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Abstract 

This paper evaluates the role of urban green infrastructure (GI) in maintaining integrity of 
built-space. The latter is considered as a lateral ecosystem function, worth including in future 
assessments of integrated ecosystem services. The basic tenet is that integrated green-grey 
infrastructures (GGIs) would have three influences on built-spaces: (i) reduced wind 
withering from flow deviation; (ii) reduced material corrosion/degeneration from pollution 
removal; and (iii) act as a biophysical buffer in altering the micro-climate. A case study is 
presented, combining the features of computational fluid dynamics (CFD) in micro 
environmental modelling with the emerging science on interactions of GGIs. The coupled 
seasonal dynamics of the above three effects are assessed for two building materials 
(limestone and steel) using the following three scenarios: (i) business as usual (BAU), (ii) 
summer (REGEN-S), and (iii) winter (REGEN-W).  

Apparently, integrated ecosystem service from green-grey interaction, as scoped in this paper, 
has strong seasonal dependence. Compared to BAU our results suggest that REGEN-S leads 
to slight increment in limestone recession (<10%), mainly from exacerbation in ozone 
damage, while large reduction in steel recession (up to 37%) is observed. The selection of 
vegetation species, especially their bVOC emissions potential and seasonal foliage profile, 
appear to play vital role in determining the impact GI has on the integrity of the neighbouring 
built-up environment.  

Keywords: Air Pollution; Building integrity; CFD; Dose-response function; Ecosystem 
service; Green infrastructure  

 

Research Highlights: (3 to 5, each 85 characters including spacing) 

 Green-grey interaction, i.e. impact of urban greening on built-up space is studied.  
 A lateral ecosystem function of GI in built-space integrity is identified. 
 Material surface recession for limestone and steel are computed under influence of GI. 
 Material loss for steel is estimated to be over 5 times higher than for limestone. 
 GI species selection and seasonal variation influence integrated ecosystem service. 
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1.  Introduction 

Incorporating green infrastructure (GI) into the urban built-space is gaining popularity as a 

cost-effective and long term measure for mitigating climate change impacts associated with 

proliferating grey infrastructure globally (CABE 2010; Hamdouch and Depret, 2010; Llausàs 

and Roe, 2012; MEA, 2005; Schäffler and Swilling, 2013; Thaiutsa et al., 2008). In essence, 

this is being achieved by utilising their ecosystem functions i.e. facilitating interactions 

between ecosystem structure and processes that underpin the capacity of an ecosystem to 

provide goods and services (Defra, 2011; TEEB, 2012). The UK National Ecosystem 

Assessment (NEA, 2011) have identified the following four broad categories of ecosystem 

services i.e. benefit people obtain directly or indirectly from ecosystems: (i) supporting (i.e. 

facilitating habitats for species); (ii) provisioning (i.e. generating resources); (iii) regulating 

(i.e. moderating climatic and biological effects), and (iv) cultural (i.e. recreational and 

aesthetic). Exploring the potentials of quantitative and qualitative approaches for assessing 

ecosystem services is a relatively new science, developing rapidly through a combination of 

numerical modelling and spatial analysis tools (Busch et al., 2012; Scholz and Uzomah, 

2013). Among the regulating services of GI, the majority of efforts till date have been 

concentrated on assessing the direct benefits, for example, ecological and human health 

implications. The application of ecosystem service values to a new area such as built-space 

integrity is a novel contribution to knowledge and understanding. Such knowledge 

development is vital for fostering an inclusive green-grey urban (and landscape) planning, 

with the consideration for the ‘extended ecosystem service’ to facilitate sustainable urban 

futures.  

 

Ample efforts have gone in determining the role of vegetation on urban microclimates, with 

numerous studies applying detailed physical as well as CFD simulations to assess the 

modifications to pollution concentrations through coupled effects of building morphology 

and vegetation on pollutants dispersion. These studies fall under two schools of thinking, 

depending on the building-vegetation biophysical interactions. One, projecting their positive 

influence by considering them as pollutant sinks (e.g., filtration and absorption of particulates 

and NOx; Buccolieri et al. 2011; Tiwary et al., 2009, 2013a). Two, elucidating their negative 

influence as obstacles to airflow i.e. hampering the mixing of pollutants in poorly ventilated 

areas close to streets and reduced air exchange with the above-roof ambient environment 

(Gromke, 2011; Vos et al., 2012; Wania et al., 2012). 
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The majority of vegetation studies on buildings have focussed mainly on the assessment of 

thermal comfort (Ali-Toudert and Mayer, 2007; Berkovic et al., 2012; Berry et al., 2013; 

Santamouris, 2012; Yu and Hien, 2006) and reduced building energy demands (Akbari et al., 

2001; Bouyer et al., 2011; Yang et al., 2012). A more recent study evaluated the role of urban 

green commons - comprising mainly of collectively managed parks, community gardens and 

allotment areas – in developing resilience and environmental stewardship in cities (Colding 

and Barthel, 2013). However, to our knowledge, no dedicated assessment of the impact of GI 

on the integrity of the surrounding ‘grey infrastructure’, including bridges, car parks and 

historical buildings, through their coupled aerodynamic and biophysical interactions have 

been conducted so far. Developing such understanding is pertinent to the on-going emphasis 

on enhancing GI investments as a tool in large scale climate change adaptation strategies. 

Moreover, this would aid holistic assessment of GIs by integrating all relevant sciences to 

sustain ecosystem services (Lundy and Wade, 2011; McMinn et al., 2010). The relevance of 

such study is greater now in the face of recent projections suggesting accentuations in the 

theoretical building dose-response functions (DRFs; the metrics commonly used to assess 

integrated exposure of building materials due to air pollutants and meteorological 

parameters.) under air pollution and changing environment, mainly owing to the altered 

micro-meteorological profile and chemical withering of building materials (including 

concrete, steel, stone, wood) under changing weather patterns (Brimblecombe and Grossi, 

2008; Kumar and Imam, 2013). Such impacts need to be understood fairly swiftly, for both 

inner city and free-field environments, in the context of the modifications brought by the 

upcoming GI interventions. 

 

The aim of this study is to enhance the understanding of the role of urban GI in ameliorating 

the micro-meteorological parameters and pollutant concentrations in an urban space, and the 

impact of these alterations on the material recession of surrounding built structures, such as 

building walls and bridges. Essentially, the modelling approach applied here is somewhat a 

hybrid assessment of what people have seen until now in individual pockets. The case study 

demonstrates the ecosystem services (or disservices) from GI in terms of their impact of 

built-space integrity, which has not been adequately accounted for in the conventional 

evaluation of their ecosystem functions so far. In particular, the following three influences of 

GI on the existing built-space are assessed: (i) as quasi bluff bodies in modifying the wind 

fields and withering; (ii) in reducing ambient pollution, and (iii) in altering the micro-climate. 

All these collectively influence the integrity of neighbouring built-spaces. The study 
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envisages promoting designing of cohesive green-grey infrastructures (GGIs) as future of 

sustainable city planning. 

 

 

2.  Methodology 

2.1  Environmental modelling case study 

The case study is designed to assess the role of GI for two contrasting seasonal conditions 

(summer and winter), typically representative of temperate climes. These were developed to 

understand the role of varying microclimatic effects from GI intervention on the integrity of 

‘inner-city’ built infrastructure – both historical and new constructions. Keeping this in mind, 

the scenarios covered solid limestone wall structures (traditional buildings in European cities) 

and carbon steel structures (modern buildings). The domain comprised of a busy street 

canyon environment, exposed to traffic emissions, to ascertain the level of intervention 

offered by GIs in modifying the following two key factors influencing building integrity: (i) 

microclimate (wind, temperature, humidity), and (ii) pollutant profile (source/sink).  

 

2.1.1 Base case 

As a first step, a base case model was developed for business-as-usual (BAU) scenario. A fast 

response building-resolved Lagrangian dispersion modelling platform, QUIC - Quick Urban 

and Industrial Complex v5.81, with computational speeds and model complexities in between 

a Gaussian and a CFD model, was applied (Nelson and Brown, 2010). Its appropriateness for 

this task was ascertained based on its recent applications in urban flow simulations around 

built-up area (Hanna et al., 2011; Zwack et al., 2011). The modelling platform comprises of 

three sequential components – a city builder, a flow simulator (QUIC-URB or QUIC-CFD), 

and a dispersion calculator (QUIC-PLUME).  

 

The QUIC model domain used a nested gridding with inner domain of 300m×300m×20m 

(length×breadth×height), mainly covering the ‘grey’ infrastructure (buildings, bridges and car 

parks) (shown in Fig 1). This was centred in an outer domain spanning 1000m×1000m×20m, 

allowing for evolution of the flow in the urban boundary layer to satisfy the guidelines for 

applications of CFD to simulate urban flows (Franke et al., 2007; Tominaga et al., 2008). The 

wind fields and pollutant dispersion for BAU were computed for a typical inner-city street 

environment, comprising of cross-streets lined with buildings, car parks (CP1, CP2) and 
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over-bridges (B1-B4) (Fig. 1a). The foot bridges (B1, B2) are located close to the cross-street 

intersection and the two cantilever car bridges (B3, B4) are located on approach to the two 

car parks, adhering to the design specification for over-bridges (DMRB, 2004). The 

meteorological inputs were acquired from a local weather station, including wind speed, 

ambient temperature, relative humidity, and ambient pressure. 

 

 

Fig. 1. Planar view of the model domain – (a) status quo (BAU, grey infrastructure only) 
with cross-streets showing location of foot bridges (B1, B2) and cantilever car bridges 
(B3, B4) across multi-storey car parks (CP1, CP2) respectively [note z=10m]; (b) 
Modified model domain for regenerated (REGEN, grey+green infrastructure) showing 



7 
 

the location of the proposed vegetation patches (V1, V2) [shaded green, includes a 
combination of shrubs and trees; buildings are colour-segregated on the basis of height].  

 
As explained in Section 2.1.2, the wind direction was intentionally kept static at 210°. The 

road emissions were modelled as line sources for a typical European street environment 

(Table 1). 

 

Table 1. Descriptors for road properties used in the BAU model set up as shown in 
planar view of Fig. 1a 

Road Link 
ID 

Width 
(m) 

Link 
length 
(m) 

Start 
coordinates* 

End  
coordinates* 

Building 
Height 

(m) 

Direction 
(°N) 

North East North East 
Link 1 (L1) 20 87.5 303563 457591 303465 457543 7 25 
Link 2 (L2) 19 82.6 303620 457611 303672 457641 6 25 
Link 3 (L3) 21 143.5 303470 457642 303465 457543 5 273 
Link 4 (L4) 20 98 303509 457422 303541 457308 6 287 
Link 5 (L5) 18 118 303492 457441 303465 457543 7 287 
Link 6 (L6) 15 109 303445 457862 303455 457711 6 273 
Link 7 (L7) 27 102.2 303352 457472 303465 457543 10 30 
Link 8 (L8) 33 92.7 303283 457440 303352 457472 6 30 
* UTMC Geo referencing coordinate system  

 

The simulation time period was set to allow the model to converge on a steady state solution. 

Pollutant concentrations for BAU were determined by quantifying the number of particles 

passing through a constant grid volume (5m5m2m) during the time period of interest. 

Concentrations were calculated on 1-min average basis in each grid volume. Pollutant 

concentrations were not calculated until the first released particles had passed completely 

over the domain and exited the downwind side (starting at 300 s). This step ensured the 

model computations to surpass evolutionary phase of the plume in order to output steady state 

concentration (Nelson and Brown, 2010). Overall, 766,500 ‘QUIC particles’ were released 

over the entire 2000 s simulation. 

 

2.1.2  Inclusion of Green Infrastructure 

Two important considerations were made while introducing the GI for influencing both the 

microclimate and the resulting pollutant concentrations: (i) selection of vegetation species, 

and (ii) location of the plantations. Use of large urban trees has been recommended in the 

urban landscaping literature of the UK Construction Industry community to obtain higher 
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benefits (CIRIA, 2012). An earlier investigation reported net annual benefit of planting large 

tree species as 44% greater than for medium tree species and 92% greater than for a small 

tree species (McPherson et al., 1999). However, large trees in close vicinity of built structures 

tend to pose damage to the built environment due to vigorous root growth. In this study we 

applied the following combination of three vegetation species with distinct seasonal 

characteristics and vertical foliage profiles to test the dynamic role of vegetation buffers 

(their approximate area percentages provided alongside) – deciduous trees: Sycamore maple 

(Acer pseudoplatanus L.) (40%); deciduous hedgerow: Hawthorn hedge (Crataegus 

monogyna) (20%); coniferous tree: Douglas fir (Pseudotsuga menziesii (Mirb.) (40%). The 

hedgerows and trees were allocated uniform heights of 2m and 15m respectively, which is 

typical for inner city plantations in Europe. The idea was mainly to assess the microclimatic 

and pollution source/sink effects of deciduous species (Sycamore and Hawthorn) with 

negligible foliage in winter month to ascertain the holistic evaluation of GI effects. Our 

species selection corroborates with a recent tree survey, reporting Sycamore maple as the 

most abundant tree species in temperate and oceanic climate (typically over 35% of the mix) 

(Scholz and Uzomah, 2013). Further, the opted combination has been applied to assess the 

role of new planting in PM10 capture and its human health benefits for London (Tiwary et al., 

2009).  

 

To simulate the regeneration scenarios (REGEN), the BAU model domain was modified to 

include two vegetation patches (V1 and V2), away from streets and in the available open 

spaces upwind of the two car parks CP1 and CP2 respectively (assuming the prevailing wind 

enters the model domain in the lower left corner) (Fig. 1b). V1 and V2 were modelled 

respectively as high and low density vegetation canopy buffer spaces, close to existing grey-

infrastructure, using two different arrangements of hedges and trees, typical of urban GI and 

commonly found in temperate climes. While the area percentage of the three selected species 

for both V1 and V2 were kept similar, the species were grouped to test different 

configurations - V1 was composed of two rectangular blocks, comprising of conifers in the 

central part and surrounded by deciduous trees and hedgerows in the outer ring. On the other 

hand, V2 was composed of a line of conifer trees giving a wind break effect, with a row of 

deciduous species (hedges and trees) located immediately upwind of CP2 (Fig 2).  

 

Altogether two regeneration scenarios (summer, REGEN-S and winter, REGEN-W) were 

simulated using representative, and somewhat contrasting, meteorological and vegetation 
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parameters. The seasonal variations to input configurations were adequately parameterised – 

summer was characterised by denser foliage and mild meteorological conditions (low wind 

speed, high temperature, and low humidity); winter was characterised by lower foliage in the 

crown and the ground layers (Fig 3) and aggressive meteorological conditions (high wind 

speed, low temperature, high humidity) (Table 2). For the sake of generalisation, summer 

was considered as between April and September and winter as between October and March; 

the micrometeorological parameters for 2012 was applied to model the surface recession. 

This year was chosen since 2012 has been recorded as a wet year in the UK mainland, with 

nearly 800 mm rainfall in the midlands, the highest for the last 6 years (about 30% more than 

the average year) with high number of rain days. 

 

The vegetation patches representing the GI in this study were introduced upwind of the 

buildings and bridges assessed and away from the street geometry (i.e. the pollutant source). 

Such practice follows recommendations from recent literature suggesting roadside urban 

vegetation to be accentuating the pollutant concentrations (mainly from localised sources, 

including traffic), owing to reduced ventilation and poor mixing of the pollutants (Buccolieri 

et al., 2011; Gromke and Ruck, 2009; Vos et al., 2012). This was ensured by keeping the 

wind direction static at 210°, which enabled the receptor locations (CP1, CP2, B3, B4) used 

to assess the vegetation effects to remain downwind of the vegetation patches (V1 and V2) 

over the entire model run.  

 

Owing to the lack of an all-inclusive vegetation modelling tool, which can allow estimation 

of the required parameters for DRF calculations, inclusion of GI was evaluated in two steps. 

In the first step, the BAU set up in QUIC was modified using its vegetation modelling 

features (Pardyjak et al., 2009) to simulate the two REGEN scenarios, albeit with limited 

success since it does not allow for explicit resolution of individual vegetation components 

(e.g., leaves, stems) of canopies. These are parameterised in terms of their bulk attenuation 

coefficient (Nelson and Brown, 2010), which can be either chosen from a library of 

attenuation coefficients for a list of species ranging from orchards to single/mixed species 

forests (Cionco, 1978), or can be customised. Essentially, this is an extension of the 

windbreak model (Raupach et al., 2001), capable of simulating one-way interactions in terms 

of the bulk drag effects of vegetation as bluff bodies on the mean air flow and pollutant 

deposition. Due to underperformance of almost 40-50% of the deciduous species included in 

the vegetation buffers in winter, the corresponding attenuation coefficients for winter period 
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were kept effectively 40% lower than that of the summer months (QUIC library value of 4.03 

for maple-fir stand in REGEN-S and 2.42 for only fir stand in REGEN-W were used).  

 

The QUIC model allowed evaluation of only two of the three vegetation effects on buildings 

scoped within this study – one, bluff-body effect, and the other, pollution reduction potential. 

It does not have any mechanism to simulate the dynamic biophysical interactions between the 

vegetation components and the built-structure. Therefore, in the next step, a 3D prognostic 

microclimate model, coupling the principles of computational fluid dynamics and 

thermodynamics (ENVI-met®; Bruse, 2013), was applied to evaluate the alteration in the 

local microenvironment from inclusion of GI. Its capabilities of modelling plant-atmosphere 

interactions in city environments, simulating aerodynamics, thermodynamics and the 

radiation balance in complex urban structures have been established through several studies 

(Bruse and Fleer 1998; Peng and Elwan 2012; Rosheidat et al., 2008; Spangenberg et al., 

2008; Vos et al, 2012; Wania et al., 2012). The model implements computational schemes of 

a conventional CFD model into a detailed vegetation canopy module to capture the two-way 

interactions of local vegetation on the wind field and micro-climate - both the forward effect 

on the wind-field and the thermodynamic feedbacks of the vegetation on the ambient air 

according to position of the sun, urban geometry, vegetation, soils and various construction 

materials - by solving thermodynamic and plant physiological equations. This enabled more 

realistic description of the exchange processes between the built- and the green-infrastructure. 

Appropriate to the need of our application, the numerical schemes further incorporate these 

feedbacks while simulating the diffusion and deposition of pollutants (Steyn and Rao, 2010).  

 

One limitation faced was that ENVI-met is designed for micro scale modelling so only a sub-

set of the QUIC model domain, covering 110m70m20m, with a grid resolution of 

5m5m2m was selected for the simulation of two-way exchanges. The latter grid cell size 

was chosen to make the computational steps consistent with the QUIC model simulation (see 

Section 2.1.1); typical resolutions available in ENVI-met range between 0.5m and 10.0m 

(Bruse, 2013). Further, to minimise the boundary effects, which may distort the output data, 

the model uses an area of nesting grids around the core of the model to move the model 

boundary away from the area of interest (Bruse, 2013). For this purpose, the central portion 

of the QUIC domain covering the main features of analysis, including vegetation patches 

(V1, V2) and the studied receptors location (CP1, CP2, B3, B4), were selected (Fig. 2). 
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Fig. 2. ENVI-met simulation domain. The left panel shows portion of the QUIC model 
domain used for extended modelling in ENVI-met in the inset. (Gridded red mesh, 
separated by white space, represents two-lane traffic on each road; different shades of 
green mesh represent vegetation patches: Light green – Deciduous species; Dark green 
– Conifer species).  
 

 

Following the QUIC approach, the traffic emissions in ENVI-met were modelled as 

cumulative line source emissions per lane. Representative foliage profiles for V1 and V2 

were provided using the generic parameters in the plant database for hedge (2m) and trees 

(15m). The corresponding leaf area density (LAD) (m2/m3) profiles for the three vegetation 

species for the two seasons, applied to the 10 layers in the ENVI-met plan model (layer 

depth, ∆z = 2m), are shown in Fig. 3. The maximum LAD for REGEN-S and REGEN-W is 

approximately 0.8 and 0.2 respectively (Table 2); the upright line in the lower most layer of 

REGEN-S at LAD = 0.8 represents the uniform deciduous hedgerow. It is noteworthy that 

the species composition (i.e. area percentages of the three species) of V1 and V2 are kept 

uniform over the two seasons and the only difference is in the spatial distribution of the 

LADs due to foliage loss in winter (as shown later in Fig 4). This is meant for evaluating the 

altered effects (if any) of the reduced GI intervention in REGEN-W. The local meteorological 

variables applied to the base case model were obtained from a weather station in Leicester 

and the upper air radiosonde data, accessed from the homepage of University of Wyoming 

(UWYO, 2013), for the closest sounding station at Watnall near Nottingham (station 

reference number: 03354; Latitude: 53°; Longitude: –1.25°; Altitude above mean sea level: 

117 m; ~30 miles from the study site). Representative summer and winter scenarios were run 

as simulations for an entire day starting from daylight hours (24hr from 0600hrs GMT). 
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Table 2. Initial configuration data applied in the ENVI-met model scenarios.  

 BAU 
(summer ’12) 

REGEN-S 
(summer ’12) 

REGEN-W 
(winter ’12) 

Atmosphere 
Simulation date/time range 
(GMT) 
 
Wind speed at reference 
height (10m above ground) 
[m s-1] 
Wind direction (degrees) 
Initial air temperature [° K]  
Relative humidity at 2m [%] 
Specific humidity at 2500 m 
[g Water/kg air]* 

Perceptible water [mm] 
 

 
09 Aug 2012 
(0600-2400 h)  

 
5.2 

 
 

210 
283 
78 
 

5.5 
5.2 

 
09 Aug 2012 
(0600-2400 h) 

 
5.2 

 
 

210 
283 
78 
 

5.5 
5.2 

 
01 Jan 2012 

(0600-2400 h) 
 

3.7 
 
 

210 
270 
94 
 

7.9 
20.6 

Buildings 
Albedo of walls 
Albedo of roofs 
 

 
0.4 
0.3 

 
0.4 
0.3 

 
0.4 
0.3 

Vegetation (see Figure 3) 
Maximum leaf area density 
(LAD) [m2 m-3] 
Tree crown [m] 
Shrubs/ Hedge [m] 

 
N/A 

 
N/A 
N/A 

 
0.8 

 
15 
2 

 
0.2 

 
15 
2 

* Source: University of Wyoming (UWYO, 2013) 

 

Fig. 3. Leaf Area Density profiles (LAD; m²/m³) for the three vegetation species (maple, 
fir and hawthorn) used in 10 layers of ENVI-met model for the two scenarios: (a) 
REGEN-S, (b) REGEN-W.  
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2.2  Building dose-response evaluation 

Two different building materials – limestone and carbon steel – widely used in Europe, have 

been considered for the evaluation of material recession in unsheltered environmental 

conditions for the three scenarios (BAU, REGEN-S and REGEN-W). Evaluation of the 

impact of multi pollutants and meteorological conditions on built-space was assessed using 

the DRFs approach. The DRFs serve as a tool for assessing the material recession rate as a 

consequence integrated exposure of building materials to air pollutants (mainly NO2, SO2, 

PM10, O3 and CO2) and meteorological parameters (primarily ambient temperature, relative 

humidity, wind field, pH). A number of DRF models are available in the published literature 

and the ones selected for our estimates, as summarised in a recent review article by Kumar 

and Imam (2013), are listed in appendix Table A.1 (appendix). The choice of using more 

than one model is for comprehensiveness, essentially to capture the range of variation in the 

estimates. For instance, four type of DRF models are used for estimating the recession rate of 

limestone, developed by Lipfert (1989), Tidblad et al. (2001), Kucera et al. (2007) and 

Screpanti and De Marco (2009). Likewise, carbon steel DRFs are used, which were 

developed by Kucera et al. (2007) and Noah's Ark (2006).  

 

In our study the driving parameters for DRF evaluation affected by GI interventions at the 

four earmarked receptor locations include pollutant concentrations (NO2, SO2, PM10, O3) and 

prevalent meteorology (ambient temperature, humidity, wind field). These were obtained for 

each of the three scenarios from the micro-environmental modelling steps; air temperatures 

were rounded off to the nearest whole number (Table 3). Dry deposition velocities for HNO3 

are based on the values reported in the literature and assumed to be 0.38 and 0.32 cm s−1 

respectively (Kumar and Imam, 2013; Sabboni et al., 2006). A uniform CO2 concentration 

was applied to the DRF assessments (383 ppm) for all four receptor locations. This can be 

argued to be acceptable since our aim was to analyse the relative effect of pollutant 

concentrations on structural material in the presence of vegetation. CO2, largely being inert 

and abundantly available, is expected to remain spatially uniform for the four receptor sites. 

Likewise, the pH was also assumed to remain uniform as 5.2; representative Lipfert value of 

18.8 was applied to the estimation following Brimblecombe and Grossi (2008). The maritime 

influence on the karst effect was ignored, given the study site was located away from sea in 

the midlands. Likewise, the estimates were made for ‘clean precipitation’, given that 
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deposition of sea salt aerosol has maximum effect within the first 100 m (Bonazza et al., 

2009), which was considered negligible for the case study site in the UK midlands. 

 

Table 3. Microclimate and pollutant concentrations (hourly average) at different 
receptor locations for the three scenarios modelled [Note: Reference height= 10m; Geo-
reference origin (UTMX, UTMY): 457350m, 3033000m; Relative coordinates of 
receptors (+x, +y): CP1(252, 148), CP2(123, 160), B1(198, 188), B3(253, 168)]. 
 

 BAU REGEN-S REGEN-W 
 

Annual Rainfall [mm] 
 
Air Temperature* [°K] 

CP1 
CP2 
B1 
B3 
 

602 
 
 

285 
285 
285 
285 

602 
 
 

279 
281 
285 
282 

962 
 
 

273 
274 
272 
272 

 
Relative Humidity* [% ] 

CP1 
CP2 
B1 
B3 

 
 

72 
72 
72 
72 
 

 
 

80 
78 
72 
75 

 
 

89 
95 
83 
87 

 
Wind speed* [m s-1] 

CP1 
CP2 
B1 
B3 

 
 

4.6 
4.6 
4.8 
4.7 

 

 
 

1.0 
2.4 
4.3 
2.4 

 
 

1.3 
1.9 
2.6 
1.3 

 
NO2 [g.m-3]* ,a,† 

CP1 
CP2 
B1 
B3 

 
 

6.98E-05 
3.09E-05 
1.64E-04 
1.19E-04 

 
 

6.77E-05 
3.00E-05 
1.55E-04 
1.12E-04 

 
 

8.17E-05 
3.37E-05 
2.21E-04 
1.97E-04 

 
SO2 [g.m-3]#,b 

CP1 
CP2 
B1 
B3 

 
 

3.87E-06 
3.20E-06 
4.78E-06 
4.23E-06 

 
 

3.79E-06 
3.14E-06 
4.73E-06 
4.21E-06 

 
 

5.26E-06 
4.15E-06 
7.33E-06 
5.47E-06 

 
PM10 [g.m-3]#,a,† 

CP1 
CP2 

 
 

1.83E-05 
1.67E-05 

 
 

1.65E-05 
1.46E-05 

 
 

1.91E-05 
1.85E-05 
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B1 
B3 

1.90E-05 
1.63E-05 

1.73E-05 
1.47E-05 

2.02E-05 
1.76E-05 

 
O3 [g.m-3]*,b,† 

CP1 
CP2 
B1 

     B3 

 
 

8.24E-05 
6.87E-05 
7.02E-05 
6.44E-05 

 
 

9.06E-05 
7.26E-05 
7.72E-05 
7.08E-05 

 
 

3.37E-05 
2.42E-05 
1.64E-05 
1.17E-05 

CP =  Car park; B =Bridge 
# from QUIC     
*  from ENVI-met 
a only traffic source 
b traffic +  urban background 
† accounts for additional sources/sinks under vegetation effects during summer for O3, NO2   
  (Tiwary et al, 2013) and PM10 (McDonald et al., 2007). 
 
It is worth noting that extensive model validation (i.e. cross-comparison) exercise was not 

scoped within this study, mainly owing to the complexities in setting up a dedicated field 

measurement campaign (or a wind tunnel experiment) for validating the modelled parameters 

alongside. The model scenarios were developed using a set of static vegetation and 

meteorological parameters, without inclusion of all possible uncertainties therein. This begs a 

level of prudence while interpreting the results in the following sections as absolute values, 

accommodating for the uncertainties likely to propagate from individual modelling stages 

into the final outcome. While we have incorporated the level of variations in the predictions 

of vegetation effects on building integrity from different DRF models for the two seasons (as 

error bars in Fig. 5), our results should be considered only as overall estimates of the impacts 

such interactions may have to highlight the need for their inclusion in future integrated 

ecosystem assessments.  

 

 

3.  Results and Discussions 

3.1.  Evaluation of environmental parameters 

A comparison table has been generated (Table 3) for the modelled micro-environmental 

parameters (air temperature, relative humidity, wind speed) and pollutant concentrations 

(NO2, SO2, PM10, O3) output at four strategically selected receptor locations – two car parks 

(CP1, CP2) and two bridges (B1, B3) (see Fig. 1 for spatial references of these receptors). 

CP1 and CP2 were considered suitable as the two built structures immediately downwind of 

the high density and the low density vegetation patches (V1 and V2, respectively); B1 

represented a cross-street location downwind and away from trees (i.e. unperturbed site); B3 
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represented a deeper canyon location in side street L5, downwind of car park CP1. For all 

these receptor locations the simulation outputs were obtained for the three modelled scenarios 

(BAU, REGEN-S and REGEN-W). It is noteworthy that BAU can only be directly compared 

with REGEN-S owing to similarity in underlying meteorology, whereas REGEN-W had 

inherently dominant winter characteristics in both foliage profile and meteorology. This 

pattern of model comparison is adopted hereafter throughout the discussion. 

 

 

 

Fig. 4. Spatial plot of regeneration scenarios for wind speed change (%) output showing 
the seasonal dependence on meteorological and vegetation effect. Upper panel –summer 
(REGEN-S); Lower panel - winter (REGEN-W). (Darker green vegetation (both V1 and 
V2) in REGEN-S represents additional deciduous foliage, leading to higher effective 
LAD).  
 

Preliminary results from this assessment indicate inclusion of GI to be largely affecting 

humidity and wind fields, with only marginal influence on the ambient air temperature. 

Compared to BAU the relative humidity downwind of dense vegetation (V1) is found to be 

about 10% higher for REGEN-S and the corresponding value is about 20% higher for 

REGEN-W. Overall, REGEN-S showed lowering while REGEN-W shows slight increment 

of air temperature at CP1 and CP2 compared to B1; the relative reductions being nearly two-
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folds higher closer to high density patch (V1) compared to low density patch (V2). This is 

attributable to the fact that vegetation can lower the temperature of the air and can increase 

the humidity of the air during hot summer. These observations are consistent with previous 

studies (Spangenberg et al., 2008; Yang et al., 2012), suggesting the cooling effects of urban 

vegetation. However, the reported trends are based on pure modelling exercise, which is 

subjected to numerous uncertainties - both during evaluation of the individual parameters and 

from their application in the model formulations. As a consequence, these estimates should 

only be treated as a pathway towards developing any strategic implementation plan for future 

GIs. Nonetheless, we demonstrated successful implementation of this tiered modelling 

approach in assessing the impacts of urban green on built-up environment, giving some vital 

insights into the green-grey interactions in the inner city environment. 

 

For REGEN-W, regions with high density patch (V1) and low density patch (V2) were 

respectively 1.1°C and 0.8°C (i.e. slightly higher air temperature than BAU). Such warming, 

instead of cooling in sub-zero temperatures with low sunlight (hence reduced or negligible 

evapotranspirative cooling), is owing to the fact that shading and evaporative cooling effect 

of the vegetation is hugely reduced in winter, which is beneficial for buildings. This has also 

been observed in another study for winter air temperature simulations (Yang et al., 2012) and 

attributable mainly to the inactive evaporation from vegetation in low sunlight regime, 

augmented by the discounted contributions of lost foliage from deciduous trees in winter. 

 

The second half of Table 3 lists the concentration distribution for a number of regulated 

pollutants at the selected receptor locations which are considered crucial for estimation of 

surface recession of limestone and carbon steel (Section 3.2). A general spatial and seasonal 

pattern for pollutant distribution was noted for the chosen receptor locations. This essentially 

reflected the compounding effects of the underlying model mechanism, with strong 

association with proximity to the street geometry, meteorology and vegetation source/sink 

effects. For example, NO2 concentrations at bridge locations, being closer to the road sources, 

were higher than off-road car park locations; B1 showed higher values than B3 because of 

being located downwind of the intersection. Although the SO2 concentrations remained 

slightly higher close to road sources (B1, B3) compared to off-road sites (CP1, CP2); the SO2 

loadings were found to be fairly uniform, mainly owing to the fact that modern vehicles have 

marginal sulphur emissions. It is worth noting that the winter concentrations bear resembling 

distribution profile, except showing higher values across the whole model domain. This is 
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possibly due to the lowering of the boundary layer during colder months, leading to localised 

enhancement of pollution at these sites. The concentrations for REGEN-S were generally 

lower than for BAU for most of the pollutants accounting for the sink terms, except for 

ozone. Slight increments were observed for the latter, especially at off-street locations (CP1, 

CP2), possibly from enhanced ozone photochemistry in presence of bVOC active broad-

leaved maple during the summer. However, for REGEN-W the corresponding concentrations 

were much lower compared to BAU, which could be due to lack of precursor bVOCs and low 

solar radiation. 

 

3.2  Evaluation of building integrity  

Utilising the micro-environmental parameters obtained from previous steps, the building 

integrity was evaluated in terms of surface material recession based on DRF. As described in 

Section 2.2 this exercise was limited to limestone and carbon steel in the study, restricted by 

the availability of dose-response formulations for these two materials extensively in the 

literature. The resulting surface recession estimates at the four receptor locations CP1, CP2, 

B1 and B3 for these two materials are compared from the available models in Figs. A.1 and 

A.2, respectively (see appendix). The surface recession is estimated in terms of depth of 

material loss (µm) in a year. These can be converted to annual mass of material loss per unit 

area (g m-2) by multiplying the material surface recession (µm yr-1) with the density of carbon 

steel (~7850 kg m-3) or lime stone (~2160 kg m-3; for type II medium density). For example, 

this approach gives ~106.23 and 18.95 g of material loss per m2 area per year for 13.52 and 

8.77 µm yr-1 of surface recession in BAU (CP1) for carbon steel and lime stone, respectively. 

Surface recession (µm yr-1) in this particular case is ~1.54 times higher for carbon steel 

compared with lime stone, but mass of material loss comes out ~5.60 times higher for carbon 

steel than those for lime stone, because of much higher density of the former material. The 

approximation of the material loss can be made accordingly for values presented for other 

scenarios in Fig. 5.  

 

It is obvious from these figures that different DRF models provide variable results, which can 

be explained by the sensitivity of these models towards the various pollutants. In these 

models SO2, NO2, and O3 are considered as important corrosive gases; SO2 maintains a non-

linear relationship with corrosion and its corrosive effect is maximum at a temperature of 

about 9–11 °C (Kucera et al., 2007). However, given the emission source were restricted to 

urban traffic SO2 is not found to be a dominant pollutant in our case which leaves NO2 and 
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O3 as major contributors to the recession rates. Based on the model parameterisation (Table 

A.1) the DRF estimates for surface recession are found to be influenced in the following 

order by the underlying factors considered in this study (see Table 3): Limestone – 

Rain>>NO2>O3>SO2>PM10. Carbon Steel – Air temperature> SO2>PM10. Relative humidity 

has similar implications for all the materials and scenarios included in the study. Broadly, the 

models for limestone are based on the Lipfert function approach which has greater sensitivity 

to precipitation/rain (typical Lipfert function value used is 18.8×Rain). This dominates the 

whole surface recession estimates for limestone as clearly noted in Fig. A.1. On the other 

hand, carbon steel has not got NO2 and O3 effect, not because these do not affect it, but 

because these are not part of available DRFs. The surface recession estimates for steel is 

more sensitive to corrosive effects of pollutants (peaking at air temperature of about 282–284 

°K) and therefore show much wider spatial variation for all the DRF models included in this 

assessment (Fig. A.2). 

 

To show the relative changes from GI interventions, the surface recession estimates for 

limestone and carbon steel at the four receptor locations have been obtained as average from 

all available models (Fig. 5). Shown alongside in the same plots are the standard deviations, 

demonstrating the level of variations in the predictions from different models. For 

consistency, the observed values have to be compared separately in two sets, as follows - 

BAU is compared with REGEN-S as they are both using summer conditions (except the latter 

scenario incorporates additional biophysical effects of the introduced vegetation on the 

microenvironment and pollutant source/sink); REGEN-S is compared with REGEN-W to 

evaluate the seasonal dynamics in surface recession estimates, including the relative changes 

arising from the coupled vegetation-microenvironment effects (specifically the influence of 

reduced foliage from leaf shedding by deciduous species – maple and hawthorn) as well as 

the influence of the altered boundary layer on pollutant concentrations in sub-zero 

temperatures. The two sites immediately downwind of the vegetation patches (CP1 and CP2) 

show more prominent influences (Limestone – up to 10% increase; Steel – 28-37% decrease), 

whereas the site away from the vegetation patch (B1) has only marginal influence (Limestone 

– <2% increase; Steel – up to 7% decrease). It is noteworthy that the effects observed at B1 

for steel in REGEN-W is arising from ambient wind conditions, away from vegetation effects 

(i.e. unperturbed site), which is much higher in winter (see Table 3). The observed increase 

for limestone surface recession in the presence of vegetation is attributed to slight 

enhancement in ground level ozone from introduction of bVOC active vegetation in REGEN-
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S. This demonstrates the importance of species selection in optimising the ecosystem 

functions of GI on limestone buildings by avoiding exacerbation of ground level ozone 

during summer. On the other hand, steel is found to have greater reduction in surface 

recession estimates through GI intervention in summer, primarily owing to its independence 

from ozone damage.  

 

Fig. 5. Average recession of (a) lime stone and (b) carbon steel for all the three scenarios 
[note: only positive values of standard deviation are added for the clarity of figures]. 
 

However, some caution is required while interpreting the trends observed in Fig 5 as apart 

from vegetation effects there are additional influences incorporated in the model arising 

purely as artefacts of contrasting meteorological parameters between REGEN-S (which is 

same as BAU) and REGEN-W, which cannot be associated with vegetation as such. For 

example, evaluation of the seasonal effects alongside GI intervention show reverse effects on 
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surface recession values for limestone and carbon steel at B3 over the two contrasting 

seasons, which can be explained using the model parameters presented in Table 3 (much 

lower air temperature in winter months compared to BAU). Further, for limestone the 

average values at all the four receptors are slightly higher during winter (i.e. REGEN-W > 

REGEN-S) (Fig. 5a) whereas for carbon steel the corresponding values are much lower 

during winter (Fig. 5b). This is an interesting observation, useful to both research and 

planning communities, to take into account the varying seasonal influence of GI on different 

building materials. The observed winter enhancement of limestone material recession is 

primarily owing to heavier rain over the winter months compared to the summer months 

during the simulation period (see Table 2) combined with two-fold effects on exacerbation of 

ground level pollutant concentrations – one, due to loss of the vegetation sink from foliage 

loss by deciduous trees and hedges; two; from lowering of the atmospheric boundary layer in 

sub-zero temperatures (see Table 3). On the other hand, the observed summer enhancement 

of steel recession is primarily attributed to favourable temperature range of 282-284 °K, 

maximising the corrosive effects of acidic pollutants. 

 

Apparently, due to the high density of built-up areas in the core model domain (about 82% 

including roads, bridges and buildings; Fig. 1), the overall surface recession reduction from 

the two vegetation patches (V1 and V2) is not substantial, albeit indicative of the potential for 

additional influence such intervention would hold for integrated green-grey infrastructure 

planning at the city-region levels. While our study mainly focussed on evaluating the role of 

different species on the basis of seasonal parameterisation of LAD, it revealed some inherent 

characteristics of GI which are strongly dependent on their species composition, including 

inhibition of particulate sink over winter, enhancement of ozone formation potential and wind 

speed reduction over summer. This is going to be enhanced further on the basis of appropriate 

vegetation selection, mainly the mix of evergreens with deciduous species to compensate for 

the seasonal effects in the face of climate change – catering to both warmer summers and 

harsher winters. Weighing all the negative and positive influences of GI (both existing and 

planned) in the urban ecosystem against each other is near-impossible and, as we showed 

through this example of estimating building integrity, is heavily marred by non-availability of 

all-inclusive model formulations. The thrust of the majority of such evaluations is currently 

on improving air quality and/or thermal comfort, and conservation of building surfaces, as 

highlighted through this study, is very much an emerging perspective of green-grey 

interactions (which is envisaged to get more intense with further increase in GGIs). However, 
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it is recommended that these findings be used only to get broader insight into this integrated 

urban ecosystem service; further scrutiny of detailed evaluation should take into account the 

uncertainty aspect of these interactions. 

 

 

4.  Conclusions 

This study evaluated the role of modified urban microenvironment through inclusion of GI on 

building integrity; the metrics adopted is material surface recession of limestone and carbon 

steel. The dynamic seasonal characteristics in meteorology and foliage profile (for 60% 

deciduous component in the simulated vegetation) have been incorporated through two case 

study scenarios (for summer and winter) to portray the varying degrees of impacts over a 

year. The assessment has been conducted in two stages – first, utilising CFD modelling 

capabilities to quantify the aerodynamic features and bio-physical interactions between the 

grey and the green components of the city. In the next step, adequate model parameterisation 

from available literature was applied to estimate the coupled effects of pollutants and micro 

environmental variables on building material recession.  

 

Our findings show the influence of GI on built-space integrity in terms of differentiating the 

four receptor locations used in the assessment. For example, the two sites immediately 

downwind of the vegetation patches (CP1 and CP2) show prominent changes in the summer 

scenario with GI intervention, REGEN-S compared to the BAU scenario. However, 

contrasting seasonal influences of GI on the surface recession rates of the two building 

materials have been noted. Slight increment in the surface recession is observed for limestone 

during winter whereas large reductions are found in recession of carbon steel during summer. 

This is quite revealing, as most GI assessments till date would assume only the positive 

influences of vegetation as windbreak and pollution sink, overlooking their pollution source 

contributions in affecting neighbouring built-space. The latter gains relevance in our study 

since both Sycamore maple and Douglas fir (making up to 80% of the vegetation buffer in 

our case study) are active sources of bVOC emissions over summer months. Given limestone 

recession is strongly influenced by ground-level ozone, availability of ozone precursors 

(through photochemical interactions of bVOC emissions with NO2 from traffic) explain the 

observed increment. Hence, our integrated assessment of GI intervention on built-space 

integrity (Fig. 5) has shed light on their varying, and apparently reciprocal effects on the two 

building materials, primarily influenced by the bio-physical characteristics of the constituent 
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vegetation species and meteorological factors. The former gains relevance in summer months 

in terms of the enhanced bVOC emissions, serving as ozone precursor (a major contributor to 

surface recession for limestone). The latter gains relevance in winter months in exacerbating 

pollutant concentrations under harsher meteorology in temperate climes (primarily owing to 

lowering of the atmospheric boundary layer during the colder months). Whilst our modelling 

exercise provides broader insight and overall estimates of the interactions between the green-

grey infrastructure and integrity of built-up space, studies focusing on detailed model 

validation exercises are needed for accurate estimations and for reducing the levels of 

uncertainty in the results. 

 

Our study has shown the relevance of GI for future sustainability of green-grey infrastructure. 

We encapsulated the plausibility of a lateral ecosystem function of GI in built-space integrity, 

beyond the direct human benefits identified under the ‘regulating’ services of GI under the 

generic ecosystem service variable – local climate and air quality regulation (LCAR; LCAR 

accounts for the effects of trees and other plants in lowering the temperature by providing 

shade and influence water availability (e.g., evapotranspiration); regulating air quality by 

removing pollutants from the atmosphere (e.g., filtration and absorption of particulates and 

NOx)). As a natural next step, this would warrant quantification of the lateral ecosystem 

functions offered by these initiatives in future urban environments, which are currently not 

taken into account as part of ecosystem service (NEA, 2011). Our results also highlight some 

of the challenges faced in spatial modelling of ecosystem services. More research is therefore 

recommended to develop the ecosystem service assessment approach further into a numerical 

model. 
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Appendix 

 
Table A.1.   Summary of DRFs used for our estimates; table adopted from Kumar and 
Imam (2013). Please note that ML and R stand for mass loss by corrosion attack in g m–2 
and surface recession or thickness loss in m (>1–year exposure) or µm yr–1 (1–year 

exposure), respectively. Gaseous and ion concentrations are annual mean in g m–3 and mg 
lit –1. Dcl is chloride deposition (mg m–2 day–1) and Rh60 = (Rh–60) when Rh >60; otherwise 
0. Rn is precipitation in m yr–1; VdS and VdN are deposition velocities (cm s–1) for SO2 and 
HNO3, respectively. 

Material Dose–response function Source 

Carbon steel R = 1.58[SO2]0.52 e[0.02Rh + fCs(T)] + 0.166Rn[H+] + 0.0761 
PM10 + 0.102DCl

0.33e[0.033Rh + 0.040T] 
fCs(T) = 0.150(T–10) when T≤10C 
fCs(T) = –0.054(T–10) when T>10C 
 

Noah's Ark 
(2006) 

R = 1.77[SO2]0.52 e[0.20Rh + fws(T)] + g(Cl–, Rh, T) 
ML = 29.1 + t0.6  (21.7 + 1.39[SO2]0.6 Rh60 efWs(T) + 1.29 
Rn[H+] + 0.593PM10) 
fws(T) = 0.150(T–10) when T≤10C 
fws(T) = –0.054(T–10) when T>10C 

Kucera et al. 
(2007) 

Portland 
limestone 

R = 2.7 [SO2]0.48 e– 0.018T t0.96 + 0.019 Rn[H+] t0.96 

 
Tidblad et al. 
(2001) 

R = 3.1 + t(0.85 + 0.0059 Rh60 [SO2] + 0.078 Rh60
 [HNO3] 

+ 0.054Rn[H+] + 0.0258 PM10) 
 
[HNO3] = 516 e–3400/(T+273) ([NO2][O3] Rh)0.5 

Kucera et al. 
(2007) 
 

R = 18.8 Rn + 0.016 [H+] Rn + 0.18 (VdS [SO2] + VdN 

[HNO3]) 
 

Lipfert (1989) 

aR = 3.1 + t (0.85 + 0.0059[SO2] Rh60 + 0.054 Rn[H+] + 
0.078 (516 e–3400/(T+273) ([NO2] [O3] Rh)0.5 Rh60) + 0.0258 
PM10)  
 

Screpanti and De 
Marco (2009) 
 

Nomenclature: 
ML = Mass loss (g m–2) 
R = Surface recession (µm yr–1) 
SO2 = Sulphur dioxide (g m–3) 
NO2 = Nitrogen dioxide (g m–3) 
O3 = Ozone (g m–3) 
PM10 = Particulate matter ≤10 µm in diameter (g m–3) 
T = Ambient temperature (°C) 
t  = time (years) 
fCs(T) = Correction factor depending on temperature (-) 
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fws(T) = Correction factor depending on temperature (-) 
Rh = Relative humidity (%) 
 VdS =  Deposition velocity of sulphur dioxide, SO2 (cm s–1) 
VdN =  Deposition velocity of nitric acid, HNO3 (cm s–1) 
Dcl  = Chloride deposition (mg m–2 day–1)  
Rn = Precipitation (m yr–1)  
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Fig. A.1 

 

Fig. A.1. Recession of lime stone for all the three scenarios, using four different models. 

(a) BAU

(b) REGEN-S

(c) REGEN-W
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Fig A.2 
 

  
 

Fig. A.2. Recession of carbon steel for all the three scenarios, using two different 
models. 

(a) BAU

(b) REGEN-S

(c) REGEN-W


