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Abstract 

This paper provides an extensive review of anaerobic digestion (AD) systems, with a specific 
focus on community scale digesters for urban applications, processing either municipal 
organic waste exclusively or as mix feed. Emphasis is placed on reducing the systems scale 
environmental impact of AD technologies, including pre- and post-treatment stages, 
alongside biogas production. Developments to-date in AD system research in Europe and in 
the Asia region have been compared, providing a comprehensive evaluation of current 
practice, elucidating the areas of further potentials.  

The scope of this review is two-fold – one, covering AD technologies including a cohort of 
simple and integrated wet and dry systems, which can be operated as continuous flow designs 
in single- or multi-stages. Two, focusing more on practices in digestate handling that 
minimise environmental impacts arising from their storage and land application. From an 
environmental perspective, we note the following trends emerging in the literature for 
processing urban waste that need further exploitation: dry AD (60-85% moisture) is suitable 
for low organic loads, mainly owing to resource savings in terms of water usage; co-digestion 
has shown better buffering capability, especially for two-stage digestion of food-based feed 
stocks; separating the digestate into liquid/solid fractions is effective for handling post-
digestion emissions, mainly for mitigating ammonia volatilisation to air and phosphate 
leaching to soil.  

We report responses to a survey, conducted for this review, highlighting the contemporary 
issues and challenges - with particular focus on the operational, social and management 
issues from an Indian perspective. There is need for follow-up of running plants to ensure 
their environmental performance. Such initiatives will have to consider managing of pollution 
footprints from AD, alongside the current drive for its widespread implementation for two 
incentives: greenhouse gas mitigation and fossil-fuel independence. 

 

Keywords: ammonia; anaerobic digestion; digestate; environmental burden; life cycle 

assessment; valorisation  

 

Highlights: 

• Potentials for enhancing environmental sustainability of anaerobic digestion covered. 

• Recent developments in burden minimisation from AD process to soil and water 
discussed. 

• Taxonomical characteristics of AD environmental management practices considered. 

• State of the art in AD operation in Europe and in the Asia region compared. 

• Interventions for reducing environmental burdens from food waste AD system 
proposed.  
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1. Introduction 

1.1. Anaerobic Digestion – an emerging model for community scale renewable energy sustainability 

Mounting organic waste, produced mainly from ever-increasing human activities in confined urban 

settings globally, has put immense pressure on land and civic resources. As a consequence, modern 

infrastructure planning is increasingly yielding to development of inclusive, self-sustaining cities 

through adoption of a systems approach to integrated solid waste management - for both increased 

fuel security and better utilisation of waste [1, 2]. A recent study [3] introduced the concept of a 

Biomass Energy Conversion Park, and conducted a techno-economic evaluation of potentials for an 

integrated system of conversion technologies, primarily focussing on anaerobic digestion (AD). Over 

the years, AD has emerged as a new model in biomass valorisation and in the European Union (EU), 

for example, it is attracting increasing levels of investment, primarily driven by current issues such as 

global warming, demand for renewable energy, landfill tax on organic waste, demand for organic 

fertiliser, high fossil fuel prices, pollution of the environment and legislation relating to the treatment 

and disposal of organic wastes [4]. Subscribing to this notion, life cycle assessment (LCA) of different 

waste disposal strategies for utilisation of the organic fraction of the MSW (OFMSW1) have shown 

AD as inducing significant resource savings [5] and being the most environmentally favourable solid 

waste management option in terms of both greenhouse gas (GHG) saving and environmental toxicity 

to the terrestrial and aquatic environments when compared to aerobic composting, incineration or 

landfilling [6-9]. Further, AD has additional attributes, making it worthy of promoting renewable 

energy sustainability when compared to other bioenergy conversion technologies – a) it does not 

consume oxygen; b) has lower nutrient requirements and; c) it generates energy carrier (i.e. methane) 

through non-destructive means and enables reuse of the residual biomass in agriculture. Revenues for 

anaerobic digesters can come from energy (gas, heat, and electricity), tipping or service fees (landfill 

disposal offset), secondary products (digestate, liquid fertiliser, and feedstock for downstream 

processes), carbon offset credits, and government incentives (renewable energy tax credits and price 

supports). 

 

AD of urban organic waste, typically comprising of OFMSW, waste oils and animal fat, energy crops 

and agricultural waste, manure and sewage sludge, has been reported to offer a positive valorisation 

pathway [10] with an overall positive balance (0.67MJ primary exergy inputs from nature per MJ 

electricity if heat is used and 0.86 MJ primary exergy inputs from nature if heat is not used [5]. Bio 

energy from AD has been considered as a dominant future renewable energy source, providing a 

steady supply of heat and power all the year round (quasi based load for a thermal power station on a 

fossil grid). The methane produced can even be stored in gasometers, and can be pumped, after some 

                                                             
1 OFMSW is defined by the European Commission as ‘‘biodegradable park and garden waste, food and kitchen 
waste from household, restaurants, caterers and retail premises and comparable waste from food processing 
plants’’[103]. 
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further purification, into gas distribution systems as part of the renewable heat incentive2 [11]. AD of 

bio-degradable organic residues (crop/animal/food) has been considered vital as a ‘closed-nutrient 

cycle’ system (i.e. where nutrients are not lost but re-utilised in the food cycle) along with recovery of 

bioenergy (Fig 1) [12]. This is an economic edge of AD over conventional aerobic systems, currently 

in operation for processing biodegradable waste, thereby offering authorities a multi-purpose 

technology option for fulfilling a cluster of policy needs [4]. Besides, it has potential buy-ins from 

small-scale industries by avoiding huge investments in managing their waste streams via discharge to 

Common Effluent Treatment Plant (CETP) facilities (or solid waste incineration), while offering 

energy recovery options. 

 

1.2. Lateral issues of environmental concern for OFMSW digestion 

The majority of AD literature to-date reports innovations in the following two areas from the view 

point of technology fool proofing - biogas production, primarily enhancing the energy conversion 

efficiency [13-16]; and, attaining process stability, either through process intensification [17-19] or 

through co-digestion using a combination of feedstock [20-24]. Evaluation of the environmental 

performance of these systems with due consideration to the lateral emissions (mainly discharge to air 

and water) is not extensively covered in the literature. For example, there is presently a lack of 

knowledge about the environmental impacts (typically for elevation in N-compounds, e.g. ammonia) 

of mixing of high energetic feedstocks during co-digestion - for example, OFMSW with animal 

manure [22, 25]. Given renewable energy production in the European Union, for example, is targeted 

to reach 20% of total energy production by 2020 [26] insight into environmental consequences of this 

transition is imperative [21]. The impact of AD on air quality can be at different stages – effluent 

storage and/or subsequent manure application on land. Apart from the greenhouse gas components 

(CH4. N2O and CO2), the main constituents of AD operation for air quality implications are NH3, N2, 

H2S, VOC emissions and for leaching to ground water through soil are PO4
3- and NO3

- (Fig 2). The 

emissions contributions from individual stages of AD and their interactions are described in more 

detail in Section 2. 

 

AD has been considered a proven technology for stabilizing the OFMSW [27, 28]. However, typical 

OFMSW is high in proteins and amino acids that are transformed into ammonia-N (NH3-N) through 

the ammonification process during AD. This gets aggravated during co-digestion with waste from 

food processing and slaughter houses [19, 29]. On average, an AD plant with 500 kW power 

generating capacity yields over 10,000 t of digestate per year with a dry matter content of about 10% 

[30, 31]. Its main components are water, nitrogen in ammonium form, phosphorus, potassium, 

magnesium, calcium, and non-decomposed lignocelluloses. For example, typical anaerobically 

                                                             
2 The Renewable Heat Incentive offers financial support for 20 years for biomethane injected into the gas grid at 
all scales, as well as heat produced from biogas plants with a thermal capacity up to 200 kW [11]. 
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fermented pig slurry consist of (per l) 595 mg NH4
+, 755 mg PO4

3-, and 1.1–1.25 g K2O [32]. An 

environmental impact assessment of digestate application has shown that it is a rich source of 

nutrients with often high dry matter content, making it useful as a fertilizer, but at the same time also 

inducing risks of pollution [4]. Digestate application on fields has been shown to enhance 

acidification and eutrophication potentials [5]. Acidification is mainly caused by ammonia emissions 

during application, while marine eutrophication occurs when nitrate leaks to the groundwater. 

Freshwater eutrophication is mainly caused by diammonium phosphate production. Ozone depletion 

and photochemical oxidant formation are mainly caused by transport, which results in the highest 

impact for the organic waste digestion due to a transport intensive waste collection step. 

 

In principle, through technological advances informed by a whole system understanding, 

environmental burdens from enhanced acidification and methanation stages of OFMSW in an AD 

system, either on its own or as mixed substrate (i.e. material input to digester) during co-digestion, 

can be evaluated (see Section 3.1). However, as AD is primarily a bio-chemical procedure for 

conversion of multifarious substrates (i.e. organic feedstocks) with a diverse range of input nutrients 

and organic contents, this raises enormous challenges to efficient nutrient management – both during 

biogas production and during subsequent re-use of digestate (the nutrient rich slurry produced as a 

combination of liquor and solids, depending on the AD system). This is owing to many factors, such 

as public acceptance, input of pollutants, overload of nutrients and organisational as well as 

infrastructural constraints. 

 

AD of OFMSW is generally a more energy intensive operation compared to the corresponding facility 

using agricultural feedstock, thereby aggravating its environmental implications. For example, two 

AD plants with similar power outputs operating on OFMSW and agricultural waste are respectively 

reported to use 36% and 6% of the produced electricity; this additional energy required in the former 

case mainly for the separation of non-fermentable/ compostable fractions [5]. On one hand, AD 

process reduces volatile fatty acids (VFAs) (and the associated odour) from the input feedstock 

(estimated reductions of Iso-butanoic, Butanoic, Iso-valeric and Valeric acids respectively of 350, 

860, 480, 210 mg L-1 slurry [4, 33], while on the other it enhances, and concentrates, N-compounds 

[18, 34]. The latter is mainly attributed to the increased ammonia content of digested manure, 

combined with a slightly increased pH [35], which is further influenced by the alkalinity and 

buffering capacity and the cation exchange capacity, affecting the level of free NH4
+ of the soil [36].  

In order to maximise the benefits of bio energy installations as an affordable component of future 

energy mix there is a growing impetus on matching the size of the technology to energy demand, 

rather than the tonnage of waste [37]. Given renewable energy and GHG reduction targets are driving 

an acceleration in the use of bioenergy resources, the environmental impact of such national and 

regional development plans must be assessed in compliance with the EU Strategic Environmental 
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Assessment (SEA) Directive (2001/42/EC) [38]. This is of concern in the context that small size 

(albeit high-tech) AD systems processing OFMSW are deemed to be rising in demand - both for 

urban waste management and for valorisation [39, 40]. Therefore, to increase environmental 

sustainability through sound strategy in the production of renewable energy, it is necessary to 

minimise these environmental burdens in the biogas production chain [5]. This specifically applies to 

development of smaller, decentralised installations in a multiplicity of locations, which means even 

the small environmental burdens from individual installations, can pose huge potential impacts, if not 

dealt with at local source [41]. Alleviating such rebounds would be essential towards facilitating the 

transition of the bioenergy market in going from economy of scale to economy of numbers while 

maintaining its environmental benignity. 

 

This paper provides an extensive review of available literature on AD systems suitable for urban 

applications, i.e. systems mainly designed for processing either OFMSW exclusively or a mix feed 

comprising of OFMSW (also known as biopulp) and farmyard residue or cattle/slaughter house waste. 

Greater emphasis is laid on reducing the systems scale environmental impact of AD technologies 

while promoting their diffusion into a low carbon energy infrastructure, including pre- and post-

treatment stages alongside biogas production. It aspires to build the knowledgebase and bridge the gap 

between developments to-date in AD system research in Europe and in Asia region, mainly focussing 

on the merits of developing a more decentralised bioenergy infrastructure, suiting the agendas of both 

urban sustainability and green economy.  

 

 

2. AD technology appraisal - potentials for enhancing environmental performance 

2.1. Taxonomy of AD technologies for urban applications 

Most modern AD plants are designed to accept mixed feedstocks for co-digestion (e.g. OFMSW, farm 

and livestock wastes); comparative performances of different digester configurations are available in 

the literature [23, 42-44]. Successful OFMSW digesters use extensive pre- and post-digestion 

processing units in a variety of configurations for handling high-solid and heterogeneous nature of 

feedstocks [45]. Typical AD technologies for urban applications include a cohort of simple and 

integrated wet and dry systems [46], which can be operated as continuous flow designs in single- or 

multi-stages (Fig 3). The Organic Loading Rate (OLR) of single-stage digesters is limited by the 

ability of methanogenic organisms to tolerate the sudden decline in pH that results from rapid acid 

production during hydrolysis and such reactors are reported to have problems in digesting readily 

degradable OFMSW, such as kitchen waste. This is mainly from accumulation of VFAs (mainly 

propionic acid) in the reactor, causing imbalances between the methanogenic and acidogenic 

populations, subsequently resulting in poor digestion and reduced methane production [44]. This is 

overcome in a two-stage acidogenic/ methanogenic AD system, providing better process control for 
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the different stages of the anaerobic biochemical reactions and improved digestion. Thus, two-stage 

AD is reported to be biologically more stable, especially for accepting fluctuating feedstock types and 

organic loading rates, typically witnessed in urban situation. Despite this fact, about 90% of the 

installed AD capacity in Europe comprises of single-stage systems and only about 10% is composed 

of two-stage systems [45]. 

 

A recent evaluation of wet and dry digesters recommended that suitable AD operation in urban areas 

need to be integrated systems [46], i.e. incorporating the pre-treatment of the feedstock, especially for 

co-digesting OFMSW with supplementary feedstock for process stability and enhanced biogas yield 

(see Section 6.1 for more details), as well as post-treatment of solid-liquid digestates. The latter 

involving both phase separation and required treatments for environmental compliance and for 

attaining the required stabilisation and portability for further application as biofertilisers (see Section 

2.4). Typical integrated wet AD (>90% moisture) under mesophilic condition has been widely applied 

for food-based digestion, hence suitable for urban waste management. However, such systems are 

reported to have higher life cycle energy demands, mainly for additional equipment in both pre-

treatment of feedstock and waste water treatment post-digestion [5, 46]. Further, wet AD of OFMSW 

often has tendency for scum formation, requiring adequate design interventions (such as 

homogenisation through continuous stirring) to mitigate serious environmental issues [45]. Another 

risk of wet AD processing of unsorted OFMSW is of toxicity from heavy metals and battery acids, 

which ultimately gets released to the environment post-digestion. On the other hand, dry AD (60-85% 

moisture, also referred as ‘plug-flow’ digester) has been considered environmentally more favourable 

for treatment of waste with low organic loads, mainly owing to resource savings in terms of water 

usage [46], lower number of pre-treatment steps in the input [47], reduced energy demand due to 

plug-flow movement of substrate (i.e. no mechanical devices required for mixing), substrate 

inoculation through digestate re-circulation [19], as well as reduced waste water generation [16, 29]. 

In particular, dry AD is reported to be more efficient for OFMSW digestion, owing to its composition 

and water content [48]. Further, to overcome the drawback of low biogas yield, reported for food-

based digestion, more ‘advanced’ dry AD has been proposed for efficient treatment of OFMSW in 

urban areas, with long solid retention time and adaptability to regulate the moisture content of input 

waste by mixing paper waste [46].  

 

AD technologies have been reviewed, mainly highlighting their role in GHG mitigation and 

renewable energy generation [49] and their potentials for treating municipal solid waste [45]. The 

majority of these AD plants are operated under mesophilic (30-40°C) conditions, barring some 

enhanced AD systems requiring thermophilic (50-60°C) conditions. As expected, thermophilic 

digesters have higher biogas production rates than mesophilic digesters, in particular dry digesters 

outperforming wet digesters. A matrix of current AD technologies (of global relevance) is developed, 
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taking stock of the merits and the limitations of each in terms of their decentralisation potentials, 

especially on the grounds of their digestion stability, emissions from pre- and post-digestion stages 

and environmental consequences (Table 1). Relevant to urban application, staging of the AD process 

(typically two-stage) has been found effective for food-based digestion, owing to their positive impact 

on waste stabilisation and methane yield, compared to single stage reactors [23, 42, 44]. 

 

2.2.  Pre-treatment losses 

Pre-treatment techniques are applied in AD to optimise its performance, mainly for resource 

efficiency [50]. For OFMSW, pre-treatment is usually necessary to facilitate material flow, improve 

gas yield, reduce the amount of reactor volume occupied by inert material and improve quality of 

digestate. Several methods are attracting much attention for their suitability to alter the structure and 

composition of the biomass, essentially through disintegration. Particularly, for urban waste AD this 

has several purposes – to alter the feedstock composition to enhance the substrate; to allow operating 

the AD at higher OLR, i.e. increase the scale of operation [51]; to manage complex waste; to prevent 

the release of offensive odour [46], etc. The variations in pre-treatment approaches are geared to 

treating different characteristics of feedstocks, involving efficient processing of the input feedstock 

[13, 14, 23, 52] and/or, innovative mechanical/bio-chemical/ thermal/radiative treatments [15, 44, 53], 

the latter particularly useful for digesting longer chain lignocellulosic biomass and wooden fractions 

[54, 55]. However, any pre-treatment makes use of some form of energy (pressure, translational, 

rotational, thermal, or electrical) and/or chemicals and both resources can have diverse environmental 

implications.  

 

LCA of different pre-treatments, especially in processing urban OFMSW, have shown the impact of 

additional equipment and resource application as inducers of both environmental impact and 

operational costs [46]. Another study, applied to two types of municipal wastes (kitchen waste and 

sewage sludge) account for their environmental burdens, suggesting all of them of bearing 

environmental cost which has to be accounted for while evaluating the environmental performance of 

AD technology. This is essentially from the use of additional resources (chemical and /or energy) 

during the pre-treatments, in particular the thermal, freeze-thaw and ozonation techniques have 

environmental burdens that surpass the benefits accrued from their incorporation into the AD system 

[51]. 

 

2.3. Production losses 

AD plants generally produce biogas with a composition of approximately 50-70% CH4 and 30-50% 

CO2. There are often small amounts of other compounds such as molecular nitrogen (N2), oxygen (O2) 

and hydrogen sulphide (H2S) amongst others. The overall composition (as well as the yield) is a 

function of the feedstock as well as operating conditions (including pH control value). Typical 
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fugitive emissions from the biogas production site include methane, N-compounds, S-compounds and 

VOC (e.g. alkylthiols) (Fig 2). In particular, digesters operating on OFMSW exclusively, especially 

the source-segregated food waste component, have shown process instability from high loadings of 

protein and fat contents, leading to production of high concentration of both NH3 and NH4
+ from the 

degradation of proteins and amino acids [18]. In addition, fugitive emissions of methane can occur 

throughout the AD plant, from pipes, valves, over-pressure of the system and the storage facilities for 

waste and biogas. Two important sources of methane are the biogas reactor and leaks from upgrading 

facilities. Owing to the difficulty in estimating these emissions, mainly due to their variability from 

one site to another [56], only limited field data is available in the literature [57]. On average, 2% 

production losses of methane (expressed as percentages of the total methane in the biogas) is widely 

assumed for modelling purposes [7, 58], with further breakdown of 1% from the digestion plant and 

0.5% from the gas engine assumed [21]. In addition, there have been concerns on the emissions from 

low-efficiency CHP engines (reported emission of N2O from the biogas engine of 0.1 kg TJ-1 of 

electricity produced and NOx of 0.42 g m-3 of biogas produced, [21]), which contributes to GHG and 

acidic emissions from energy conversion step [7]. The UK’s policy emphasis on good quality CHP 

[59], i.e. with a high power/heat ratio, is an effort to minimise these environmental burdens.  

 

2.4.  Post-digestion losses 

The residual biomass post-digestion, commonly referred as ‘digestate’ in the AD literature, comprises 

of left-over indigestible material, process intermediaries and dead micro-organisms. The content of 

digestate depends on both the feedstock and the hydraulic retention time (HRT) of the digester – 

usually longer HRT reduces the organic content owing to more effective methanogenesis [60]. With 

greater emphasis on strategies for diverting biowastes from landfill, and their sustainable re-utilisation 

through valorisation, the volume of digested materials is expected to increase significantly. At the 

same time, promotion of digestate as biofertiliser has grown over recent years, mainly for two reasons 

– one, as a low carbon substitute to fossil fertilisers as farmers and land managers are being 

encouraged to reduce product carbon footprint from their harvest [61, 62]; two, for restoring soil 

organic matter and for closed-loop nutrient recycling [56, 63, 64]. In the UK, the quantity of digestate 

recycled to land is expected to increase to around 5M tonnes (fresh-weight) by 2020 [65]. Further, 

land application of digestate is considered as a sustainable practice in the EU towards meeting the 

standards of the good agricultural and environmental condition (GAEC), which requires addition of 

organic materials to maintain and enhance soil organic matter levels [66]. However, as there are 

multiple types of digestates with varying degrees of inherent properties, including moisture, biological 

stability, microbial activity. etc., digestate is still considered a relatively new material and needs better 

characterisation. AD leads to carbon degradation to CO2 and CH4 and N preservation, and 

mineralization of organic-N; all the NPK nutrients present in the feedstock is retained in the digestate, 

and get concentrated owing to the nature of the process [67]. This is why the content of total ammonia 
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nitrogen (TAN), the precursor of NH3 emissions, tends to be greater in digested than in undigested 

manures [68]. For example, comparing the average nutrient composition over 52 weeks of feedstock 

and digestate from an AD treating dairy cow slurry under mesophilic conditions showed respective 

changes in dry matter, Total-N and RAN of -17.9%, +2.8% and +20% (negative and positive signs 

implying reduction and increment) [4, 69]. As a consequence, digestate is an emission source of NH3, 

N2, N2O, CO2 and some residual CH4 (see residual biogas potential, RBP below) (Fig 2) to air; CO2 

emitted mainly from further degradation of organic matter in aerobic environment following land 

application of digestate [70]. Further, leaching of NH4
+ and PO4

3- occur to soil with potentials for 

eutrophication in the local environment [34]. 

 

Nutrients profile for food-based and manure-based digestates have been reviewed and compared 

showing their Nitrogen, Phosphorus and Potassium (NPK), content along with Magnesium (Mg) and 

Sulphur (S) (Table 2). Typical total-N content of food-based digestate ranges between 5-8 kg m-3, 

with about 60-80% of this present as ammonium nitrogen (NH4-N, also refereed as ‘readily available 

nitrogen’, RAN) [62]. However, for digestate from kitchen waste feedstock RAN of as much as 99% 

of corresponding Total-N has been reported [71]. Food-based digesters, operating at high OLRs 

without ammonia stripping, are reported to produce digestate with high NH3 content. This is because, 

while the total nutrients loading of the whole digestate and the original input feedstock remain 

conserved during AD [56], the majority of organic (slow release) nitrogen is transformed into RAN 

[72], specifically for protein-rich feedstocks, including OFMSW, dairy by-products and 

slaughterhouse waste [73, 74]. For example, RAN in food-based digestate is nearly 40% higher than 

manure-based digestate [62]. Further, for a field application rate of 25 m3 ha-1 the RAN (in kg ha-1) is 

found to be >140, 60, 55 and 30 respectively for food-based digestate, manure-based digestate, pig 

slurry and cattle slurry [34]. Sensitivity analyses conducted to assess the split share of digestate total-

N (i.e. organic-N, NH4-N and NO3-N) on acidification potential have reported NH3 and NO3 as the 

main contributors to the enrichment of pollutants in direct air and water environments respectively [7, 

75]. In the atmosphere, ammonia may oxidize and contribute to acid rain formation and acidification 

of the environment, as well as eutrophication by increasing the nitrogen available in aquatic 

ecosystems [25, 76]. NH3 emission from field application of digestate is proportional to its TAN, 

hence often expressed from experiments as a % of TAN applied (Table 3). Additional N-losses to the 

environment occur from denitrification, mainly as nitrous oxide N2O (a potent greenhouse gas) and 

Nitrogen (N2) gas to the atmosphere. The N2O emission from digestate soil application is considered 

longer lasting than NH3 [72] and its emissions are estimated from both TAN and the longer term 

releases from the nitrified mineral N. Therefore, while considering N2O emissions it is important to 

take account of the long term impact. N2O emission from digestate application is expressed as 

percentage of total-N.  
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Depending on the biogas technology, the digestate could be a semi-solid (i.e. slurry) or a liquid 

material - with high nutrient and organic matter content. Generally, digestate is classified into three 

types – whole, liquid, fibre. Although some AD plants, as part of their post-processing, opt to separate 

the digestate into liquid and fibre fractions for management reasons 

(chemically/mechanically/physically using polymers, belt or screw-presses or excess heat 

respectively), whole digestate is most commonly available for land applications. Dry matter (DM) of 

the fibre fraction and the separated liquid fraction typically range between 20-40% and between 1-4% 

respectively. Both whole digestates and the separated liquid fraction are very good source of RAN 

(i.e. ammonium-N), potentially available for rapid crop uptake [61]. The liquid digestate contains less 

than 15% DM content, while the solid digestate contains more than 15% DM. Major properties of 

liquid digestates from different feeds, mainly their mineral nutrient content are reported in Table 2 

[77]. However, there is need for regular monitoring of digestate properties or agricultural applications, 

primarily owing to the alteration in the properties over the course of the digestion process.  

 

The increased NH4-N content of OFMSW digestate and pH elevation, mainly attribute to formation of 

(NH4)2CO3 [77], which has dominating effect on ammonia volatilisation from the digestate compared 

to other factors, such as lower viscosity, lower dry matter content, etc. [56]. Further, the heavy metals 

and trace elements in the feedstock accumulate in the AD process, which exacerbate their 

concentrations in the digestate. For a standard application rate of 250 kg total-N ha-1 the typical soil 

loadings for zinc and copper from OFMSW digestate are respectively around 0.14 and 0.03 kg ha-1 

whereas the corresponding metal additions from application of pig slurry would be about 2.5 and 0.8 

kg ha-1 respectively. Literature values of mean heavy metal concentrations in food-based digestate are 

provided in Table 4 [78], alongwith the corresponding values for livestock slurries and the PAS 110 

guideline reference values [79] (see Section 3.3). 

 

 

3. Recent developments in environmental best practice in AD  

3.1. Review of AD monitoring applications  

Emissions management along the AD process chain depends largely on the technology involved, its 

state of operation, availability of emissions inventory and emissions reduction techniques/ control 

strategies. This requires suitable monitoring/measurement techniques implemented along the whole 

process chain, best operating practices, and acceptable ranges of possible emissions. This would 

alleviate the risks of environment pollution and its resulting adverse effects on humans, animals or 

plants. Although the AD technology is well over a century old, stringent sustainability concerns over 

recent years have given rise to potentials for significant improvements in both operational efficiency 

of the digester and the handling of the process/products. As an AD best practice, this covers all three 
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stages of the process chain: i) Input: maintaining tight record of specific input feed materials; ii) 

Operation: process management controls and operation monitoring; iii) Output: digestate sampling, 

testing, validation checks and information for end users. However, process modelling of AD operation 

to-date only had limited success, largely owing to the dynamic nature, non-linearity and lack of expert 

knowledge of the whole process [80]. Nevertheless, there has been renewed focus on adequate 

instrumentation, with rapid sensors/analytical features for reducing the uncertainty associated with the 

initial conditions and kinetics of the process. A detailed review of AD monitoring applications, 

highlighting the recent advances in Process Analytical Technologies (PAT)/ Theory of Sampling 

(TOS)/chemometrics approaches, which integrates utilisation of agricultural manure, biomass and 

industrial organic waste is presented for the Danish co-digestion concept [81]. Besides, there is 

emphasis on novel application of the soft-sensor concept3, for development of model-based estimators 

to reliably predict unavailable measurements based on less expensive online estimates of unmeasured 

inputs for an AD system [80]. Albeit, owing to lack of availability of a perfectly instrumented AD 

facility, monitoring key variables at the necessary sampling rate, most approaches for soft sensor 

development to-date rely on simulation data for modelling the inherent AD parameters, mainly for 

quality assurance of the process model. This has been the major limitation for successful application 

of this concept in monitoring the performance of real AD plants.  

 

Apart from non-availability of online instrumentation there is also dilemma over the user group of 

these different stages of AD monitoring. While the process monitoring can be handled by trained lab 

technicians, utilising a Programmable Logic Controller system for automation of electromechanical 

processes, the monitoring of digestate has to be conducted taking into the environmental factors and 

soil conditions. Evidently, there is need for further automation of these monitoring protocols. One 

suggested approach would be to allow on-field quantification of nutrients applied to farmlands using 

different application methods over the fertilisation seasons. This aspect is currently being researched 

for developing specially designed ‘manure analysers’ for widespread deployment [81]. 

 

Robustness, simplicity, accuracy, precision, and reliability are some of the key parameters desired of 

AD monitoring equipment/ hardware [81]. PAT with chemometric multivariate data analysis has been 

identified as a tool for ensuring optimal performance of the AD process. While online monitoring of 

process has been the focus of AD research community, commercially motivated to attain optimisation 

(process stability and optimum biogas yield), there is still a strong need for a robust instrumentation 

and better control systems for digestate management. Whereas a number of multivariate data analysis 

protocols using advanced sensor technologies have become available, the majority of these are 

currently limited to AD process monitoring and there is still a lack of dedicated digestate analysers. 

                                                             
3 This approach employs a combination of a hardware sensor and an estimation algorithm (software) to provide 
an online estimate of an immeasurable variable utilising good quality process data [152]. 
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Currently (2014), there are limited approaches for digestate quality monitoring and they are all based 

on offline instrumentation [80]. Albeit, PAS 110 Clause 10 provides guidance on obtaining 

representative samples of all three types of digestates (whole, fibre, liquor) via one or more sampling 

access points appropriately located in the digestate production/storage system prior to its use [79]. It is 

recommended that separated fibre undergoes a maturation step before sampling, aiming to achieve 

significant loss of the free ammonia during the separation process. The following section deliberates 

upon some of the recent advances in evaluation of the key AD attributes.  

• Volatile solids (VS): VS provide an indication of the stability of the digestate and may infer 

the stability of the process. VS has so far been mainly monitored offline according to APHA 

Standard Protocols [23, 82], but there has been growing interest for developing a soft sensor 

for online monitoring of volatile solids for its merit. This would overcome the drawbacks of 

offline monitoring, often marred by low and irregular sampling rates. It is reported, 

measurement procedure for VS are relatively simpler than for conducting offline VFA, RBP 

[80]. This makes VS an important digestate quality attribute (among the list of attributes 

identified in the PAS 110). 

 

• Volatile Fatty Acids (VFA): The digested slurry is considered as a biomass low in VFA 

content (estimated to be a factor of 10 less) compared to the untreated slurry [4, 33], primarily 

owing to its utilisation and conversion into CH4 during methanogenesis. However, monitoring 

traces of VFAs in the digestate has been considered important for preventing residual biogas 

production, which is essential to eliminate additional CH4 release. Detailed protocols for 

offline VFA detection are provided in the literature [18, 23], while comparing digester 

performances using different AD configurations, organic loading rates, etc., which generally 

uses gas chromatography (e.g. Shimadzu, GC-2014 with a flame-ionization detector).  

 

• Nitrogen (N-compounds): Onsite ‘rapid’ N measurements, taken using a Quantofix, or Argos 

N meter has been shown to be in good agreement with lab analysis data [61]. Several field 

experiments have been undertaken in the UK to determine the crop available N supply of 

digestate [83, 84]. However, in majority of literature the RAN is estimated by the 

conventional Kjeldahl method [85] and the ammonia N-losses from field applications using 

by wind tunnel experimental setup with gas bubblers [86], where the ammonia content is 

analysed from titration and colorometric analysis in the lab [34, 35]. Field measurements of 

N2O have been made using static chambers for gas extraction, followed by spectral analysis 

through gas chromatography for quantitation [34]. 

 



15 

 

• Volatile organics (VOCs, including thio-sulphates): Although detailed characterisation of 

VOCs are still not extensively reported in the AD literature, in situ monitoring, using a direct 

injection mass spectrometric technique has been developed applying Proton Transfer 

Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) [48]. Typically biogas produced 

from AD of OFMSW is found to contain trace amounts of VOC [87]. These emissions are 

affected by two different processes, one volatilisation (or oxidation) of the biomass-inherited 

organic compounds; two, microbial degradation of organic substrates, hence exhibiting a 

double-peaked emission pattern [48]. The VOC emissions are more prominent in dry 

digestion of OFMSW, owing to pre-oxidation step that may affect the dry anaerobic digestion 

parameters e.g. oxygen consumption (i.e. partial aerobic conditions), adaptation time of 

anaerobic bacteria and the time needed for the accomplishment of methanogenesis. 

 

Interventions adopted to minimise the environmental burdens from AD technologies are not explicitly 

listed in the available literature, and possible techniques involve a combination of process 

modifications, resource management, post-treatments (Table 5). For example, separation and 

utilisation of nitrogen in the wet part of the digestion residue is made possible with a number of 

technologies which decreases environmental impact drastically, however to a substantial cost in some 

cases. However, our study could not provide estimated cost implication for these interventions, owing 

to lack of adequate data in the literature so additional cost evaluation is required. 

 

3.2 Pre-treatments 

Environmental burden minimisation strategies for the pre-treatment stage mainly involve feed-

dependent process enhancements. AD being a biochemical process, the lack of adequate quality 

control of incoming raw materials (i.e. feed) into a digester has been identified as a crucial gap [81], 

which has implications for both performance of digestion and the quality of digestate. To maintain 

high quality feedstock control and management of physical impurities, sorting at the source or by 

more automated onsite separation, typically using mechanical/magnetic separation or supplementary 

installations of physical barriers like sieves, stone traps or protection grills in the pre-storage tanks, 

have been recommended More advanced techniques involve biochemical and thermal treatments. Of 

relevance to OFMSW processing, environmental performances of pre-treatments to two types of 

municipal solids (kitchen waste, sewage sludge) were evaluated for seven different techniques, 

including - alkaline, acid, thermal, thermo-acid, freeze-thaw, pressurize-depressurize, ozone treatment 

[88]. On the basis of additional resources use (chemical and/or energy), among the seven options 

tested, the mechanical (e.g. pressurize-depressurize) and chemical (acid or alkaline) pre-treatments are 

preferred to thermal treatments in terms of their life cycle environmental burdens [51]. In general, pre-

treatment using energy has higher environmental impact than those using chemicals. Where 

imminent, thermal pre-treatments (for their merits on the improvement of waste stabilization), are 
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recommended using waste residual heat. Among energy-using pre-treatments, mechanical 

disintegration (i.e., pressurize- depressurize) is preferred over thermal methods due to the lower 

energy demand without compromising the increase in biogas production. Even, among the chemical 

treatments, different LCA impact categories have preferences between acid and alkaline methods – 

the former performing better in terms of the GHG reduction while the latter having reduced toxicity 

potentials [51].  

 

Typical biochemical pre-treatments include facilitating substrate mixing/hydrolysis and leachate 

recirculation. For example, there is a scope to improve/ fasten the degradation of the waste feedstock 

characterised by high volatile solids and low total solids (especially food waste - including raw fruit 

and vegetables and cooked food) through adequate hydrolysis and addition of alkaline buffer to 

enhance digestion [23, 52]; recirculation of a proportion of leachate into the digestion process (up to 

50%, recommended in the literature [13]); recirculation of effluent (process water) [14, 42]. However, 

process water must be recycled with care (with appropriate treatment) to avoid the accumulation of 

soluble inhibitory compounds such as ammonia and salt. Although quite energy intensive but more 

efficient methods for waste disintegration, such as microwave heating [89], specifically for OFMSW 

with greater proportion of less biodegradable components [44], in presence or absence of hydrogen 

peroxide (H2O2); autoclaving of food waste to reduce ammonium radical and H2S formation [15] are 

considered in recent studies.  

 

3.3. Post-digestion best practice 

The main concern for food-based AD, be it OFMSW exclusively or as a mixed feed, is mineralisation 

of proteins into RAN in digestate, with potentially adverse environmental implications post-digestion. 

Over the past decade, several methods have been developed to alleviate this phenomenon, including 

ammonia stripping [90, 91]; in situ ammonia removal through biogas re-circulation [18]; biological 

denitrification [92]; precipitation with cations, effective in reducing NH4-N by up to 90%, as calcite 

and struvite [36, 93, 94]; electrochemical conversion [95]; microwave radiation [96] and ultrasound 

[97]. Evaluating the environmental benefits against the costs involved, the in situ stripping method 

has been reported as more sustainable [18], especially in comparison to chemical precipitation route, 

which introduces new pollutant from addition of reagent [96]. The majority of these interventions are 

applied to wet AD systems; pilot study on thermophilic dry AD have found increasing the C/N ratio 

from 27 to 32 enabling up to 30% reduction in NH4-N in digestate [19]. 

 

There are further potentials for minimising environmental burdens from both storage and handling of 

the digestate. However, the requirement for storing the digestate until the growing season is a huge 

challenge, as in most plants, digestate is produced regularly throughout the year. Some countries have 

specified a set number of months for compulsory digestate storage prior to their application on fields, 
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typically in a temperate climate, these ranges between 6-9 months of digestate production [4]. Unlike 

raw cattle slurry, digestate does not form a surface crust during storage so storing in open tanks 

releases NH3 and CH4 gases, which can be mitigated by covering the liquid surface with a protective 

layer (e.g. a natural crust 10-20 cm thick; a floating layer of inert material like plastic pieces or clay 

pebbles). Alternative approaches include covering the storage tanks with air tight membranes or using 

flexible sealed storage bags. However, in order to avoid any further CH4 emission during the storage, 

it is recommended that the higher dry matter and fibrous fraction be stored without disturbance, or 

even composted. Another important issue is standardising the digestate composition suitable for land 

application, mainly owing to the very nature of AD being a technology capable of processing almost 

all sorts of organic feed. More recently, several countries have brought forward guidelines to 

overcome this challenge, with the general intention of maximising the commercial returns from 

digestate land application while minimising potential issues of environmental pollution and odour. For 

example, in the UK an independent Biofertiliser Certification Scheme provides assurance to 

consumers, farmers, food producers and retailers on the digestate quality post AD, in terms of safety 

for human, animal and plant health [62]. Another UK regulation, specifically applied to manure-based 

AD, requires pasteurisation of either the cattle slurry prior to digestion or the digestate before export 

from the farm [79]. Likewise, the new German biowaste ordinance requires mandatory sanitation of 

digestate, ensuring inactivation of Salmonella senftenberg, tomato seeds and Plasmidiophora 

brassicae (club root) after digestion [4]. Further, potential for chemical contamination of digestate 

from inorganic materials (e.g. heavy metals introduced through the diet of animals) and persistent 

organic compounds can be minimised by secured storage and routine monitoring of the content of the 

contaminants, both in the feedstock and in the digestate [4].  

 

The volatilisation of NH3-N from digestate depends on the following key factors – method of soil 

application [4], application timing [61] and subsequent weather conditions [86, 98]. This can be 

mitigated by minimising the surface area of digestate exposed to air after application through different 

modes of spreading which lower the air velocity above the digestate and ensure rapid incorporation 

into the topsoil by binding gaseous ammonia to soil colloids and soil water [4, 35]. Based on the 

reviewed literature, ammonia volatilisation risk for different soil application methods show the 

following trends: splash plate > trailing hoses > trailing-shoes > shallow injection (Table 6). For 

example, compared to splash plate (surface broadcast) application, typical NH3 reduction from tailing 

hose, trailing shoe and shallow injection are respectively 30%, 30-60%, up to 70%. Splash plate 

application, despite being widely used in a large number of countries as cost-effective mineral 

fertiliser and slurry application method, seems to be worst performer in terms of environmental risks 

arising from digestate land application whereas a band spreader (trailing hose/trailing shoe) or shallow 

injector have comparable environmental benefits. For example, as shown in this Table, comparison 

between splash plate and trailing hose application for food-based digestate shows clear reduction in 
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NH3-N loss to the air and NO3-N leached to the soil. The UK Fertiliser Manual (RB209) provides 

some recommendations for minimising air losses of ammonia during digestate spreading. For liquid 

biofertiliser, reported ammoniacal loss reductions from 20-35% (of TAN) for surface application to 2-

3% using disc coulter injection (into 5-7 cm depth) [99]. 

 

Separating the digestate into liquid/solid fractions has been identified as another best practice for 

effective handling of post-digestion losses, mainly for mitigating phosphate overloads as up to 90% of 

the phosphorous content is retained in the fibrous fraction while the liquid portion is applied as N-

fertiliser with reduced ammonia emissions potentials to air [4]. The latter attributed to more rapid 

infiltration into soil, especially for digestate with low volatile solids applied to porous soils [86]. On 

the other hand, higher dry matter slurries remain on the soil/crop surface for longer leading to greater 

losses. Losses are also higher when slurries are applied to dry soils under warm weather conditions. 

Minimum quality requirements for whole digestate, separated liquor and separated fibre have been 

prescribed as part of PAS 110 standards in the UK [79]. Though at present this applies only to source-

segregated biodegradable inputs i.e. those that have been collected separately from non-biodegradable 

inputs, and does not allow the use of sewage sludge or its derivatives). Further, digestates with 

different dry matter contents may need to be handled individually based on a nutrient analysis of the 

material and spread with different equipment as described above.  

 

For preventing soil and water run-off, the land application method and time of the year are crucial. 

For example, the Canadian Government Technology Assessment Programme Research at the Ontario 

Rural Wastewater Centre [33] reported spring application (when plant nutrient uptake is high) having 

least pollution run-off to ground water compared to winter and autumn; the UK digestate and compost 

in agriculture (DC Agric) project [100] reported higher N-efficiency for food-based digestate (as % of 

total N applied) for Spring over Autumn to be around 60% [34]. Further, the potential for nutrient 

leaching is found to be higher on sandy soils with poor water retention capacity compared to clay and 

loam. To avoid risks of water pollution, digestate application should not be made to soil during 

waterlogging, freezing, snow events, when soli is cracked down to field drains or backfill, heavy rain 

over 24-48 hours. As a precaution, digestate applications should not be made within 10m of any ditch, 

pond or surface water; within 50m of any spring, well, borehole or reservoir that supplies water to 

human and cattle; on a very steep slope with high risk of surface run-off all year round [61]. 

 

Another important emissions abatement practice is reducing methane losses, termed as residual biogas 

potential (RBP), which is also considered a proxy for digestate stability. Co-digestion of different 

organic materials has been reported to yield more stable digestate with lower environmental impact 

[56, 101]. In the UK, for digestate to be compliant with PAS 110 the RBP must be below 0.25 L g-1 of 

volatile solids (below which the material can be considered stable and suitable for land application); 
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typical RBP for food-based digestate is reported as 0.22 L g-1 of volatile solids [102]. However, the 

draft EU end-of-waste document [103] has proposed an alternative methodology for assessing 

digestate stability through measurement of the organic acid concentrations. There is potential for 

avoiding the air emissions from digestate by utilising the digestate effluent as replacement of 

freshwater and nutrients for bioethanol production and recent reports suggest enhanced ethanol 

production by as much as 18% compared to utilisation of fresh water only [104]. Another suggested 

post-processing involves liquid-solid separation of digestate, and using the liquid fraction rich in high 

N and K for irrigation and re-utilising the solid fraction, rich in volatile solid and P, as a co-ferment 

for anaerobic digestion [77]. 

 

 

4. AD operation in Europe 

4.1.  Current trends 

In Europe the AD treatment capacity evolved largely over the past 20 years in response to EU 

policies, primarily aimed at reducing disposal of biodegradables [45, 105]. AD has been established as 

a win-win technology in Nordic countries, both in terms of recovery of energy (biogas) and nutrient 

(digestate) resources. Until recently, the majority of AD was applied to wastewater treatment (for 

sludge stabilisation and odour reduction) or farm manure management. Current emphasis is on 

extending this to biowaste management - biogas production, solids reduction, and pathogen reduction, 

shifting from conventional disposal-based solutions (such as landfill) to process-based solutions for 

recovery and recycling [3]. The European Commission has given particular importance to develop 

waste as an alternative energy source and in this context AD has gained central ground in utilisation 

of organic waste for production of energy. High-tech digesters of various kinds are implemented 

Europe wide in the agricultural and in the industrial sector. At least 25% of all bioenergy in the future 

can originate from biogas, produced from wet organic materials such as animal manure, whole crop 

silages, wet food and feed wastes, etc. [5, 106] and the digestate, the second most abundant product of 

digestion, is being commercialised as biofertiliser (see Section 3.3). Currently there is drive in the UK 

to promote AD plants, primarily waste based, with use of farm residues kept to the optimal level to 

maintain the operational performance and efficiency of the plant [107]. The most economically 

attractive AD plants (IRR >15%) are usually food waste-based systems, due to the gate fee attracted 

by the food waste [72]. However, there is a degree of uncertainty around technology, economics and 

environmental issues related to AD plants processing food wastes, drawing more research into process 

optimisation and potential environmental impacts of process/products. Nevertheless, the volume of 

digested materials is set to increase significantly as industry responds to the latest UK strategies for 

diverting biowastes from landfill, as well as other policy initiatives and measures geared to renewable 

energy, climate change mitigation and soil enrichment (mainly carbon restoration). Based on a waste 
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hierarchy4 approach, AD is recognised as generally the best option available for dealing with 

separately collected food waste [39]. The European AD landscape is rapidly changing year on year, 

but based on recent International Energy Agency report on biogas plants in Europe [108], Germany 

has more than 7000 small- and large-scale biogas plants, Switzerland 560, Sweden 230 (majority 

large scale). In the UK there are 110 AD plants processing organic feedstock, the majority of them are 

processing waste feed stocks of urban origin, complemented by the remainder farm-scale AD plants 

processing agricultural feed stocks [39]; in addition, there are 146 AD plants operated exclusively by 

the water industry for treating sewage sludge [109].  

 

4.2. Environmental compliance 

Regulatory framework of waste management in Europe is fairly developed, including the Revision of 

Waste Framework Directive (17/06/08): waste hierarchy and the Communications of the European 

commission on bio-waste management. Within the EU, use of animal by-products that are not 

intended for human consumption and used as AD feedstock is governed by EC Regulation No 1774/ 

2002, which also applies to digestate containing industrial residues and animal by-products. 

Development of quality assurance and quality characteristics of digestate is currently on going in 

several EU member states to address the environmental concerns, mainly compliance with the EU 

Nitrates Directive and Water Framework Directive. For instance, digestate applications to agricultural 

land must comply with the EU Animal By-Products Regulations [110]; cattle grazing following 

digestate application should be avoided for three weeks (for pigs up to eight weeks) [111]; prescribed 

field N-limit for nitrate vulnerable zone (NVZ) not to exceed 250 kg total-N ha-1 (within 12-month 

period) [61];. mandatory closed spreading requirement for liquid digestate during autumn/ winter 

(owing to their high RAN content, exceeding 30% of its total-N content) [112]. Broad quality control 

criteria include, periodic sampling and analysis of feedstock to determine its biogas potential (e.g. dry 

matter, nutrients and volatile solid content and pH levels) and digestate to determine the nutrients 

[79]. 

 

The European Commission is developing end-of-waste criteria, i.e. criteria that a given waste stream 

has to fulfil in order to cease to be waste [103], for digestate (and compost) at an EU level, building 

upon the work in individual EU countries. For example, the UK has developed a publicly available 

specification5, PAS 110 [79] – for the processing and end of waste status for digestate; and, an 

Anaerobic Digestate Quality Protocol (ADQP) [113]. PAS 110 ensures fitness for purpose of 

digestate suitability by requiring producers to undertake hazard analysis and critical control point 

                                                             
4 Article 4 of the revised EU Waste Framework Directive sets out 5 steps for dealing with waste (prevention, 
reuse, recycling, recovery and disposal), ranked according to environmental impact - the ‘waste hierarchy’, 
which has been transposed into UK law through The Waste (England and Wales) Regulations 2011. 
5 A Publicly Available Specification (PAS) is a sponsored fast-track standard driven by the needs of the client 
organisations and developed according to guidelines set out by British Standard Institute [79]. 
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(HACCP) for a set criteria. ADQP sets out criteria mainly for quality assurance of digestate produced 

from source-segregated biodegradable waste (such as vegetable processing wastes or household food 

waste), eliminating the need for further scrutiny under Environmental Permitting Regulations [114]. 

In the UK, farmers using digestate need to adhere to the Biofertiliser Certification Scheme and follow 

the guidelines proposed in the Biofertiliser Matrix. This matrix differentiates between pasteurised 

(e.g. batch heated at 70°C for 1 hour) and un-pasteurised digesters. In Hungary, the digestate is 

regarded as other non-hazardous waste when the feed is not sewage or sewage sludge [77]. Existing 

national standards for digestate include, SPCR 120 Biowaste digestion residues in Sweden. RAL GZ 

245 and 246 respectively for digestate from biowaste and from energy crops respectively in Germany. 

Further, in Germany the origin of the input materials determines the quality label of digestate product 

by biowaste and renewable energy crops. Digestates have to fulfil the minimum quality criteria for 

liquid and solid types (controlled by “Bundesgütegemeinschaft Kompost e.V” (BGK) [115]), which 

determine the minimum of nutrients and the maximum of pollutions ( includes toxic elements, 

physical contaminants and pathogen organisms) in the digestate.  

 

4.3. Operational issues 

To realize the real potential for AD to contribute to the circular economy — by making the best use of 

finite resources and recycling nutrients back into food production, energy and food security, climate 

change, air quality and the economy — there are still barriers that the industry must overcome. There 

are wider sustainability issues, mainly arising during storage and handling of the digestate towards 

maximising the profits from the AD value chain. AD’s multiple benefits can sometimes act as a 

handicap given the need for government policy to be joined up across policy areas as diverse as waste, 

bioenergy, transport and agriculture. In the UK, the anaerobic digestion and composting research 

network (ADCORN-UK) lists a number of government supported initiatives currently looking into 

promoting viable markets for digestate. The DC-Agric project (www.wrap.org.uk/dc-agri) is one such 

example with extensive field trials to understand the soil and air discharges of N-compounds (mainly 

NH3 and N2O) on digestate application. Likewise, research innovations are also underway for 

maximising digestate re-utilisation in landscaping, regeneration, sports turf and horticulture sectors.  

 

The non-acceptability of biogas applications Europe wide is attributed to a number of structural, 

financial, attitudinal and awareness constraints. For example, operational, economical and technical 

reasons forced many of plants to close in Portugal in the past, and most of the others kept a low level 

of maintenance and poor operation and exploration of the systems. This was mainly due to lack of 

technical information for plant operators, lack of support during the start-up of the plant, low quality 

equipment and poor technology [12]. In spite of these limitations from previous experiences there is 

optimism in Europe about the future of AD, as a sustainable technology for valorisation of biowaste. 

In countries such as Austria, Switzerland and the UK, AD is the preferred technology for processing 
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food waste from supermarkets, catering establishments and households [4]. In European countries 

with a developed biogas sector (e.g. Germany, Denmark and Austria) there are now financial 

incentives to establish covered digestate storages, with the main objective of reducing emissions. The 

UK government has set up 56 actions in its Anaerobic Digestion Strategy and Action Plan to tackle 

barriers to the increased uptake of AD [39]. Some of the challenges identified in this action plan, 

pertinent to reducing their environmental impacts include - improving understanding of the AD 

baseline; building safe and secure markets for digestate; encouraging localism through promotion of 

community AD. The latter is currently being addressed through the Driving Innovation in AD (DIAD) 

programme [116]. Further, in the UK there is increasing effort in co-digesting food waste with other 

organic wastes that would allow the PAS 110 requirements to be met. 

 

 

5. AD operation in the Asia region 

5.1.  Current trends 

AD has a long history in the Asia region, with the first digester built in 1859 in India [117] while 

hydraulic digesters have been widely used in China for nearly a 100 years [118]. Since the 1930s an 

estimated 40 million and 4.3 million bio-digesters, i.e. domestic plants (<1000 m3 biogas day-1), have 

been installed in China and India respectively [118, 119]. However, the majority of these plants are 

processing cattle slurry and farm residues, with huge potentials for recovering the embedded energy 

from organic waste, including OFMSW. The pressing demand for sustainable remedy, overcoming 

the ever-increasing fossil energy costs and environmental issues, are significant challenges driving 

AD innovation in Asia. Entwined is a looming crisis in these countries of efficiently managing 

organic waste (primarily composed of food) in the megacities, which is rapidly increasing day by day 

owing to increasing population, urbanisation and solid waste mis-management [120]. On the other 

hand, in most of the smaller Asian cities the waste management infrastructure is inadequate or is still 

at its infancy [121]. In response, some of the recent literature from Asia have focused mainly on 

biogas generation from AD of MSW [122-124] and other organic feed stocks, for example pulp/paper 

and tanneries [121, 125] identifying huge potentials for exploitation of OFMSW through organised 

AD infrastructures.  

 

The clean development mechanism6 (CDM) has promoted development of medium-sized biogas 

plants across Asia [126, 127]. Further, AD operations have been promoted under waste-to-energy 

(WTE) initiatives in a number of Asian countries under the auspices of financial and supervisory 

support from multilateral donor agencies, including the United Nations Development Program 

                                                             
6 An arrangement under the Kyoto Protocol allowing industrialised/developed countries with a greenhouse gas 
reduction commitment (called Annex B countries) to invest in projects that reduce emissions in developing 
countries as an alternative to more expensive emission reductions in their own countries [126]. 
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(UNDP), the United Nations Industrial Development Organization (UNIDO) and from the Global 

Environmental Facility (GEF). In this context India gained a centre stage in developing a 

decentralised, ‘off grid’ waste-to-energy infrastructure from AD technologies and has led a mission of 

deploying one of the largest renewable energy programmes in the world over the last decade [128], 

through formulation and implementation of a number of innovative policies and programmes 

promoting bioenergy technologies, focusing on AD [129]. Small-scale high-tech biomethanation 

facilities for the treatment of solid waste (municipal bio waste or agricultural solid waste) are 

currently being implemented in large numbers by municipal authorities in India, geared to both waste 

minimisation and energy grid-independence. For example, there has been push for large-scale 

implementation of AD plants with power generation capacity in close proximity to the existing 1500 

small dairy plants, with two-fold results – one, establishing large number of biogas plants; two, 

initiating world-class R&D activities, spearheading development of new technologies and constant 

enhancement of the performance of some of the established ones [130].  

 

5.2.  Environmental compliance 

Environmental sustainability of AD operation in Asia is mainly scoped in terms of its renewable 

energy recovery potential as biogas. Currently, plants processing different feedstocks at difference 

capacities, and put to different end-use, are mushrooming in the absence of a stringent compliance 

regime. The operators mainly tend to subscribe to the notion of rate of economic return on the basis of 

biogas recovery; there is a lack of consolidated environmental best practice and a comprehensive 

regulatory framework covering the entire AD operations, including emphasis on sustainability of the 

supply chain, technology and efficient management of the effluents and solids left post-digestion. The 

priority on environmental compliance is bare minimum, mainly to clear the pollution control 

regulations for the discharge thresholds for air and water emissions [for example, the prescribed 

effluent standards of Central Pollution Control Board in India and Japan of respectively 250 and 160 

mg-COD L-1; the Law on Renewable Energy in China, requiring improved environmental protection 

from renewable energy exploitation [118]; the Law for the Promotion of Utilisation of Biomass in 

Japan [46]].  

 

5.3.  Operational issues 

Despite being familiar with the principles of recovering energy from bio-waste for a considerable 

period of time its successful implementation has been a challenge in Asia. This is fostered through 

lack of skilled management of biogas digesters and follow-up expertise, often leading to failure of a 

number of biogas projects. Therefore, despite the suitability of warm climates for AD operation a 

number of urban AD projects in Asian countries are either underperforming, or have failed. 

Inappropriate technologies, lack of ownership and responsibility of operators, lack of markets for 

biogas and digestate, and weak business models are largely to be blamed for such failures [131]. 



24 

 

Feedbacks/responses from AD operators to a survey questionnaire, conducted as part of this paper, 

show the concerns and challenges, particularly reflecting the technical, social and environmental 

issues from an Indian perspective (Table 7); the majority of the issues in the Asia region seem to be 

related to digestate handling and management with negligible concern for environmental impacts. 

This has direct fall back on the protocols developed to overcome similar operational hurdles in the 

European context (Section 3.3). There is need for follow-up of running plants to ensure their 

environmental performance. There is a gap between aspiration and ground realisation of level of 

success in AD operation in Asia. While, in principle, AD has been considered ideal solution for 

biodegradable waste valorisation, the lack of skilled workforce is resulting in gross underperformance 

- both in terms of underutilised feedstock and increased emissions from processes and post-digestion 

[46]. The latter is leading to exacerbation in the environmental burdens beyond the levels estimated 

theoretically. 

 

The majority of the AD operations in Asia are currently based on small digesters, for example, over 

200,000 small size biogas plant uptake from the Ministry of New and Renewable Energy (MNRE) of 

the Government of India (GOI) initiative [132]. This involves dispersed waste water pollution and 

solid waste management issues with cost-intensive management interventions [133]. The management 

challenges have been further augmented by non-cooperation of government to support decentralised 

pollution abatement initiatives. 

 

 

6. Discussion  

6.1.  Balancing co-digestion trade-offs 

Co-digestion of feedstock has been extensively recommended in the AD literature for attaining 

superior digestion and higher biogas yield; reported studies cover food waste with cattle slurry [20], 

farm residue with animal slurry [25, 134], pig slurry with agricultural biomass [21], energy crops with 

wastes [83, 135], etc. The outcomes have been encouraging, specifically offering major advantages in 

terms of resource conservation, pollution abatement and management costs – the latter based on the 

reported finding that co-digestion can potentially improve the process, since using food waste as a 

sole feedstock can lead to longer-term stability problems from accumulation of VFAs in the digestion 

tanks, occasionally leading to complete seizure of the gas production [24]. Co-digestion has shown 

better buffering capability, especially for two-stage digestion of food-based feedstocks [23]. However, 

there are following impending issues with co-digestion that have to be dealt with prudence to consider 

this as win-win.  

• The lack of knowledge about the environmental impacts (typically for elevation in N-

compounds, e.g. ammonia) of mixing of high energetic feedstocks during co-digestion - for 

example, OFMSW with animal manure [22, 25].  
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• Adhering to the standard protocols for maintaining digestate quality control gets complicated. 

For example, the mandatory requirement for listing the characteristics of the constituent waste 

feeds (e.g. PAS 110, [79]) during co-digestion it is very important that the dry matter and 

nutrient concentrations of each input feedstock are known beforehand. If a feedstock 

originates from agri-food processors or other sources, its delivery and use should be 

accompanied by the appropriate quality assurance declarations, i.e., those that are legally 

required in the respective countries. 

 

• Optimising the location of co-digestion AD plants is driven by both market incentives and 

regulatory requirements. For example, recovery of food waste through anaerobic digestion is 

subject to the Animal By-products Regulation (ABPR) (EC 1774/2002), which is designed to 

protect both animal and human health by preventing the spread of animal disease. Further, 

when off-farm material (e.g. industrial organic residues, biodegradable fractions of municipal 

solid waste, sewage sludge etc.) is co-digested, the digestate can contain various amounts of 

hazardous matter – biological, chemical and physical – that could pose risks for animal and 

human health or cause environmental pollution [136]. These contaminants can include 

residues of pesticides and antibiotics, heavy metals and plant and animal pathogens. The latter 

may result in new routes of pathogen and disease transmission between plants and animals if 

appropriate and stringent controls are not enforced (for example, the EU trans-national EC 

Regulation 1774/2002). 

 

• Enhancement of total GHG emissions from using purpose-grown crops as substrate – mainly 

from two stages, one, CO2 from the use of automated machinery along with fuel and lubricant 

consumption and; two, N2O from digestate use in agriculture (estimated as about 65% and 

25% respectively of the total GHG [134]) . 

 

6.2. Handling multiplicity of AD operation 

The major benefits of AD are that it can provide a local solution to locally arising waste and is a 

scalable solution. Large scale plants treating municipal and commercial food waste have been 

reported to be working just as well as smaller, on site treatment solutions. The concept of a centralised 

anaerobic digester receiving and treating biowastes is well developed in Europe with potential of 

enhancing the financial returns of this approach by economies of scale [20]. The UK has a large 

potential to increase biogas production through centralised, larger scale plants with food waste being 

the main feed [7]. However, the sheer scale of operation may lead to lateral material handling issues, 

for example the bulk of digestate from large plants and the resource investment to meet environmental 
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compliance requirements of smaller plants. Some of the actual AD technologies discussed above seem 

promising, but in order to have a real impact on the waste problem, and to produce a significant 

amount of clean energy, the systems need to be improved and numerously implemented for 

converting indigenous UK waste to energy [37]. Further, increasing agricultural application of 

ammonia-rich digestate can potentially serve as precursors to enhancing the regional aerosol 

concentrations [137], inadvertently generating additional environment impacts. 

 

6.3. Conducting integrated AD assessment 

Ensuring systems scale sustainability of AD for mass deployment, catering to the green waste-to-

energy infrastructure development with least transportation requirements, require an integrated 

assessment framework. Given renewable energy production in the EU, for example, is targeted to 

reach 20% of total energy production by 2020 [26] the transition requires insight into environmental 

consequences of producing renewable energy [21]. We propose the following rigorous evaluation 

steps for environmental burden minimisation: Step 1: the environmental impact/s from status quo 

substrate management and digestate handling procedures of individual AD technologies. Step 2: 

potentials for environmental burden reduction using process enhancement techniques/strategies as 

described in Section 3. From the AD process chain this can be assessed by analysing the potentials for 

minimisation of environmental burdens from pre- and post-treatment activities (Fig 4). For example, 

there is ongoing research to identify future raw materials that can be introduced into the AD, with 

particular focus on algal feed. However, their complex lignocellulosic structure demands for advanced 

pre-treatment steps (in order to guarantee a feasible yield from the AD process) [81] and for adequate 

post-treatment (in order to ensure environmentally benign digestate reutilisation). For example, the 

nutritive values of the digestate can be retained while avoiding direct emissions to air and soil through 

adequate drying prior to application to the field [79]. Another potential area of reducing 

environmental emissions from post-treatment is in the gas cleaning procedures [48] but this is outside 

the scope of our paper and thus would not be included in the discussion. Step 3: the potentials for 

systems scale environmental compliance for distributed AD installations (going beyond process level 

from Step 2), suitable for both community and industrial deployment. For example, the features of 

strategic environmental assessment can be used to assess the potentials for installing small-scale 

decentralised AD plants [38], serving the local energy needs while reducing the adverse impact from 

transportation emissions involved in moving feed and waste procurements to conventional centralised 

AD. 

 

LCA has been considered an appropriate methodological framework to investigate the systems scale 

environmental benefits of AD [58, 138, 139]. An extensive LCA study of integrated AD plants, both 

wet and dry systems, has evaluated the GHG and environmental impacts of the process chain, and 

provide an extensive review of the methane yields of modelled and experimental studies, typically 
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representing the data from Japan, covering a range of processes from pre-treatment to the production 

of recycled products or final disposal as waste [46]. Likewise, a number of recent LCAs evaluating 

the potentials of AD system as biomass valorisation technology for Europe have been conducted, for 

example in the UK [7, 140, 141], in Belgium [5], in Denmark [25, 142], in the Netherlands [21], in 

Sweden [75, 143]. Besides, application of multi-criteria decision making (MCDM) in evaluating the 

potentials of integrated bioenergy schemes have been separately reviewed [144]. Almost all these 

studies endorse the positive contribution of AD by inducing significant resource savings, however, to 

increase AD’s environmental sustainability potentials, it is necessary to control emissions in the 

biogas production chain [5, 7].  

 

Multi Criteria Decision Analysis have been adopted for feasibility assessment of urban AD 

operations, integrating the technical, environmental, financial, socio-cultural, institutional, policy and 

legal framework for developing countries [64, 131]. Based on similar principles, a multi-criteria 

decision support (MCDS) tool has been developed to select the optimal type, scale and locations of 

AD plants by examining feedstock mix combinations, technologies and use of the digestate based on 

scenarios related to economic and environmental issues, including GHG saving, air quality and water 

quality [72]. The latter two have specific focus on diffuse losses to air and water. This tool facilitates 

wide scale application of AD in England and Wales with specific aims of – assessing the economic 

and environmental performance of different AD co-digestion mixes, according to location, feedstock 

availability and use of digestate; quantify the net GHG impacts of these AD mixes to include products 

generated, feedstock production and application to land; quantifying the implications of the range of 

AD systems identified on water/air quality, biodiversity and impacts through land use change; 

identifying the best practice use for the digestates generated by the co-digestions mixes. The 

integrated assessments, made using the above criteria, identify a Pareto-optimal set of solutions to the 

problem of optimal location for AD plants based on system inputs and outputs. The model calculates 

NH3 emission due to digestate in each grid and uses this as the basis for judging relative impact on air 

quality. 

 

 

7. Conclusions 

AD is better known for the economic return derived from biogas for energy rather than for its 

environmental impacts. Environmental assessment of small-scale biomass AD facilities is vital for 

sustainable organic waste management and cleaner energy generation by embedding diffused 

installation capacity. There is a need to evaluate the fitness for purpose of the available AD 

technologies in overcoming the inter-continental barriers in terms of environmental compliance. Thus, 

to realise the real potential for AD to contribute to the circular economy as visualised in Fig 1 — by 

making the best use of finite resources and recycling nutrients back into food production, energy and 
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food security, climate change, air quality and the economy — there are still barriers that the industry 

must overcome. Anaerobic digestion’s multiple benefits can therefore act as a handicap given the 

need for government policy to be joined up across policy areas as diverse as waste, bioenergy, 

transport and agriculture. 

 

This paper highlights the needs for furthering the research in facilitating the role of AD in cross-

sectoral transition of bioenergy market in going from economy of scale to economy of numbers while 

maintaining the environmental benignity of future waste management - linking economic growth with 

energy self-sufficiency potentials of future domestic and industrial waste management. While the 

merits of AD have been widely established in the literature in terms of biogas production and wet 

waste management system this review highlights the need for effective digestate re-utilisation through 

concerted research and development efforts in advancing the protocols for digestate monitoring and 

control, especially ensuring the abatement of environmental burdens to soil and air prior to its field 

applications. We acknowledge that generating this awareness through proof-of-concept pilot studies is 

essential for its long term environmental sustainability alongside its growing application globally as a 

suitable biomass valorisation technology.  

 

This would potentially lead to numerous pathways in addressing the underpinning environmental 

issues in municipal (and industrial) waste/biomass valorisation for energy self-sufficiency through 

assessment of a range of environmental management options and their promotion, thereby 

contributing to development of a robust AD system as a sustainable solution to future waste and 

energy crises.  

 

 

8. Further research challenges 

There remain challenges and barriers to be overcome if this growing industry is to achieve its 

potential in producing renewable energy, treating our organic waste, and creating new sources of 

renewable bio-fertiliser. Current AD technologies are not sufficiently efficient to recover usable 

energy at a cost compatible to fossil fuel. Further, the dispersed sources of feedstock raise enormous 

challenge for sustainable procurement of feedstock on one hand and ensuring the collection, transport 

and pre-treatment to remain environmentally benign on the other, given the majority of these activities 

are still fossil-driven and not cost-efficient. Further work may examine full-scale experience and a 

more integrated and energy-efficient scheme of waste management with the inclusion of subsequent 

digested solids treatment processes (dewatering, transportation, spreading) and biogas utilization 

pathways along with efficient pre-treatment and biogas production methods. Overcoming some of the 

issues raised above, it is envisaged future AD plant concepts will most likely be radically different 

from the concepts that are prevailing today. For example, serial digestion, where several reactors with 
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varying operating conditions are connected, has shown promising results compared to the 

conventional design, where only one main reactor is considered [81]. This is applicable to future AD 

with limited availability of easily digestible organic waste. There is also significant potential of 

bringing new, previously unused waste feedstocks, for AD treatment towards commercialising the 

know-how for industrial application. The recommendation is for proper application of modern sensor 

technology and multivariate data analysis the process can be kept within specifications even at 

significantly higher loads. The possibility for expanding the use of closely related specially designed 

manure analysers to also allow on-field quantification of nutrients applied to farmland during 

fertilising seasons presents another huge unexploited market worldwide.  

 

Along with the technological advancement towards environmental burden minimisation, from the pre- 

and post-digestion stages reviewed in this work, there is also potential for attaining wider 

sustainability of an AD system. This would involve developing a more sustainable structure for 

source-segregated waste disposal and collection and linking it with local AD network. There is need 

to identify the important data gaps in this process and develop a framework towards minimising the 

environmental impacts of AD while promoting its long term viability in sustainable urban metabolism 

as an efficient waste processing technology.  

 

The price of tipping fees received by AD facilities could be influenced by adequate environmental 

burden characterisation of individual loadings – with further implications for upstream transportation 

costs, environmental restrictions and land pressures, as well as competition between facilities 

accepting OFMSW, especially as the sector expands. Public policy will also have an influence (i.e., 

mandatory landfill waste reduction and OFMSW pre-treatment requirements, economic incentives, 

and air quality regulations. This warrants an economic study of the interactions between tipping fees, 

public policy, and the development of OFMSW treatment industries, complementary to environmental 

sustainability of AD presented in this review. While the pollution avoidance from direct AD 

operations has been the plus point of extending its application as a sustainable technology (for 

example, an Australian study valued the environmental cost avoidance for AD at 4.3 $ t−1 in 2007 US 

dollars , see Rapport et al., 2012 for discussion), there are potentials for further fool proofing of AD as 

an environmentally benign technology by adapting the mitigation measures for the issues discussed in 

this study. Such initiatives will have to consider managing of pollution footprints from AD, alongside 

the current drive for its implementation towards GHG mitigation and attaining fossil-independence. 
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TABLE CAPTIONS 

 

Table 1. AD technologies for urban application. 

Table 2. Nutrient content for whole and liquid digestates from different feedstocks (the 

corresponding units are provided in brackets). 

Table 3. Nutrient loading for N-compounds for digestates from different feed stocks 

(Adapted from DEFRA report [39]). 

Table 4. Mean heavy metal concentrations in digestates and in some common AD 

feedstocks (mg kg-1 dry matter). 

Table 5. Snapshot of interventions applied to AD technologies in different countries for 

environmental burden minimisation. 

Table 6. Qualitative comparison between different digestate application methods for 

environmental burden minimisation potentials. 

Table 7. Survey responses highlighting the concerns and challenges to AD operation 

from Indian perspective. 

 

 

FIGURE CAPTIONS 

 

Fig 1. Waste-to-resource conservation loop for Anaerobic Digestion (AD) technology. 

(Adapted from the European Anaerobic Digestion Network [12]). 

Fig 2. Emissions contributions to air and soil from different life cycle stages of AD 

operation. (Adapted from [25]). 

Fig 3. Schematic diagrams of prevalent AD systems employed in treating OFMSW – (a) 

Single-stage, dry digesters commonly found in European countries (Dranco, Kompogas, 

and Valorga respectively from left to right [45]). (b) Two-stage, wet digesters commonly 

employed in Asia (with and without leachate recirculation in the acidogenic reactor 

respectively from left to right [14])[note: 1 - acidogenic reactor; 2 - methanogenic 

reactor; 3 - peristaltic pump; 4 - wet gas meter]. 

Fig 4. Schematic of potential environmental burden minimisation from the pre- and 

post-treatment stages of an AD system. 
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TABLES 

Table 1 

 

AD technology 

 

Comments Operational features Environmental performance evaluation 
Literature 

source 

Continuously-stirred-tank 

reactors (CSTR)  

[Microbial operating temperature 

range: 

Mesophilic: 30-40°C 

Thermophilic: 50-60°C] 

 

 

Available as both single- and two-stage 

digesters but mostly operated as single 

digesters under ‘wet’ conditions with 

total solids (TS) content in the 

digestion body below 100 g kg-1 (w.w.) 

in the mesophilic range. However, 

thermophilic operation has shown to 

fasten the reaction kinetic, reducing the 

digester volume. 

Involves biogas induced 

mixing arrangement (BIMA), 

which is at the heart of 

the process of producing biogas 

with uniform consistency of 

methane (CH4). Usually the 

feed is diluted with re-circulated 

digestate 

Thermophilic operation requires a heat source and 

associated insulation. 

 [23, 145] 

In-storage psychrophilic 

anaerobic digestion (ISPAD) 

[Microbial operating temperature 

range: 

Psychrophilic: 10-25°C] 

 

Suitable for AD of sewage and 

livestock wastes under temperate 

climatic zones with predominantly low 

ambient temperature, performing even 

under winter and autumn conditions.  

Low maintenance cost 

requirements,, enabling 

operators with minimum 

technological know-how to run 

the facility. By definition, 

requires large, air-tight storage 

facility. 

Minimises biogas NH3 content during production 

stage, compared to mesophilic systems. However, the 

conserved total available nitrogen (TAN or NH4 + and 

NH3) is released to the atmosphere during land 

application, resulting in a net loss of nitrogen. 

[36, 146] 

Dry digester 

 

More advantageous AD system for 

processing OFMSW, owing to its 

composition and water content. 

Typically involves transition from 

Reduces the required reactor 

volume; minimises the losses of 

organic matter during pre-

processing operations. 

Lower water and thermal demands and lower number 

of pre-treatments make it as efficient technology for 

resource savings.  

However, higher VOC emissions (mainly alkylthiols 

[46, 48, 53] 
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partially aerobic conditions (~13% v/v 

of oxygen) in the initial phase to full 

anaerobic conditions 

However, usually lower biogas 

yield is reported compared to 

wet digestion.  

and carbonyl compounds) reported during the dry 

anaerobic digestion of OFMSW 

Upflow anaerobic sludge blanket 

UASB reactor 

Widely popular as methanogenic part 

of two-stage AD process, for treatment 

of sewage water with low total solids, 

or for treating the liquid leachate 

obtained from the acidogenic reactor 

(characterised by dense sludge bed in 

the bottom of the reactor).  

Provides stable performance 

even at high organic loading 

rates. Suitable for maintaining 

high sludge retention.  

Requires fresh water for waste simplification 

(hydrolysis and acidification) in the acidogenic stage 

and subsequently generates effluents that require 

discharging to waste stream. Generally involves 

additional pre-treatment steps for enhancing the 

biodegradability of feedstock/ reducing particle size.  

[14, 23, 44, 

53] 
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Table 2 

Feedstock type Digestion 

process 

Total-N RAN (NH4-N) 
 

Total-P (P2O5) Total-K (K2O) Total-Mg (MgO) Total-S (SO2) 

 

Literature source 

Whole digestate 

 

OFMSW 
 
 

mesophilic 7.35 
(5.0) 

[kg m-3] 

5.94 
(4.0) 

[kg m-3] 

0.48 
(0.5) 

[kg m-3] 

1.81 
(2.0) 

[kg m-3] 

0.06 
(0.05) 

[kg m-3] 

0.44 
(0.4) 

[kg m-3] 

[62] 
[61] 

Cattle manure mesophilic 4.40 
[kg m-3] 

2.55 
[kg m-3] 

1.35 
[kg m-3] 

3.49 
[kg m-3] 

0.74 
[kg m-3] 

1.28 
[kg m-3] 

[62] 
 
 

Liquid digestate 

 

Swine manure 
 
 

mesophilic 2.93 
[g L-1] 

2.23 
[g L-1] 

0.93 
[g.L-1] 

1.37 
[g.L-1] 

- - [147] 

Liquid cattle 
slurry 
 

mesophilic 4.27 
[%DM] 

52.9 
[‰ Total-N] 

0.66 
[%DM] 

4.71 
[%DM] 

- - [56] 

Energy crops, 
cow manure and 
agro-industrial 
waste 
 

thermophilic 105 
[g kg-1 TS] 

2.499 
[g L-1] 

10.92 
[g kg-1 TS] 

- - - [148] 

OFMSW, cow 
manure energy 
crops and agro-
industrial waste 

thermophilic 110 
[g kg-1 TS] 

2.427 
[g L-1] 

11.79 
[g kg-1 TS] 

- - - [148] 

Offal, cow 
manure, and 
plant residues 
 

mesophilic 
and 
thermophilic 

0.2013 
[%m m-1 FM] 

0.157 
[%m/m-1 FM] 

274.5 
[mg kg-1 FM] 

736.45 
[mg kg-1 FM] 

- - [77] 

Silage maize and 
Clover/grass 
 

mesophilic 0.253 
[%m m-1 FM] 

0.176 
[%m/m-1 FM] 

0.62 
(%DM) 

18.5 
(%DM) 

  [101] 

RAN - Readily available nitrogen; DM - dry matter; FM – fresh matter; TS – total solids 
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Table 3 

Feedstock type 

 

 

DM 

(%) 

Total-N 

(kg tonne-1) 

RAN (NH4-N) 

(kg tonne-1) 

N2O-N*  

(% of Total-N) 

NH3-N loss** 

(% of RAN) 

OFMSWa 4.3 7.4 5.9 1.17 21.17 
Maize silage 7.4 4.2 3.0 0.87 25.40 
Dairy cattle slurryb 4.2 3.0 1.8 0.89 13.33 
Beef cattle slurryb 4.2 2.3 1.3 0.87 13.04 
Pig slurryc 2.0 4.0 2.8 1.08 13.33 
RAN - Readily available nitrogen; DM - dry matter 
a based on Taylor et al. (2010) [102]. 
b assumes 30% reduction in DM + 10% enhancement in RAN (as percentage of total-N). 
c assumes 50% reduction in DM + 10% enhancement in RAN (as percentage of total-N). 
* Gaseous release to air. 
** Volatilised to air. 
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Table 4 

Feedstock type 

 

Zn Cu Cd Ni Pb Cr Hg Literature source 

Digestate  

Food-based 
 

 
104 

 
21.5 

 
0.9 

 
19.7 

 
6.1 

 
10 

 
<0.05 

 
[102] 

Animal feedstock  

Dairy slurry (UK study) 
 
Dairy slurry (German study) 
 
 
Pig slurry (UK study) 
 
Pig slurry (German study) 
 
 
Poultry (egg layers) 
 

 
196 
 
176 
 
 
870 
 
403 
 
 
423 

 
137 
 
51 
 
 
279 
 
364 
 
 
65.6 

 
0.1 
 
0.2 
 
 
0.3 
 
0.3 
 
 
1.03 

 
3.4 
 
5.5 
 
 
3.9 
 
7.8 
 
 
6.1 

 
4.8 
 
4.8 
 
 
3.5 
 
<1.0 
 
 
9.77 

 
2.9 
 
5.13 
 
 
2.3 
 
2.44 
 
 
4.79 

 
NA 
 
NA 
 
 
NA 
 
NA 
 
 
NA 

 
[61] 
 

[4, 153] 
 
 
[61] 
 
[4, 153] 
 
 
As above 

Crop feedstock 

Grass silage 
 
Maize silage 
 

 
38-53 
 
35-56 

 
8.1-9.5 
 
4.5-5.0 

 
0.2 
 
0.2 

 
2.1 
 
5.0 

 
3.0 
 
2.0 

 
NA 
 
0.5 

 
NA 
 
NA 

 
As above 
 
As above 

Agri-food feedstock 
Dairy waste 
 
Stomach contents 
 
Blood 
 
Brewing wastes 
 

 
3.7 
 
4.1 
 
6.1 
 
3.8 

 
1.4 
 
1.2 
 
1.6 
 
3.7 

 
<0.25 
 
<0.25 
 
<0.25 
 
<0.25 

 
<1.0 
 
<1.0 
 
<1.0 
 
<1.0 

 
<1.0 
 
<1.0 
 
<1.0 
 
0.25 
 

 
<1.0 
 
<0.15 
 
<1.0 
 
<1.0 

 
<0.01 
 
<0.01 
 
<0.01 
 
<0.01 

 

PAS 110 guideline values 
(upper limits for the United 
Kingdom) 

400 200 1.5 50 200 100 1 [79] 

NA – not available 
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Table 5 

Current practice of 

AD technology 

applied 

Sector 
(Municipal/ 

Commercial) 

Type of 

waste 

Reported 

scale of 

operation 

(daily) 

End product (raw 

biogas/ biomethane/ 

CHP) 

Process 

efficiency 

[%] 

Emissions 

handling practice (pre/post 

digestion) 

Study 

location 

[Literature 

Source] 

Slurry separation 
technology 

Commercial Pig Slurry Biogas: 24.4 
Nm3 

CHP Heat: 46 Power: 
40 
 

slurry acidification to reduce 
CH4 and 
NH3 emissions from in-
house slurry storage. 
 

Denmark 
[135] 

Source-segregated 
food waste digestion 

mixture of 
commercial and 
municipal 
sources 

Poultry litter    in situ ammonia removal by 
ammonia stripping. 

UK [149] 

Biogas induced 
mixing arrangement 
(BIMA) 

Cooperative/Co
mmercial 

Dairy Power: 
18000 kWh 

Power  
(IC generator) 

Power: 27 successful adaptation of 
European technology 
(Entec) using  
sulphur adsorption from 
biogas to protect engines 
from corrosion. 

India [150] 

Advanced dry 
digestion 

Urban/ 
Municipal 

Food waste 
(70%)+ 
Paper(30%) 

Biogas: 4920 
Nm3 

 

Power: 
9912 
kWh 

Power 
(IC generator) 

Power: 33 Adding waste paper to food 
waste and enhancing the 
solid retention time (attained 
by 
returning the total solids 
back into the reactor after 
water extraction 

Japan [46] 

Hybrid anaerobic 
solid-liquid system 
(HASL) 

Municipal/Expe
rimental 

Food waste Biogas: 
4.6 L 

Biogas Gas production 
efficiency: 
140 (relative to 
BAU) 

Leachate recirculation in  
acidogenic reactor; enhanced 
biogas production, water re-
use and effluent reduction  

Singapore [14] 

Inclined thermophilic 
dry anaerobic 
digestion 
system (ITDAR) 

Municipal/Expe
rimental 

Food waste, 
FVW, 
Green 
waste, 
Office 
papers 

Biogas: 
770-1155L 

Biogas  adjusting the carbon to 
nitrogen (C/N) ratio by 
mixing of feedstock and 
digestate recycling achieved 
30% reduction in ammonia-
N in digestate.  

Thailand [19] 
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Table 6 

 

 Trailing hose Trailing shoe Shallow injection Splash plate 

 

Qualitative [4, 151]        

 

Ammonia volatilisation Medium Low Low (negligible) High 
Crop contamination Low Low Very Low High 
Wind drift  Minimal Minimal Negligible High 
Odour Medium Low Very Low High 
Air exposure Low Low Very Low High 
Application cost Medium Medium High  Low 
Quantitative [34] 

(as % total N applied) 

 

NH3-N loss  
NO3-N leached  
 

48 
13 

- 
- 

- 
- 

63 
15 
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Table 7 

AD category 

 

Drive for AD adoption Management concerns Operational challenges 

Poultry 

 
 
 
 
 
 
 
 
 

• Environmental concern 
– odour management 

• Electricity generation 

• Digestate management – 
liquid effluent handling 
and transportation issues 

• Acceptability of liquid 
manure by farmers – 
potential for weed 
germination hampering 
wide acceptance. 

 

• Feedstock characteristics – 
high N-toxicity requiring 
pre-treatments, e.g. 
nitrogen-stripping. 

• Limited number of success 
stories to benchmark the 
standard practice. 

Fruit and 

Vegetable Waste 

(FVW) 

 
 
 
 
 
 
 
 
 
 

• Reducing solid waste 
 

• Irregular supply of 
feedstock owing to 
seasonality  

• Supplementary feedstock 
procurement (for co-
digestion) 

• Stabilisation of digestate to 
minimise residual biogas 
formation during storage 
and/or land application. 

• Maintaining a continuous 
AD operation. 

• Overcoming rapid 
acidification of the reactor 
from high volatile solids 
content. 

• Enhancing biogas yield by 
controlling inhibition of 
methanogens 

Organic Fraction 

of Municipal 

Solid Waste 

(OFMSW) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Reducing demand for 
landfilling 

• Extraction of embedded 
energy for heating and 
power 

• Compliance with 
pollution control norms 

• Heterogeneity of the waste 
feedstock – results in 
varying organic loading 
rate 

• Stable AD operation 
(nutrient imbalance). 

• Digestate management – 
processing the solid 
manure and marketing. The 
latter mainly from issues of 
weed germination. 

• Stabilisation of digestate to 
minimise residual biogas 
formation during storage 
and/or land application. 

• Source-segregation of the 
organic fraction 

• Adapting the technology to 
waste profile 

• Remediation of scum 
formed in digester tank 

• Online monitoring of the 
emissions profile from 
digester and digestate 
storage. 

Slaughterhouse 

waste  

 
 
 
 
 
 
 
 
 
 
 
 
 

• Environmental 
compliance 

• Potential for embedded 
energy recovery 

• Sustainable waste 
management and 
pathogen elimination 

• High HRT requiring longer 
processing time and larger 
digester 

• Waste handling and 
management –social 
acceptance  

• Digestate management – 
processing the solid 
manure and marketing  

• Social acceptance of 
digestate application as 
bio-fertiliser  

• Design challenges in 
reducing the energy 
demand by reusing waste 
heat within the system for 
pasteurisation and 
thermophilic digestion. 

• Feedstock processing and 
protein management (high 
N-toxicity), requiring pre-
treatments, e.g. nitrogen-
stripping. 
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Dairy (liquid 

waste) 

 
 
 
 
 
 

• Environmental 
compliance 

• Potential for embedded 
energy recovery 

• Sustainable waste 
management and 
pathogen elimination 

• Managing high-volume 
feedstock on regular basis 

• Low biogas yield per unit 
volume of substrate 

• Need for a co-operative 
waste management 
approach for sustainable 
AD operation 
 

• Achieving low rate of 
return over short period, 
owing to high volume 
operation infrastructure 
required. 

• Effective policy for 
promoting co-operative 
waste management culture 
among societal groups. 

Cattle manure 

 

 

• Manure management 
• Reduce GHG (CH4) 

emission 
• Local air pollution 

abatement (mainly 
wastewater and solid 
waste) 

• Recovery of energy for 
local heating and 
electricity.  

• Needs immediate 
processing within 2-3 days 

• low biogas yield, requiring 
high volume processing 
with overall low economic 
returns 

• Manure handling, 
processing (e.g. decanting, 
scum removal) and storage 
requirements 

 

• Additional water 
requirement for preparing 
homogenous slurry 

• Improvement of digestion 
efficiency through co-
digestion of organic feed 
requires careful nutrient 
management 

• Removal of heavy metals 
from digestate (introduced 
through animal diet) 

Waste water 

sludge 
 

• High nutritive feedstock 
• Odour reduction 
• Provision of regular 

feedstock, suitable for 
co-digestion,  

• Complying with 
pollution control norms 
 

• Storage and pre-treatment 
requirements 

• Additives from waste water 
treatment (coagulants, 
flocculants) tend to settle at 
the bottom of digester, 
impeding digestion, and 
over time reduce the HRT 

• Stabilisation of digestate to 
minimise organic loads 
prior to land application. 

• Energy intensive operation 
(heavy duty sludge pumps, 
stirrers) for slurry handling   

• Nutrient recovery from 
biowaste 

• High sulphur content, 
requiring additional costs 
for post-digestion gas 
cleaning, specifically 
removal of H2S.  
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Fig 2 
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Fig 3 

 

 

 

  



50 

 

 

 

Fig4 

 

 

 


