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Abstract 

This study reports application of monitoring and characterization protocol for particulate matter (PM) 

deposited on tree leaves, using Quercus ilex as a case study species. The study area is located in the industrial 

city of Terni in central Italy, with high PM concentrations. Four trees were selected as representative of 

distinct pollution environments based on their proximity to a steel factory and a street. Wash off from leaves 

onto cellulose filters were characterized using scanning electron microscopy and energy dispersive X-ray 

spectroscopy, inferring the associations between particle sizes, chemical composition, and sampling location. 

Modeling of particle size distributions showed a tri-modal fingerprint, with the three modes centered at 0.6 

(factory related), 1.2 (urban background), and 2.6 μm (traffic related). Chemical detection identified 23 

elements abundant in the PM samples. Principal component analysis recognized iron and copper as source-

specific PM markers, attributed mainly to industrial and heavy traffic pollution respectively. Upscaling these 

results on leaf area basis provided a useful indicator for strategic evaluation of harmful PM pollutants using 

tree leaves. 

 

 

Keywords: Air pollution; EDX; Human health; Particulate matter; SEM; Urban trees 
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1. Introduction 

For over a decade, Particulate matter (PM) has remained the focus of longitudinal studies associating ambient 

pollution exposure with potential human health effects (Dai et al., 2014; Cheng et al., 2013; Anderson et al., 

2012; Dockery et al., 1993; Kumar et al., 2011; Samet et al., 2000). Several sampling and analysis 

methodologies have evaluated the quality of urban PM for a range of environments, including traffic (Pant 

and Harrison, 2013; Grigoratos and Martini, 2015), indoor metro stations (Lu et al., 2015; Querol et al., 2012), 

industries (Deshmukh et al., 2012), and the wider suburbs (Blanco et al., 2003). Human health is shown to be 

affected more by enhanced exposure levels to cumulative PM (mainly associated with pulmonary diseases) 

or their chemical composition (Donaldson and Seaton, 2012; Warheit et al., 2007) than by single events of 

acute pollutant concentration (Kariisa et al., 2014). For instance, exacerbated exposure to iron (Fe) particles 

has been suggested to directly affect human cell permeability (Apopa et al., 2009). 

Trees have been found effective in PM removal in cities (Escobedo et al., 2011; McDonald et al., 2007; Tiwary 

et al., 2009). This has led to new urban tree planting programs, prioritizing tree species selection with greater 

pollution mitigation potential, alongside choosing strategic locations for their optimal outcomes (Calfapietra 

et al., 2013; Llausàs and Roe, 2012; Morani et al., 2011). Unlike other gaseous pollutants which are mainly 

removed via stomatal flux, gravitational and/or inertial deposition on lamina and tips have been considered 

the main PM removal mechanisms for leaves (Beckett et al., 1998; Hofman et al., 2014a; Popek et al., 2013; 

Tiwary et al., 2006; Tomašević et al., 2005). 

The influence of leaf shape and morphology on PM deposition has also been extensively studied 

(Dzierzanowski et al., 2011; Freer-Smith et al., 2005; Popek et al., 2013; Song et al., 2015). The canopy-scale 

PM reduction potentials have been assessed through measurement campaigns (Jin et al., 2014; Peachey et 

al., 2009) as well as through empirical modeling approaches (Nowak et al., 2008), elucidating the role of the 

morphological (e.g. canopy structure, tree assemblage, leaf dimension, etc.) and the locational characteristics 

of urban trees in PM removal. Moreover, it is noteworthy that a large PM deposition on leaves can alter leaf 

physiology, thereby further influencing the air pollution mitigation potential of trees (Calfapietra et al., 2015). 
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This study reports the development of a monitoring and characterization protocol for leaf-level PM deposits 

in urban environments. Leaves of trees, located at strategic points within the study area, have been used as 

natural passive PM samplers to determine the associations between particle size, chemical composition, and 

their locational influences (if any). The first part describes the methodology adopted, specifcially elaborating 

on the customization of the sampling and analysis techniques to estimate the leaf-level PM quality. This is 

followed by its implementation to a case study and a brief description of the obtained results. The study 

concludes with a discussion on the application potentials of the proposed leaf analysis approach as a useful 

indicator for strategic evaluation of human exposure to harmful PM pollutants on a routine basis, typically 

applicable to industrial cities. 

 

2. Materials and Methods 

2.1 Study Area 

The study area is the industrial city of Terni, located in the Umbria region of central Italy with approximately 

112,000 inhabitants. This site has been chosen as it is the most industrialized city in the region, characterized 

by high average levels of PM10 concentration in the air (Sgrigna et al., 2015) (www.arpa.umbria.it). Three 

industrial hubs are included in the Terni urban area (Capelli et al., 2011), among which the “Thyssen Krupp 

AST” (Acciai Speciali Terni – Special Steels Terni) steel factory is located in the eastern part of the city, 

occupying an area of approximately 158 ha. The city is located in a valley, surrounded by two main mountain 

chains together with a smaller one (Cattuto et al., 2002). Apparently, the presence of industrial hubs and 

urban activities within the valley has been contributing to several recorded exceedances of PM concentration 

throughout the year, particularly over stable atmospheric conditions during the winter and the summer 

months (www.arpa.umbria.it). 

 

2.2. Sampling and filtering 

http://www.arpa.umbria.it/
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Leaf samples were collected from four trees of Quercus ilex (holm oak, approximately 10 m high) on 23 August 

2012. The trees were located in two different parts of Terni, and were considered as representative of the 

distinct site characteristics in terms of their proximity to a street and/or to the steel factory. Figure 1 provides 

a spatial reference to this site, along with a wind rose of the study area, specifically depicting the areas 

considered as far from and close to the steel factory (FF, spot 1, and CF, spot 2, respectively). The effect of 

the steel factory on trees was established from peak PM deposition, in consistency with the local 

environmental control stations, estimated on the basis of the height of the industrial stacks and the prevailing 

winds (Sgrigna et al., 2015; Tadmor, 1971). For each study location, two sampling trees were selected at 

different distances from a traffic PM source, far from other pollutant sources: one on the side of a street with 

an average traffic between 330 and 430 vehicles h−1 (street tree, S) and the other in a park at a distance of 

about 25 m from streets and surrounded by other trees (park tree, P). The four sampled trees were identified 

by the following codes and coordinates: FFP (42°34’46.69’’ N, 12°37’31.19’’ E); FFS (42°34’47.26’’ N, 

12°37’31.55’’ E); CFP (42°33’05.75’’ N, 12°38’53.09’’ E); and CFS (42°33’14.58’’ N, 12°38’56.29’’ E). 
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Figure 1 – (a) Geo-referenced map showing the sampling areas (FF and CF respectively highlighted as 1 and 

2), the steel factory area within the city borders (striped area on the eastern side), the chemical pole (gray 

areas in the south-western side), and the waste treatment area (north-western side); (b) wind rose showing 

the prevailing wind in the study area (annual average, 2012). 

 

Approximately between 300 and 500 cm2 of leaf area was sampled for each sampling tree, at two sampling 

heights (8 and 2 m). Leaves from street trees were gathered from the street-facing sides. Sampled leaf 

material was separately washed in micro-distilled water, followed by filtration using quantitative filter papers 

according to the standard protocols (Dzierzanowski et al., 2011; Freer-Smith et al., 2005; Sgrigna et al., 2015). 

First, PM > 10 µm were removed from the wash off using filters with porosity between 10 and 13 µm (Anoia 

S.A., Barcelona, code 1250). Then, coarse and fine PM 2.5 were collected on filter papers with porosity 

between 2 and 4 µm (Anoia S.A. Barcelona, code: 1244); such filters were then used for PM characterization. 

 

2.3 Scanning Electron Microscopy and Energy-Dispersive X-ray spectroscopy analyses  

Particle size and elemental composition of PM fixed on cellulose filters were obtained through scanning 

electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analysis, respectively. These data 

allowed us to estimate the total collected volume of the different elements on sampled leaves and the 

corresponding upscale on the leaf area basis. Previous studies have applied SEM/EDX analysis for in situ PM 

monitoring on the leaves of trees and shrubs (Lorenzini et al., 2006; Lu et al., 2008; Sawidis et al., 2011; Simon 

et al., 2014; Tomašević et al., 2005), usually associated with atomic absorption measurements. However, our 

methodology focused on quantifying the insoluble part of PM, by washing the leaves (Dzierzanowski et al., 

2011; Freer-Smith et al., 2005; Sgrigna et al., 2015) and analyzing the residue of the wash off on cellulose 

filter. This procedure enabled selection of the most persistent particles, which often tend to be accumulated 

on the majority of exposed surfaces, including human epithelial tissues (Anderson et al., 2012). 
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SEM/EDX analyses were performed on filter pairs from each sampling height. Two fragments of area 1 cm2 

were cut from each filter, one at the center and the other at the border, and analyzed. A Phenom ProX 

microscope (Phenom-World BV®, The Netherlands, 2014) with dedicated Phenom Pro Suite software was 

used. Imaging and elemental data were acquired at an incident electron energy of 15 KeV. 

Random images with a scan size of 30 × 30 µm were acquired, at a resolution of 1024 × 1024 pixels. A 

representative image is shown in Figure 2a. Approximately 200 particles were randomly selected per filter 

(100 per fragment), totaling to 3129 particles altogether (about 400 particles at each of the two heights, for 

the four trees). For every particle, the diameter of the equivalent sphere (deq) was obtained by averaging the 

two main Feret diameters (Merkus, 2009), as measured by ImageJ open source software (Rasband, W.S., 

ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997-2014). On the basis of the chosen 

imaging conditions (30-µm scan size, at a resolution of 1024 × 1024 pixels), particles with deq < 100 nm (i.e. 

effective width < 3 pixels) were excluded from the analyses. 

 

Figure 2 - (a) Representative SEM image showing PM on a paper filter fragment; the two main Feret diameters 

of the largest particle are marked by red arrows; the laser beam position during the acquisition of the EDX 

spectra from the selected particles is indicated by black crosses; (b) representative EDX spectrum of an iron-

containing particle. 
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Particle deq distributions were assumed to follow a lognormal behavior, as expected for particles grown under 

Brownian coagulation (Lee and Chen, 1984), condensation (Söderlund et al., 1998), or nucleation (Ackermann 

et al., 1998). Lognormal functions are generally used to describe aerosol particle dimensions (William C. 

Hinds, 1999), and also in specific cases such as marine aerosol (Smith et al., 1993) or biomass burning aerosol 

emissions from vegetation fires (Janhäll et al., 2009). Multi-modal lognormal fitting was performed using 

OriginPro 8.5 software (OriginLab®, Northampton, MA, USA), and each mode was described following 

Equation 1. 

𝑓(𝑥)𝑋,𝜎 = 𝐴 
–

(𝑙𝑛𝑥−𝑙𝑛𝑋)2

2𝜎2

𝑥√2𝜋 𝜎
              (1) 

where, A represents the abundance of each mode in terms of relative frequencies; X is the mean diameter; 

and σ is the standard deviation. Models with different number of modes were compared based on the 

adjusted r2 and reduced χ2 values, as obtained by the analysis software; the number of modes being increased 

until adjusted r2 > 0.95 and reduced χ2 < 0.5 were obtained. 

EDX spectra for the elemental analysis were obtained by positioning the laser beam in the center of randomly 

selected particles (black cross markers in Figure 2a). A representative EDX spectrum is shown in Figure 2b. 

The main elements identified in the particles were C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, 

Cu, Zn, Mo, Sn, Sb, Ba, W, and Bi. Particles showing only C, N, and O were excluded from the analysis, because 

of the uncertainty of EDX in quantifying those lighter elements and the difficulties introduced by the use of 

cellulose filters as substrates (Wilkinson et al., 2013). 

A semi-quantitative estimation of the elemental composition was obtained by calculating the weighted 

volume percentage (W%) occupied by each element x over the N selected particles. This was obtained as a 

product of the composition C (as percentage) of each element x on each particle i (Cxi, as obtained by the EDX 

software) and the corresponding particle volume Vi, as obtained by the diameter of the equivalent sphere 

deq (Vi = 4/3 π (deq/2)3). Then, for each element x these volumes were summed together, and the sum was 
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normalized by using the total analyzed particle volume. The resulting W% for each element x was obtained 

following Equation 2. 

𝑊%𝑥
 =  

∑ 𝐶𝑥𝑖×𝑉𝑖
𝑁
𝑖=1

∑ 𝑉𝑖
𝑁
𝑖=1

                 (2) 

 

2.4 Principal Components Analysis 

The elemental composition of PM obtained for the different sites was further analyzed through principal 

component analysis (PCA), as a statistical multivariate approach using Statistica 7.0 software (StatSoft Inc. 

USA, 2004). The results of the PCA based on covariance were applied to the EDX data set, allowing 

interpretation of the site differences (as weighted percentages) and relationships between detected 

elements and the sampled tree locations. 

The variables considered for the PCA were the values of W% of those elements which were recorded at all 

sites as >0.2% (i.e. F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Fe, and Cu). The remaining low-concentrated 10 elements 

(Cr, Mn, Ni, Zn, Mo, Sn, Sb, Ba, W, and Bi) were treated as a single “residual” variable (Wilkinson et al., 2013). 

C, N, and O were excluded from the PCA for the reasons mentioned in Section 2.3. The selected 14 PCA 

variables were then normalized; the resulting PCA input matrix is reported in detail in the Supplementary 

Material (SM1). 

 

3. Results 

3.1 Particle size distribution 

The measured particle equivalent diameters (deq) ranged between 0.1 and 10 µm, with up to 97% of the 

particles in the size range 0.1–5.0 µm. The average particle dimension for the entire sample was found to be 

1.57 ± 0.06 μm. The mean deq measured at the four sampling sites were: 1.6 ± 1.4 μm (FFP), 1.7 ± 1.3 μm 

(FFS), 1.4 ± 1.4 μm (CFP), and 1.6 ± 1.3 μm (CFS); such values being not statistically different. The histograms 
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in Figure 3 show the distributions of the PM equivalent diameter (deq) at the four sites, considering the total 

particles collected for each tree. The curves resulting from the applied multi-modal lognormal fitting 

procedure are also shown alongside, and the corresponding parameters have been listed in Table 1.  

 

Figure 3 – Equivalent diameter (deq) distributions and their multimodal fitting, at the four sampling sites: (a) 

FFP – park site far from the factory; (b) FFS – street site far from the factory; (c) CFP – park site close to the 

factory; and (d) CFS – street site close to the factory. Dashed line: Background mode; dash-dot-dot line: Street 

mode; dotted line: Factory mode; solid line: sum of the modes. 

 

The following key observations were made - park tree far from the factory (FFP) was considered as 

representative of the city background pollution signal: its deq distribution (Figure 3a) is well described by a 

single lognormal mode (labeled as “Background” in Table 1), which is centered at about 1.24 µm and has a 

standard deviation σ = 0.49 ± 0.01 µm. On the contrary, the distribution of the particles collected far from 

the factory but close to the street (FFS) could not be adequately described by a single lognormal function, 

neither centered at 1.2 µm (fixed position) nor with free center position (which resulted to be at 1.3 µm), 

based on the adjusted r2 and reduced χ2 values. A suitable fitting function for this distribution was obtained 
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only after addition of a second mode centered at a higher deq with respect to the “Background” mode at 1.2 

µm (Figure 3b). This additional mode (labeled as “Street” in Table 1) resulted to be centered at about 2.6 µm, 

with a standard deviation of 0.23 ± 0.05 µm. The spread for the “Background” mode deq distribution was 

found to be similar to that observed at the FFP site (σ = 0.41 ± 0.02 µm). Similarly, the deq distribution of the 

particles collected far from the street but close to the factory (CFP) required an additional mode to be 

adequately described as well. This additional mode (labeled as “Factory” in Table 1) resulted in a shift toward 

lower diameters with respect to the “Background” mode, being centered at about 0.58 µm, with a spread of 

σ = 0.46 ± 0.04 µm (Figure 3c). Finally, the deq distribution obtained from the tree close to both the street and 

the factory (CFS) is shown in Figure 3d. It was tentatively fitted by adding a single mode to the “Background” 

one, as done for the other two sites, with unsuccessful results. A good fitting curve was obtained only by 

imposing a tri-modal model. In particular, the fitting curve obtained by summing three lognormal functions 

centered at 0.6, 1.2, and 2.6 µm (fixed fitting parameters) is shown in Figure 3d. Notably, the resulting 

standard deviation of each mode (free fitting parameters) was in line with those obtained for the deq 

distributions at the other sites. 

 

Table 1 – Multi-modal fitting parameters for equivalent diameter distribution (deq): mean diameter (X), 

standard deviation (σ), and relative abundance (A) for the three detected modes (“Factory,” “Background,” 

and “Street”). The statistical error value on the X parameter is missing for those modes whose position was 

kept fixed during the fitting procedure. The relative model statistics (adjusted R2 and reduced χ2) are reported 

for each fitting. 

Mode Factor Sampling site 

   FFP FFS CFP CFS 

Factory X - - 0.58 ± 0.03 0.6 

 σ - - 0.46 ± 0.04 0.43 ± 0.05 

 A - - 6.7 ± 0.4 1.3 ± 0.4 

Background X 1.24 ± 0.01 1.2 1.2 1.2 

 σ 0.49 ± 0.01 0.41 ± 0.02 0.50 ± 0.03 0.51 ± 0.08 

 A 18.9 ± 0.4 13.9 ± 0.6 12.1 ± 0.9 13.3 ± 0.4 

Street X - 2.6 ± 0.1 - 2.6 
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 σ - 0.23 ± 0.05 - 0.14 ± 0.06 

 A - 4.3 ± 0.8 - 4.3 ± 0.5 

Adj-R 2  0.98 0.97 0.99 0.98 

Red-χ 2  0.22 0.42 0.15 0.28 

 

Identical fitting procedures were applied at the deq distributions obtained by separately analyzing the 

particles collected in the lower and upper parts of the tree crown. The distributions corresponding to the 

same tree were well fitted by the same number of modes, centered at the same positions, but with a relative 

frequency ratio depending on the crown height. For instance, the deq distributions of particles collected far 

from the factory but close to the street (FFS) at different crown heights are shown in Figure 4, and it is evident 

that the “Street” mode is much intense at the lower sampling height. The relative abundances A of the three 

modes, as obtained by separately fitting the deq distributions of particles collected at the aforementioned 

two sampling heights, are presented in Table 2. 

 

 

Figure 4 – Equivalent diameter (deq) distributions and the corresponding multi-modal fitted curves for particles 

detected at the FFS sampling site: (a) upper part of the tree crown; (b) lower part of the tree crown. Dashed 

line: “Background” mode; dash-dot-dot line: “Street” mode; solid line: sum of the modes. 
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Table 2 – Relative abundance (A) for the “Street” and “Factory” modes as obtained by lognormal multi-modal 

fitting of the deq distributions of particles separately collected at the upper (8 m) and lower (2 m) parts of the 

crown for the FFS, CFP, and CFS sites. 

Mode Peak Particle Abundance 

  FFS-Up FFS-Low CFP-Up CFP-Low CFS-Up CFS-Low 

Street X = 2.6 µm  1.0 ± 0.6 13.4 ± 0.8 - - 1.0 ± 0.7 4.2 ± 1.7 

Factory X = 0.6 µm  - - 7.3 ± 0.7 5.9 ± 0.3 6 ± 1 1.6 ± 0.9 

Background X = 1.2 µm 15.9 ± 0.8 6.8 ± 0.5 12.9 ± 0.5 15.3 ± 0.6 12.6 ± 0.4 12.1 ± 0.5 

 

The abundance of larger particles was more prominent in the lower part of the crown for PM collected close 

to the street, both far (FFS) and close (CFS) to the factory. On the contrary, negligible vertical profiling in the 

PM population of fine particles for PM collected close to the factory were found, both at the park (CFP) and 

the street (CFS) sites. A minor relative abundance was obtained only in the lower part of the tree crown close 

to both the factory and street (CFS-Low), likely due to the significant relative intensity of the “Street” mode 

particles. It is noteworthy that the histogram areas were normalized, and the relative abundances do not 

represent the number of particles belonging to the specific mode, but their relative frequency. This explains 

the differences observed in the relative abundance of the “Background” mode among the different sites. 

 

3.2 EDX analysis 

The weighted volume percentages (W%) of the selected elements in the PM samples are shown in Figure 5. 

They represent the 29.0 ± 0.3% of the total particle volume detected (i.e. 29.2% at FFP, 30.0% at FFS, 28.5% 

at CFP, and 28.7% at CFS). The highest concentrations were observed for the “natural elements” (Na, Al, Si, 

K, Ca, and Fe), which can be attributed to the “crustal component” aerosol group (Amato et al., 2009; 

Lorenzini et al., 2006) or the “soil dust” component (Paoletti et al., 2003), and thus they are generally 

classified as “city dust” (Viana et al., 2008). 
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Figure 5 – Weighted volume percentages (W%) of the major elements and the trace elements (inset) obtained 

from EDX analyses. W% measured at the different sites are shown on a gray scale (white - black), respectively 

representing FFP, FFS, CFP and CFS. 

 

Significant differences in the metal concentrations for Fe, Cr, Ni, Sb, Ba, and Bi were observed in all areas, 

but their concentrations were at least three-fold at the site close to the factory (CF) than those far from it 

(FF). In particular, the Fe concentrations at the CFP and CFS sites were even higher than that of Na, K, and 

Ca. Trace metal elements, such as Mo, Sn, and W (Figure 5, inset) were observed only on samples close to 

the factory. Notably, both Cr and Cu were recorded at higher concentrations close to the streets (at both CFS 

and FFS). It is worth noting that Ti concentration showed a rather erratic pattern – the sites FFP and CFS 



15 
 

showed comparable concentrations, while only trace amounts were detected at both CFP and FFS sites; no 

correlation with the main sources considered in this study could be inferred. 

 

3.3 Principal Components Analysis 

Three principal components (PCs) were obtained from PCA. The PC projection on original variables, 

eigenvalues, and explained variance have been shown in the Supplementary Material (SM2). A clear 

distinction of the four sites (cases) was obtained by plotting their factor scores in the bi-dimensional plane, 

defined by PC1 and PC3 (Figure 6a). The horizontal axis is described by the most powerful component (PC1), 

which separates the sites close to the factory (CF sites, left-hand side of the plot) from those far from it (FF, 

right-hand side of the plot). The variable on the vertical axis of the plot in Figure 6a is PC3, which separates 

park (P, lower part of the plot) from street (S, upper part of the plot) sites. 

The modeled representation was interpreted through the PC loadings, showing the driver elements for the 

considered factors and their relative weights. As shown by the variable loadings in Figure 6b, PC1 is 

distinguished between sampling sites characterized by Fe abundance (CFP and CFS), and the sites were 

dominated by the presence of Si, Al, and Ca (FFP and FFS). PC3 loadings indicated that the street sites were 

characterized by high Cu concentrations, whereas park sites were associated with a higher presence of Mg. 

PC2 was not included in the analysis, as the projection of the cases on this factor did not generate a clear 

output within the context of this case study. As shown by the PC projections on original variables shown in 

SM2, PC2 was mostly driven by Ti, whose concentration were found to be poorly correlated with the sources, 

as indicated previously in Section 3.2. 
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Figure 6 – Principal component analysis: (a) model representation of sampling sites separation; (b) relative 

variable loadings. 

 

 

3.4 Quantitative and qualitative data comparison 

The data acquired from EDX analysis were finally used to assess the quality of PM at the sampling sites and 

their differential effect on the accumulation of elements. W% values were combined with quantitative data 

of PM deposition on leaf area basis calculated from the filter weights (Sgrigna et al. 2015). The assessment 

identified key elements as polluting markers: Fe for steel factory and Cu for road traffic. Table 3 presents the 

estimates of Fe and Cu removed per leaf area unit (mg m−2) at the four sites, which were obtained as the 

product of W% and the quantitative data resulting by weighing the same filters analyzed through SEM/EDX 

(Table SM3). The highest values of removal for Fe and Cu were found close to the factory, at the park (CFP) 

and street (CFS) sites, respectively. 

 

Table. 3 – Upscaling of Fe and Cu concentrations on leaf area basis in the four sampling sites. 

mg m−2 FFP FFS CFP CFS 
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Fe 2.7 ± 0.7 2.6 ± 0.6 8.4± 2.0 6.7 ± 1.5 

Cu 0.005 ± 0.001 0.019 ± 0.004 0.19 ± 0.5 2.6 ± 0.8 

 

 

4. Discussion 

The mean particle diameter values separately obtained by the SEM analysis from the four sampling sites were 

almost homogeneous, and the mean particle diameter determined on the whole sampling set (1.57 ± 0.06 

μm) was in line with typical dust particle size in an urban environment (Blanco et al., 2003; Ondráček et al., 

2011). However, analyzing the particle size distribution through lognormal functions, multi-modal fitting 

procedures revealed significant differences between the sites. In particular, three particle size families were 

identified, whose relative abundance changed between the sites and with distance from the ground. These 

particle families were associated with three fitting modes, labeled “Background,” “Street,” and “Factory,” 

with their distributions centered at about 1.2, 2.6, and 0.6 μm, respectively.  

Our aforementioned particle classification corroborates with Pugatshova et al. (2007), belonging to the 

following two typical groups of PM from urban environments: the accumulation range (between 0.1 and 1 

µm) and mechanical aerosols (>1 µm). The latter class is also defined as “coarse particles.” Morawska et 

al.(Morawska et al., 2008) distinguished such particle classes also based on their origin: fine particles (PM < 

1 µm) are linked to anthropogenic sources that involve high-temperature processes, although minor 

contributions from mechanical material abrasion cannot be negated; coarse particles (PM > 1 µm) are mostly 

generated by mechanical actions such as material abrasion and/or dust resuspension, and are largely 

associated with anthropogenic activities. 

The 1.2-µm peak (“Background”) describes the most important group of particles. The distributions reported 

in Figure 3 demonstrate that “Background” particles are included in both the “accumulation” (< 1 µm) and 

“coarse” (> 1 µm) range. This group is reasonably describing a family of particles generated by multiple 
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sources, most likely including the contributions from the streets and the nearby factory. In addition, the 

presence of larger particles (> 1 μm) together with the typical accumulation range group could be due to the 

transient temporal shift in their size range, mainly attributed to particle coagulation up until deposition on 

the leaf surfaces. It is noteworthy that the particles analyzed in this study pertain to accumulated dust on 

leaves, and are not directly acquired from ambient atmospheric measurements. The large amount of coarse 

particles in our samples (acquired from the leaf wash off) also contribute to the lifetime of this size class, 

which is considered as the more persistent group of particles among all the PM classes (Willeke and Whitby, 

1975). Further, due consideration should be given to the possible particle aggregation that might have 

occurred during the solution phase (Hofman et al.(2014b). 

The mode centered at around 2.6 µm (Street) essentially comprised coarse particles, and was mainly 

attributed to traffic sources following interpretation from previous research linking the coarse fraction to 

tyre wear, road abrasion, and re-suspended dust (Harrison et al., 2012; Lenschow et al., 2010; Ondráček et 

al., 2011; Pant and Harrison, 2013; Thorpe and Harrison, 2008). The relative abundance of such particles in 

the lower part of tree crown depicts the availability of their source at the ground level, which could be either 

through direct emission or particle resuspension. Moreover, their mean weight (due both to their size and 

elemental composition) inhibits rapid particle diffusion at higher crown levels. However, abundance of coarse 

particles in the lower crown could be also related to their removal from the upper crown under 

meteorological influences (Przybysz et al., 2014; Willeke and Whitby, 1975). 

The mode centered at 0.6 µm, mainly representing the particles in the accumulation range, has been 

associated to factory-derived PM. This is consistent to a previous study conducted in the city of Shanghai 

(China), which also noted a mode centered at 0.6 µm, characterized by a large steel industrial district while 

analyzing the PM size distribution from three different urban sites (suburban, urban, and industrial) using 

lognormal curve fitting (Waheed et al., 2011). Therefore, we can suggest considering this peak as a fingerprint 

of the PM associated with steel factory. Similar abundance (A) at any crown height, for both the sampled 

trees close to the factory (CFP and CFS), suggests a homogeneous diffusion capability of the “Factory” mode 
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particles. On the other hand, the lower relative abundance registered at the lower crown level of street tree 

indicate the limitations of “Street” mode particles. 

The differences evidenced by particle size distribution analysis between the sampling sites have been 

substantiated through elemental analysis. This is particularly evident when associating Fe concentration to 

the steel factory, from both the weighted volume percentage analysis (Figure 5) and PCA results (Figure 6). 

However, several studies have also identified Fe having origins from traffic sources (Adamo et al., 2008; 

Amato et al., 2009; Ault et al., 2012; Catinon et al., 2013; Maher et al., 2008), and somehow the comparison 

between samples from FFP and FFS sites also describes this trend (a higher Fe concentration is recorded at 

FFS site). However, the traffic-related effect on Fe concentration is dwarfed by the overwhelming factory 

influence, which increases the average Fe concentration by a factor of three. Other factory fingerprints are 

all the residual metal elements (except for Zn), namely Cr, Ni, Mo, Sn, Sb, Ba, W, and Bi, which were found at 

higher levels in the factory area. 

The main traffic-related marker evidenced by the EDX analysis, and confirmed by the PCA in this study is Cu, 

which is reportedly generated by mechanical abrasion of car components, particularly tyre wear breakdown 

(Pant and Harrison, 2013) or brake wear (Grigoratos and Martini, 2015). The high Cu concentration found at 

the site close to both the factory and street (CFS) can be due to the presence of a busy road with a little slope 

in the proximity of a roundabout. In previous studies, these conditions have been associated with a quick 

decrease of the speed of cars, thereby enhancing the presence of traffic-related particles (Wilkinson et al., 

2013). Moreover, our W% data indicates higher concentrations of Cu, Cr and Cl near street sites, which is 

consistent to previous studies (Gietl et al., 2010; Ondráček et al., 2011; Stechmann and Dannecker, 1990; 

Thorpe and Harrison, 2008), however, this was not confirmed by PCA. On the other hand, PCA evidenced Mg 

as a non-traffic marker, corroborating with a previous study which recognized it as an element related to 

particles from natural sources (Senlin et al., 2008). The random occurrence of Ti, in terms of location- and 

source-dependence is noteworthy, and this aspect requires further investigation. Previous studies have 

recognized it as a typical component of urban particles (Stechmann and Dannecker, 1990), and also 

associated with pavement resuspension (Amato et al., 2009; Jancsek-Turóczi et al., 2013). 
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As this study presents a protocol for characterizing PM from the dimensional and chemical points of view, 

we would like to highlight the added value to use PM deposited on urban trees for such a study. The 

magnitude of Fe and Cu deposition that we show here on leaf area basis are not only an interesting tool to 

parameterize the air quality of different areas, but also an important input for those modelers who aim at 

studying air pollution mitigation by urban trees (Escobedo et al., 2011), including the implications for their 

physiological adaptation (Calfapietra et al., 2015). Moreover, the specific qualitative–quantitative data of PM 

deposited on trees in populated areas serve as an evidence base for strategic urban green management to 

maximize air pollution removal by trees. The case study presented here was conducted through a 

combination of relatively simple and low-cost techniques. The same methodology could be applied to several 

different cities and their peculiar tree species. This is being realized in the context of the COST Action FP1204 

GreenInUrbs (www.greeninurbs.com) involving several European cities, aiming to provide a useful tool for 

low-cost, diffused monitoring of PM pollutant and their management by urban forests across Europe. 

 

5. Conclusions 

Our study demonstrated the potential of urban tree leaves as cost-effective passive air samplers for diffused 

monitoring and characterization of PM pollutants in distinct urban environments. The combination of 

SEM/EDX analysis along with the mathematical elaborations applied to the case study show the merit of 

utilizing tree leaves in acquiring additional information on source-characterized PM quality across the studied 

area, not conceivable otherwise by the mere mean particle size analysis. Our approach allowed distinguishing 

the sampling sites based on both the particle size distribution and their elemental composition through 

application of lognormal multi-modal fitting and PCA, respectively. Tree location was identified as a key 

strategic factor in utilizing them as air pollutant sinks within the urban environments. Upscaling these results 

on leaf area basis provided a useful indicator for strategic evaluation of specific harmful PM pollutants using 

trees across a city. Future studies based on this methodology on a larger number of samples can provide a 

finer distinction of PM quality in order to identify more diverse urban sources. 

http://www.greeninurbs.com/
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Our study is pertinent to urban planners and other stakeholders in the context of sustainable mitigation of 

the harmful health effects of PM in the urban environment, particularly calling for a more strategic role of 

urban trees in robust air quality monitoring and management on a routine basis. 
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