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A crucial question facing cognitive science concerns the nature of conceptual

representations as well as the constraints on the interactions between them. One

specific question we address in this paper is what makes cross-representational

interplay possible? We offer two distinct theoretical scenarios: according to the first

scenario, co-activated knowledge representations interact with the help of an interface

established between them via congruent activation in a mediating third-party general

cognitive mechanism, e.g., attention. According to the second scenario, co-activated

knowledge representations interact due to an overlap between their features, for

example when they share a magnitude component. First, we make a case for cross-

representational interplay based on grounded and situated theories of cognition.

Second, we discuss interface-based interactions between distinct (i.e., non-overlapping)

knowledge representations. Third, we discuss how co-activated representations may

share their architecture via partial overlap. Finally, we outline constraints regarding the

flexibility of these proposed mechanisms.

Keywords: representation, cross-representational interaction, simulation, embodiment, grounded cognition

A strongly debated topic in cognitive science concerns whether or not sensorimotor information
forms a necessary part of semantic representation (Barsalou, 2008; Lewandowsky, 2016; and linked
contributions there). Conventional theories of cognition view the modal systems of perception
and action independent of the amodal systems of semantic memory. Modal activations, therefore,
are proposed to be transcoded into amodal symbols that translate experience into conceptual
knowledge by means of abstracting away from sensory or motor activations (Fodor, 1983; Mahon
and Caramazza, 2008; Mahon, 2015). One important consequence of this view is that both online
(or temporarily established) and offline (core, or permanently stored) representations should not
reveal modal features that reflect embodied experience, e.g., traces of sensorimotor activations.

A counterargument to this modular view is offered by embodied, grounded, or situated
approaches to cognition, suggesting instead that conceptual knowledge is tightly integrated with
the modal systems (Barsalou, 1999; Pulvermüller, 1999; Vigliocco et al., 2004; Myachykov et al.,
2014). In this view, sensorimotor experiences form a constitutive part of semantic knowledge.
While the debate continues (cf. Meteyard et al., 2012), here we follow embodied theories and
discuss cognition as simulation, or “the re-enactment of perceptual, motor, and introspective
states acquired during experience with the world, body, and mind” (Barsalou, 2009, p. 1281). This
approach allows us to advance specific hypotheses regarding (1) offline and online properties of co-
activated conceptual representations as well as (2) the diagnostic features for the distinct interactive
contexts.
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Recent research into the cognitive representations of
apparently abstract1 concepts is consistent with embodied
approach: for example, representations of the concepts denoting
emotional valence (Foroni and Semin, 2009), time (Bottini et al.,
2015), and number (Myachykov et al., 2016) were shown to be
intimately linked with the perceptual experiences associated
with their acquisition and use. Supporting this claim, several
studies demonstrated that regular spatial-conceptual mappings
accompany processing of words or symbols with numerical
(Fischer, 2003; Fischer et al., 2004), spatial (Richardson et al.,
2003), emotional (Meier and Robinson, 2004), and temporal
(Núñez and Cooperrider, 2013) semantics. For example, people
map positive emotions onto upper space and negative emotions
onto lower space (e.g., Meier and Robinson, 2004). Similarly, in
the temporal domain, the past is associated with left space and
the future – with right space (Núñez and Cooperrider, 2013).
Finally, in the number domain, small magnitudes map onto
left space and large magnitudes – onto right space (Fischer and
Shaki, 2014, for review).

These and similar spatial associations provide evidence
for the role of sensorimotor systems in activation of single
concepts (i.e., numbers, space, valence, and time). However,
given the complexity and richness of the sensorimotor contexts
that typically accompany cognitive processes and the pervasive
involvement of modal systems in abstract thought, it is
plausible to assume that co-activated concepts stemming from
distinct knowledge domains would also rely on embodied
principles in their interactions – either by means of a shared
general cognitive mechanism or by sharing aspects of their
mental representations. Below, we offer a brief sketch of a
theoretical account that describes a dual-route proposal for
cross-representational interactions. Specifically, we argue that co-
activated representations interact either via an online interface
established by a general cognitive system (e.g., attention or
memory) or by means of a more permanent representational
overlap; that is, by virtue of two or more representations
sharing parts of their core architecture (e.g., magnitude, affect, or
sequencing).

Theories of knowledge often define “conceptual
representation” as a combination of its core (or permanent)
and situated (or online) features (Wilson, 2002; Myachykov
et al., 2014). This distinction is important for our argument: we
propose that interface-based interactions are limited to online
or situated contexts while overlap between representations is a
feature of permanently stored representations. Although, it is
notoriously difficult to trace offline their offline features, one can
document the differences between different online renditions of
the same offline representation. This can be illustrated with the
set effect in Dehaene et al. (1993, Experiment 3): while offline
representations for numbers 4 or 5 may be insensitive to any
spatial-numerical mappings, their activation is accompanied
by different situated spatial mappings depending on the set,
within which they are activated. Namely, 4 and 5 show rightward

1Here, we use the term “apparently abstract” whenever we refer to concepts that are
traditionally rendered disembodied, experience-independent, and/or symbolic (e.g.,
Dove, 2009; Chatterjee, 2010; Zwaan, 2014).

mapping, associated with larger numbers, when activated in
the set 0–5 and leftward mapping, typical for small numbers, –
when activated in the set 4–9. In other words, while horizontality
may be an off-line feature for both 4 and 5 its exact online
displacement can be either left- or right-orienting (cf. Chiou
et al., 2009 for another example of a similarly flexible mapping
mechanism).

REPRESENTATIONAL INTERFACE:
INTERACTIONS BETWEEN (RELATIVELY)
UNRELATED REPRESENTATIONS

When two conceptual representations become co-activated,
they may interact even if their individual architectures share
little common ground. This interaction is supported by
simultaneously engaging a third party component that acts
as a mediator, or an interface (Figure 1A). As noted above,
consistent spatial conceptual mappings have been documented
for several distinct knowledge domains (e.g., Cappelletti et al.,
2009; Holmes and Lourenco, 2011; Bonato et al., 2012;
Hayashi et al., 2013; Lachmair et al., 2014b; Santiago and
Lakens, 2015; Winter et al., 2015). Importantly, these and
similar findings are not epiphenomenal: systematic and largely
automatic shifts of covert spatial attention were shown to
accompany these spatial-conceptual mappings, leading to cross-
domain priming and thereby indicating functional benefits
of establishing the interface. This is typically done by using
secondary tasks that accompany processing of apparently abstract
concepts (e.g., visual probe detection tasks) co-occurring with
or following, a word processing task (e.g., Richardson et al.,
2003). We hypothesize that, when co-activated, concepts known
to carry similar spatial mappings regularly interface via a
shared attentional system, thereby leading to more efficient
sensorimotor mappings (cf. also Rizzolatti et al., 1994).

Although, there is a distinct lack of studies investigating the
role of attention in cross-representational interplay, a number
of existing reports provide initial evidence supporting our
claim. For example, in experiments described in Lachmair et al.
(2014a,b) participants were faster to signal lexical decisions for
upward-orienting nouns (e.g., sun) or verbs (e.g., rise) following
upward-orienting number prime (e.g., 9). According to the
interface scenario proposed here, this priming effect reflects
activation of the attentional interface shared by the two distinct
conceptual representations. In effect, activation of the first
stimulus (the number) established a cue (Posner, 1980) biasing
attention toward the upper space. Because the subsequently
presented word also has the capacity to cue attention toward
upper space, its processing was facilitated.

We followed a similar logic in our recent experiments
where we presented participants with a task requiring them to
process two different concepts simultaneously (Chapman et al.,
in preparation). Participants read an upward or downward
orienting valence word (e.g., hero/villain) followed by an upward
or downward orienting number (e.g., 1/9). This sequence
was followed by the presentation of a spatially congruent
or incongruent visual probe, for which participants provided
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FIGURE 1 | (A) Interface and (B) overlap interactions in co-activated representations.

manual RTs. Hence, the probe could be either fully or partially
(in)congruent to the word’s and number’s biases. Crucially,
participants had to maintain both the word and the number
in their working memory at the point of the probe detection
task as they were later asked about either the identity of
the word or the number. Performance on the visual probe
detection task, seemingly unrelated to either of the two co-
activated representations, showed interaction between words’
and numbers’ spatial biases similar to the one observed in
Lachmair et al. (2014a,b).

Together, these studies provide initial evidence for the
role of the same attentional mechanism in supporting cross-
representational interactions. These studies also lend support to
the idea that (1) the attentional system underlying spatial biases
in apparently abstract knowledge representations is relatively
general and universal and (2) that any two simultaneously
accessed representations that are known to induce spatial biases
can interact via the shared attentional system (e.g., Posner and
Fan, 2008).

The most important diagnostic criterion for interface-based
cross-representational interactions is that the mediator or
interface does not feature as a semantic component of the
interacting concepts’ meanings. Assume that the word hero
and the number 9 are interfaced by sharing the upward
attentional bias. While their co-activation would be measurable
as a consistent attentional shift, neither of these two concepts
represents vertical attention as a feature of its core meaning. This
diagnostic feature stems from the constraint onwhen an interface
can be established. We argue that interface-based interactions
are limited to online contexts within which two concepts appear
in temporal or spatial contiguity. Stored representations by
themselves do not make reference to this interface system.

Spatial biases and attention are arguably the most
studied general cognitive mechanisms supporting situated
representations. As a result, we use attention as the “showcase”
for our interface proposal. It is, however, not the only
candidate for the role of an interface. Under our proposal,

working memory can also act as an interface allowing cross-
representational interactions (cf. Barsalou, 2008). While
traditional conceptualizations of working memory propose
distinct mechanisms for activation of verbal and visuospatial
content (Baddeley, 1986), current views postulate that the active
components of long-term knowledge representations constitute
the equivalent of “working memory” (Cowan, 2005) and thus
support cross-domain interfacing. An example could be the
current debate about the origin of spatial-numerical associations,
where sequential ordering of concepts might lead to spatial
biases (for review, Abrahamse et al., 2016). Generally speaking,
we predict that two co-activated representations that (1) share
activation context (relational memory) or (2) have a comparable
activation status – will interact.

REPRESENTATIONAL OVERLAP:
INTERACTIONS BETWEEN PARTIALLY
RELATED REPRESENTATIONS

When co-activated representations are related via a shared
architecture then such representations can interact by
simultaneously activating the feature(s) that they share
permanently, instead of looking for an interface as described
above (e.g., Brunel et al., 2009; Rey et al., 2015; Riou et al., 2015).
In comparison to the interface logic, (1) overlapping concepts
simultaneously represent the overlapping feature as an integral
semantic component and, as a result, (2) the overlap is pertinent
for both online and off-line contexts. One instance of such
overlap-based interaction occurs between the size (volume) of
an afforded hand grip and the size (magnitude) of a numerical
concept. Indeed, several studies confirmed that participant
respond faster when the perceived object’s size corresponds to
the perceived number’s magnitude (e.g., Andres et al., 2004,
2008; Lindemann et al., 2007; Moretto and Di Pellegrino, 2008;
Ranzini et al., 2011, Gianelli et al., 2012; Namdar et al., 2014;
Ranzini et al., 2015; van Dijck et al., 2015). These findings
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have been extended in other studies to include overlap between
non-manipulable object size and numbers (Gabay et al., 2013),
weight and numbers (Holmes and Lourenco, 2013), and sound
volume and numbers (Heinemann et al., 2013).

Note that both grip and number specify magnitude in a
general way (overlap) while words of valence and numbers (such
as hero and 9) do not directly represent spatial displacement
(and thus require an attentional interface). One theory that
details how numerical magnitude can be related to an associated
property in another domain (e.g., grasp aperture) is A Theory
of Magnitude (ATOM; Walsh, 2003, 2015). ATOM argues
that number, duration, quantity, as well as other similar
concepts share a generalized magnitude system. In other words,
these representations have a partially overlapping architecture
that potentiates interactions between them. ATOM makes a
general and theoretically broad case for representational overlap
with regard to magnitude and provides both behavioral and
neuroanatomical evidence for the existence of representations
with an overlapping magnitude component (but see Van Opstal
and Verguts, 2013, for a critique of ATOM). As such, Figure 1B
portrays a general case of ATOM as described by Walsh (2003,
2015).

Similarly, to the role of attention in the interface-based cross-
representational interactions, magnitude acts as our showcase
instance of overlap-based interactions. However, we believe this
is not the only such mechanism. Two other mediators we
propose as candidates for the cross-representational overlap are
sequencing and affect. Although, there is limited research on
how the brain’s sequencing system is involved during conceptual
processing, recent neuroscientific research has attributed a
special role to the cerebellum among other structures within
a network supporting processes of chunking, patterning, and
sequencing of different stimuli including sounds, words, and
numbers (Dehaene et al., 2015). For example, the cerebellum
has been implicated in mathematical cognition as well as in
grammatical processes and music perception (Doya, 1999; Riva
and Giorgi, 2000; Janata and Grafton, 2003; Wartenburger
et al., 2003; Murdoch, 2010; Pliatsikas et al., 2014; Dehaene
et al., 2015). We suggest that the brain network responsible
for patterning, sequencing, and chunking can mediate cross-
representational interaction effects for the concepts that rely
heavily on hierarchical organization of linear sequences such as
grammatical, arithmetic, and musical phrases (Scheepers et al.,
2011; Van de Cavey and Hartsuiker, 2016; Van de Cavey et al.,
2016).

Another possible overlap mediator is affect. Existing
research (e.g., Berridge and Kringelbach, 2013) describes the
affective system of the brain as a distinct network of cortical
and subcortical (e.g., amygdala) structures involved during
processing of emotional stimuli. This network’s components
were previously shown to support processing of emotional
words (Naccache et al., 2005) and emotional face judgements
(Morris et al., 1998; Sheline et al., 2001; Pegna et al., 2005).
One prediction would be that interactions between different
valence projecting stimuli (e.g., words and faces) will lead to the
registration of interaction effects similar to those described above
for magnitude-based representations.

A CASE FOR MIXED CASES

The two-route mechanism described above suggests that while
the overlapping feature is an integral part of a stored
representation, the interface mediator emerges as a property of
a situated context that supports interaction via simultaneously
available reference to general cognitive mechanisms (e.g.,
attention) (cf. Jackendoff, 2002). Of course, one can assume
that a reference or a command to interface with attentional
networks when going online can be a permanent feature
of a stored representation. In this case, this feature needs
to be shared by the interacting representations. Finally, we
postulate that interface and overlap mechanisms are distinct
because one can test their activation differentially. Consider,
for example, concepts denoting emotional valence may have
two simultaneously available mechanisms allowing them to
interact with other concepts: (1) an online interface mechanism
based on attentional displacement and (2) an off-line overlap
mechanism based on affect. Theoretically, these mechanisms
can be activated simultaneously as well as independently. For
example, interactions between numbers and valence words can
be supported by an attentional interface while interactions
between emotional faces and valence words can be supported
by an affective overlap (cf. Holmes and Lourenco, 2009). In the
same logic, time can also have different mapping mechanisms
simultaneously available as the basis for interaction with other
concepts: an attentional interface for the representation of
the past vs. the future and magnitude-related overlap for the
conceptualization of duration (e.g., Ma et al., 2012). Similarly,
even the same interface type (e.g., spatial attention) can
have simultaneously available mappings along different spatial
dimensions. A recent study by Pitt and Casasanto (2016) provides
an intriguing demonstration that, while the polarity of emotional
valence (good vs. bad) tends to map vertically, its magnitude
has a stronger representation in horizontal space. Papies (2013)
used a similar approach in order to distinguish semantic and
grounded/embodied features of food representations (cf. Freddi
et al., 2016).

Further research is necessary in order to investigate the
nature of these and similar representational pairs with flexible
interaction systems. One particular question is whether
the overlap and interface interaction systems are activated
independently or whether the cognitive system habitually uses
both interfaces at the same time, thus making the established
interaction structure stronger. The examples from the spatial-
numerical domain given last suggest that attentional interfaces
are more rapidly established and modulated, and thus have a
substantially faster time course of engagement when compared
to the featural overlap mechanism: scanning number words
from right to left (in Hebrew) or from left to right (in Russian)
modulated the SNARC effect within seconds, while reading text
with small and large numbers positioned in a SNARC-congruent
vs. SNARC-incongruent way only gradually led to a modulation
of the SNARC effect over several minutes. Other predictions
stemming from our proposal concern the brain regions involved
in setting up attentional vs. featural interfaces. Specifically,
cross-representational interactions established via an attentional
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interface should be accompanied by cortical activations within
well-known attentional networks (Fan et al., 2005) while
interactions aided by featural interfaces should be less dependent
on such focal activations and instead activate distributed brain
areas that represent distinct knowledge domains as well as
cerebellar structures.

Finally, with regard to the acquisition of semantic interfaces,
one implication of our proposal is that, by means of a
repeatedly shared attentional mechanism, any two seemingly
distinct knowledge representations may eventually interact once
they each have become associated with systematically overlapping
sensory or motor features. Thus, a Hebbian learning mechanism
will eventually transform the attentional interface into a
structural overlap that supports efficient cognition (Pulvermüller,
2013).

CONCLUSION

In this paper, we made a theoretical proposal for two distinct
interaction systems for grounded representations. We suggest
that representing and activating knowledge in distinct conceptual
domains is based on sensorimotor simulation, and further
suggest that representations from different domains can interact
either via a third party online interface or by permanently sharing

a feature allowing for a representational overlap. We argue that
our proposal is supported by evidence from research on number
processing, words of emotional valence, and conceptual and
linguistic concepts of manipulable objects. We hope this short
sketch of proposed mechanisms and their basic features will
encourage future integrative research on cross-representational
interaction mechanisms.
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