars, internal conflict, mass 

disasters and other cases of widespread fatality. In many cases, DNA analysis can provide a near-

definite answer to questions of identification. Forensic genetics has a range of roles in missing person 

cases, including homicides and human rights related investigations. It is also important in the 

investigation of living missing persons cases, including trafficked children and persons displaced due 

to conflict and migration. The forensic science processes do not occur in a vacuum, however, and 

their success is influenced by many political and socio-economic factors. 
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Table 1. Results of autosomal STR analysis 

 

 

Locus 

 

Mother of SMIP 

 

SMIP 

Reconstructed 
profile of alleged 

father 

Remains of 
supposed missing 

child 

D8S1179 10 13 12 13 12  13 14 

D21S11 28 31 29 31 29  29 29 

D7S820 9 12 9 12 9 / 12  9 12 

CSF1PO 11 12 12 12 12  11 11 

D3S1358 15 15 14 15 14  14 16 

THO1 6 7 7 10 10  9.3 10 

D13S317 12 13 8 13 8  8 13 

D16S539 12 14 9 14 9  9 14 

D2S1338 19 20 19 22 22  19 20 

D19S433 13 14 13 14 13 / 14  13 14 

vWA 15 18 16 18 16  16 17 

TPOX 8 11 8 8 8  8 8 

D18S51 13 17 15 17 15  15 17 

D5S818 11 11 11 11 11  11 12 

FGA 19 23 19 23 19 / 23  20 22 

Penta E 5 7 7 13 13  5 13 

Penta D 10 10 10 22 22  12 22 

AMEL X X X X X Y X X 
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Table 2. Results of X-STR analysis 

 

 

Locus 

 

Mother of SMIP 

 

SMIP 

Reconstructed 
profile of alleged 

father 

Remains of 
supposed missing 

child 

DXS7132 13 15 11 15 11  11 12 

DXS7423 15 15 15 15 15  15 16 

DXS7133 10 13 9 10 9  9 11 

GATA172D05 10 10 10 11 11  10 11 

DXS7130 12 14.3 12 15.3 15.3  11 15.3 

DXS6800 18 20 16 20 16  16 20 

GATA31E08 10 12 9 12 9  9 10 

HPRTB 13 14 12 13 12  11 12 

DXS6789 21 21 21 21 21  20 21 

DXS9898 8.3 11 8.3 12 12  11 12 

DXS9895 13 15 14 15 14  14 16 

DXS10011 39 39 39 42 42  36 42 
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Figure 1. a) Two projectiles removed from the body of unknown identity; b) D1S80 analysis showing 

the profile of the DNA extracted from blood sample encrusted in the projectiles (lanes 2 and 3); c) the 

comparison of the DNA samples from the mother of DLF (lane 2), the father of DLF (lane 3) and one 

of the two projectiles (lane 4). 
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