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Abstract 

This paper presents an analysis of potential technological advancements for a 1.5 MW wind turbine using a hybrid stochastic method to 

improve uncertainty estimates of embodied energy and embodied carbon. The analysis is specifically aimed at embodied energy and embodied 

carbon results due to the fact that life cycle assessment (LCA) based design decision making is most important at the concept design stage. The 

development of efficient and cleaner energy technologies and the use of renewable and new energy sources will play a significant role in the 

sustainable development of a future energy strategy. Thus, it is highlighted in International Energy Agency that the development of cleaner and 

more efficient energy systems and promotion of renewable energy sources are a high priority for (i) economic and social cohesion, (ii) 

diversification and security of energy supply, and (iii) environmental protection. Electricity generation using wind turbines is generally 

regarded as key in addressing some of the resource and environmental concerns of today. In the presented case studies, better results for the 

baseline turbine were observed compared to turbines with the proposed technological advancements. Embodied carbon and embodied energy 

results for the baseline turbine show an about 85% probability that the turbine manufacturer may have lost the chance to reduce carbon 

emissions, and 50% probability that the turbine manufacturer may have lost the chance to reduce the primary energy consumed during its 

manufacture. Conclusively, the presented approach is a feasible alternative when more reliable results are desired for decision making in LCA.    

 
© 2016 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Wind and other renewable energy systems are often assumed 

to be environmentally friendly and sustainable energy sources 

in mainstream debate. All energy systems for converting 

energy into usable forms however have environmental impacts 

associated with them [1-3]. The production of renewable 

energy sources, like every other production process, involves 

the consumption of natural resources and energy as well as the 

release of pollutants [4]. Life cycle assessment (LCA) is a 

popular way of measuring the energy performance and 

environmental impacts of wind energy [1, 5]. Oebels et al. [6] 

states that estimation of embodied carbon and energy is a 

significant part of life cycle assessments. Hammond and Jones 

[7] defined embodied carbon (energy) of a material as the total 

carbon released (primary energy consumed) over its life cycle. 

This would normally encompass extraction, manufacturing 

and transportation. It has however become common practice 

to specify the embodied carbon (energy) as ‘Cradle-to-Gate’, 

which includes all carbon (energy – in primary form) until the 

product leaves the factory gate [7].   

Embodied carbon and energy are traditionally estimated 

deterministically using single fixed point values to generate 

single fixed point results [8]. Lack of detailed production data 

and differences in production processes result in substantial 

variations in emission factor (EF) and embodied energy 

coefficient (EEC) values among different life cycle inventory 

(LCI) databases [9, 10]. Hammond and Jones [7] notes that a 

comparison of selected values in these inventories would show 

a lot of similarities but also several differences. These 

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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variations termed as “data uncertainty” which significantly 

affects the results of embodied carbon and embodied energy 

LCA [11]. Uncertainty is unfortunately part of embodied 

carbon and energy analysis and even data that is very reliable 

carries a natural level of uncertainty [7, 12]. Decision makers 

have different attitudes towards uncertainty or risk therefore 

information on uncertainty in LCA is highly desired [9, 11]. 

The analysis of data uncertainty is therefore a significant 

improvement to the deterministic approach because it provides 

more information for decision making [12, 13].   

A number of generally accepted and well understood 

methods such as stochastic modelling, analytical uncertainty 

propagation, interval calculations, fuzzy data sets and scenario 

modelling  are normally used to propagate uncertainty in LCA 

studies [10]. Stochastic and scenario modelling methods were 

used to propagate uncertainty in the wind energy LCA studies 

surveyed.  

The Monte Carlo analysis method used by Kabir et al. [12], 

Fleck and Huot [14] and Khan et al. [15] performs well for 

cases when reliability of the uncertainty estimate is not of 

utmost importance. This method has a drawback when 

applied, as due to its “rule of thumb” nature it may lead to 

inaccurate results. For more reliable results, Lloyd and Ries  

[8] highlights that the determination of significant contributors 

to uncertainty, selection of appropriate distributions and 

maintaining correlation between parameters are areas 

requiring better understanding. In this study, a method for 

improving uncertainty estimates is presented and discussed. 

The method employs the same basics as the Monte Carlo 

analysis but has a key distinction, aiming at removing the 

drawback of the Monte Carlo analysis method by employing a 

stochastic pre-screening process to determine the influence of 

parameter contributions. The overall aim of this study is to 

present an analysis of potential technological advancements 

for a 1.5 MW wind turbine using a hybrid stochastic method 

to improve uncertainty estimates of embodied energy and 

embodied carbon. This approach can be a valuable tool for 

design scheme selection aiming to find an embodied energy 

and embodied carbon saving design when information on 

uncertainty is needed for LCA based design decision making. 

The organisation of the content of this paper is as follows: 

Section 2 explains the fundamentals of the methodology. 

Section 3 contains a description of the case studies and results. 

Section 4 and 5 are the discussions and conclusion. 

   

Nomenclature 

CDF: Cumulative distribution function                                                                                                                        

CFRP: Carbon Fibre Reinforced Plastic 

CV: Coefficient of Variation 

DQI: Data Quality Indicator 

EEC: Embodied energy coefficient                                                                                                                        

EF: Emission Factor  

HDS: Hybrid Data Quality Indicator and Statistical  

LCA: Life Cycle Assessment 

MCS: Monte Carlo Simulation 

MDQI: Mean of DQI result 

MHDS: Mean of HDS result 

MRE: Mean Magnitude of Relative Error 

MW: Megawatt 
NM: Least number of data points required 

NMD: Least number of required data points for individual 

parameter distribution estimation 

NP:Number of parameters involved 

NREL: National Renewable Energy Laboratory 

PDF: Probability distribution function  

TIO: Technology Improvement Opportunities 

2. Methodology 

The stochastic results are calculated by MCS algorithm, 

according to the input and output relationships, using the 

intricately estimated probability distributions for the 

parameters as the inputs. Figure 1 shows the procedure for the 

hybrid data quality indicator and statistical (HDS) approach.  

 

Data Quality Asessment

Aggregated DQI scores

Parameter probability distribution 

estimation based on transformation 

matrix

Data 

Categorization
MCS

Determination of 

critical parameters

Compilation of deterministic 

Wind Turbine inventory data

Non-critical

Critical

Statistical 

Distributions

DQI based 

distributions

Final MCS

Final Results

DQI Procedure

 

Fig. 1.  Procedure of HDS approach [9]. 

To validate the HDS approach, comparisons are made 

between the pure data quality indicator (DQI), statistical and 

HDS methods. The measurements Mean Magnitude of 

Relative Error (MRE) (Eq. (1)) and Coefficient of Variation 

(CV) (Eq. (2)) are used to measure the differences in the 

results of the pure DQI and HDS. CV is an indicator that 

shows the degree of uncertainty and measures the spread of a 

probability distribution. A large CV value indicates a wide 

distribution spread. The data requirements are also used to 

compare the HDS with the statistical method, as large enough 

sample size needs to be satisfied during parameter distribution 

estimation. The least number of data points necessary for 

estimating parameter distributions in each method is 

calculated (Eq. (3)) and compared. 

 

%100x
M

)MM(
=MRE

HDS

DQIHDS

                        (1) 

 

Where MDQI is the mean of the DQI results and MHDS is the 

mean of the HDS results. 

 

M

SD
=CV                                (2) 

Where M is the mean and SD is the standard deviation 

   N ×N=N  PMDM                                (3) 
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Where NM is the least number of data points required; NMD is 

the least number of required data points for individual 

parameter distribution estimation; NP is the number of 

parameters involved. 

3. Case study and result analysis 

3.1. Background of the case study  

Projections of future technological designs as a result of 

research and scientific developments, based on National 

Renewable Energy Laboratory (NREL) [16] 1.5 MW wind 

turbine technology forecasting studies and further elaborated 

by Cohen et al., [17] and Lantz et al., [18] provided the basis 

for modelling future inventory changes for this study. 

Embodied energy and embodied carbon are considered as a 

measure of environmental impact measurement. 

 

 

Fig. 2.  Aggregated DQI scores for Emission Factors and Embodied Energy 

Coefficients. 

3.2. Quantitative DQI transformation 

To appropriately transform the qualitative assessment 

results to the equivalent quantitative probability density 

functions, Wang and Shen [10] suggests that the aggregated 

DQI scores be approximated to the nearest nominal value so 

as to use the transformation matrix. Figure 2 shows the 

obtained aggregated DQI scores. The quantitative DQI 

procedure was then used to transform the scores into Beta 

distributions. Most of the data used in the study are of good 

quality and were taken from the same data source and hence 

showed identical transformed Beta function parameters (α = 

4, β = 4), the same DQI score of 4.5 and range end points of 

15%. The exceptions were Cast iron EF, Cast iron EEC and 

Gear oil EEC showing DQI scores of 3.5, transformed Beta 

function parameters of (α = 2, β = 2) and  range end points of 

25% making them more uncertain. 

 

3.3. Parameter Categorization and Probability Distributions 

Estimation 

Results of the influence analysis (10,000 iterations MCS) 

showing the two parameters contributing the most to the 

resulting uncertainty is presented in Table 1. Two parameters, 

Steel and CFRP, demonstrated the largest influence on the 

final resulting uncertainty of embodied energy and embodied 

carbon across all case studies. For the parameters with a lesser 

contribution to the final resulting uncertainty, there were 

variations across all case studies. Normal concrete and Carbon 

fibre reinforced plastic (CFRP) show the lesser contribution 

for embodied carbon, while Steel (no alloy), CFRP and Cast 

iron show the lesser contribution for embodied energy across 

all case studies. Combining these results, further analysis was 

conducted on the two identified parameters for each test case 

using the statistical method, while the values for the 

remaining parameters were obtained from the quantitative 

DQI. Probability distributions were thus fitted to data points 

collected manually from literature. Results of the estimated 

probability distributions for the different parameters are 

presented in Table 2.   

Table 1. Influence Analysis. 

 
 Embodied 

Carbon 

Influence 

(%) 

Embodied 

Energy 

Influence 

(%) 

Baseline 

Turbine 

Steel EF 78 Steel EEC 62 

Normal 

concrete EF 

9 Steel (no alloy) 

EEC 

9 

TIO 1 Steel EF 66 Steel EEC 47 

CFRP EF 17 CFRP EEC 22 

TIO 2 CFRP EF 99 CFRP EEC 97 

Normal 

concrete EF 

0.3 Steel (no alloy) 

EEC 

0.7 

TIO 3 Steel EF 81 Steel EEC 66 

Normal 

concrete EF 

8 Cast iron EEC 9 

TIO 4 CFRP EF 98 CFRP EEC 97 

Normal 

concrete EF 

0.6 Steel (no alloy) 

EEC 

0.5 

 

Table 2: Probability distribution estimation for the different parameters. 

 

Parameter Probability 

Distribution 

Mean  Data 

points 

collected 

Steel EF 

 

Steel EEC 

Beta (1.24, 4.47) 

Beta (2.96, 4.16) 

1.73 

tonCO2/ton 

25.87 GJ/ton 

30 

31 

Normal concrete EF Beta (20.8, 87.7) 0.11 

tonCO2/ton 

 

31 

Steel (no alloy) 

EEC 

Beta (48.6, 62.3) 25.57 GJ/ton 31 

CFRP EF 

 

Beta (3.16, 2.2) 

 

52.4 

tonCO2/ton 

31 

 

CFRP EEC Beta (2.13, 6.23) 191.3 GJ/ton 31 

Cast iron EEC Beta (36.6, 75.2) 35.4 GJ/ton 31 

3.4. Stochastic Results Comparison of DQI and HDS 

Approaches for the Different Case Studies 

Embodied carbon and embodied energy stochastic results 

(10,000 iterations MCS) using the pure DQI and HDS 

methods were obtained for the baseline turbine and TIO’s 1 - 

4 the results of which are presented in this section. Results for 

each case study are presented graphically through probability 
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distribution functions (PDF’s) and cumulative distribution 

functions (CDF’s) in Figures 3 and 4 (these only show a few 

samples of the full results). In addition to these figures, MRE 

and CV values were also calculated. A summary of the 

relevant information is provided in Table 3. 

Probability distributions were fitted to the stochastic results 

according to K-S test. From the PDF’s (Figures 3a and 4a), it 

can be seen that the mean value and standard deviation for the 

pure DQI and HDS results show rather different dispersion 

across all the case studies. The CV values of the HDS results 

are on average about 6 times larger than the CV values of the 

pure DQI results. In terms of MRE, the difference observed 

between the HDS and pure DQI results indicate that the HDS 

method captures more possible outcomes compared to the 

pure DQI. The differences between the deterministic, pure 

DQI and HDS results can be inferred from the CDF’s (Figures 

3b and 4b). Figure 3b for example shows that for the HDS 

result, about 85% of the likely resulting values are smaller 

than the deterministic result obtained while for the DQI result, 

50% of the possible results are smaller than the deterministic 

result. Figure 3d also shows that for the HDS result about 

15% of the likely results are smaller than the deterministic 

result while for the DQI result, half of the possible resulting 

values are lesser than the deterministic result. A 

comprehensive analysis of the implications of these results is 

presented in the discussion section. 

3.5. Comparison of Statistical and HDS Methods in terms of 

Data Requirements 

It can be seen that from the procedure of the HDS 

approach which categorizes critical parameters and uses the 

statistical method to estimate their probability distributions, 

the reliability of the HDS results are not greatly jeopardized. 

According to Wang and Shen [10], the statistical method 

requires at least 30 data points to estimate one parameter 

distribution. Hence in this study, 46 parameter distributions 

are required to be estimated for each case study with the 

exception of TIO 1 which has 48 parameter distributions for 

estimation. If the statistical method was implemented, at least 

1380 data points would have been required for the estimation 

for each case study. That would mean 6900 data points across 

all the case studies. This would have been very time 

consuming even if all the data points were available. The 

HDS requires only 120 data points for each case study (600 

data points across all the case studies) thus reducing the data 

requirements by approximately 91%.  

This avoids the issue associated with lack of data, and 

saves cost and time without seriously compromising the 

reliability of the HDS results as the critical parameters 

identified explain the majority (at least 69%) of the overall 

uncertainty across all the case studies.     

 
Table 3: Pure DQI and HDS results for the different case studies. 

 

4. Discussion 

This study uses the HDS approach to provide insight into 

potential technological advancements for a 1.5 MW wind 

turbine and makes evident how variability of input parameters 

results in differing embodied energy and embodied carbon 

results. Analysing the parameter categorization revealed that 

EF’s and EEC’s for Steel, Normal concrete, Steel (no alloy), 

CFRP and Cast iron accounted for the majority of output 

uncertainty in embodied energy and embodied carbon results. 

Steel is the main material component of the baseline wind 

turbine, followed by normal concrete. The large contribution 

of steel is probably attributed to the wide EF and EEC 

distributions assigned to steel in the probability distribution 

estimations. Therefore any uncertainty in steel EF’s and 

EEC’s is magnified by the sheer mass of steel. Interestingly 

 Embodied Carbon Embodied Energy 

 DQI HDS DQI HDS 

Baseline 

Turbine 

Beta 

distribution 

(4.5, 5.3)  

μ = 932 

tonCO2 

σ = 22 

tonCO2 

CV = 0.02 

 

Beta 

distribution 

(1.8, 5.1)  

μ = 733 

tonCO2 

σ = 183 

tonCO2 

CV = 0.25 

MRE = 27% 

Normal 

distribution 

μ = 11909 

GJ   

σ =218 GJ 

CV = 0.02 

 

Beta 

distribution 

(4.4, 4.7) 

μ = 11831 

GJ 

σ = 1424 GJ 

CV = 0.12 

MRE = 1% 

TIO 1 Normal 

distribution 

μ =1070 

tonCO2  

σ = 24 

tonCO2 

CV = 0.02 

 

Beta 

distribution 

(2.3, 5.2) 

μ =1269 

tonCO2  

σ =188 

tonCO2 

CV = 0.15 

MRE = 16% 

Normal 

distribution 

μ = 13735 

GJ  

σ = 244 GJ 

CV = 0.02 

 

Beta 

distribution 

(3.8, 4.7) 

μ = 13276 

GJ  

σ = 1469 GJ 

CV = 0.11 

MRE = 3.5% 

TIO 2 Beta 

distribution 

(5, 5.3)  

μ = 2475 

tonCO2 σ = 

96 tonCO2 

CV = 0.04 

 

Beta 

distribution 

(5.8, 4.1) 

μ = 5521 

tonCO2 σ = 

1654 tonCO2 

CV = 0.3 

MRE = 55% 

Beta 

distribution 

(4.1, 4.8) 

μ = 31822 

GJ  

σ = 1166 GJ 

CV = 0.04 

 

Beta 

distribution 

(2.4, 4.7)  

μ =24687 GJ  

σ = 7608 GJ 

CV = 0.3 

MRE = 29% 

TIO 3 Beta 

distribution 

(5.3, 5.7)  

μ = 849 

tonCO2  

σ = 22 

tonCO2 

CV = 0.03 

 

Beta 

distribution 

(1.6, 4.6)  

μ = 647 

tonCO2  

σ =185 

tonCO2 

CV = 0.29 

MRE = 31% 

Normal 

distribution  

μ =10722 GJ  

σ =211 GJ 

CV = 0.02 

 

Beta 

distribution 

(3.8, 4.8)  

μ =11249 GJ  

σ = 1474 GJ 

CV = 0.13 

MRE = 5% 

TIO 4 Gamma 

distribution 

(529, 4.8)  

μ = 2529 

tonCO2  

σ = 108 

tonCO2 

CV = 0.04 

Weibull 

distribution 

(3.96, 6621)  

μ =  5988 

tonCO2 σ = 

1746 tonCO2 

CV = 0.29 

MRE = 58% 

Beta 

distribution 

(4.7, 4.5)  

μ =  32503 

GJ  

σ = 1304 GJ 

CV = 0.04 

 

Beta 

distribution 

(2.1, 4.6)  

μ =  24299 

GJ  

σ = 8419 GJ 

CV = 0.35 

MRE = 33% 
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although the mass of concrete (575 tons) is greater than the 

mass of steel (144 tons), steel EF’s and EEC’s contribute 

more to the overall uncertainty of embodied energy and 

embodied carbon. For example, the EF’s of steel ranges from 

0.01 – 5.93 tonCO2/ton steel, whereas values for concrete 

range from 0.02 – 0.28 tonCO2/ton. Likewise, the EEC’s for 

steel range from 8.6 – 51 GJ/ton steel, whereas values for 

steel (no alloy) range from 8.3 – 50.7 GJ/ton. Concrete 

generally is much less emission intensive than steel for CO2 

and hence, is a lesser contributor to the sensitivity of 

embodied carbon. It can also be observed that while normal 

concrete EF and steel (no alloy) EEC contribute 9% each, 

steel EF and steel EEC contribute 78% and 62% respectively 

to the resulting uncertainty. 

 

Fig 3. Sample results 1. 

This highlights the influence of the wider distribution 

range of steel (no alloy) EEC compared to normal concrete 

EF. Due to the wide distribution ranges and mass of steel, 

variations in steel  EF’s and EEC’s have significantly more 

impact on the embodied energy and embodied carbon 

uncertainty even though there is normally more concrete than 

steel. 

 

Fig 4. Sample results 2. 

5. Conclusions 

In this paper the competence of the HDS method in 

estimating data uncertainty in deterministic embodied carbon 

and embodied energy LCA results and its application to 

decision making is examined through case studies. In order to 

evaluate the reliability of the HDS method, first, embodied 

carbon and embodied energy results were estimated 

deterministically. Then for each case study, using DQI and 

HDS methods, the effect on uncertainty estimates for 
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embodied energy and embodied carbon are investigated. In 

performing the uncertainty analysis, the reliability measures 

MRE and CV are considered. Using the results obtained the 

following conclusions are drawn. 

Firstly, with respect to the use of both methods, the HDS 

approach demonstrated its effectiveness in evaluating 

deterministic 1.5 MW wind turbine embodied carbon and 

embodied energy results. MRE and CV results show the HDS 

far outperforms the DQI. In other words, a strong argument 

could be made to advocate for the use of the HDS over DQI 

when accuracy of the uncertainty estimate is paramount. 

Secondly, for the class of the problem at hand, similar 

conclusions can be drawn in terms of embodied energy and 

embodied carbon for all case studies. Uncertainty in the 

results largely depends on distribution ranges of the input 

parameters. This is magnified by the mass of the materials 

which result in the overall contributions to the uncertainty. 

Hence, it is shown that a strong relationship exists between 

material mass and input parameter distribution ranges. 

Thirdly, when comparing the different turbine designs based 

on the studied cases, the results were quite clear. With the 

performance improvements incorporated using the TIO’s, the 

baseline turbine had the best embodied carbon and embodied 

energy performance. Therefore, when all the criteria are 

considered, the potential investor must decide whether the 

environmental benefits for a particular design are worth the 

investment.  

It is important to note that the NREL baseline turbine 

design represents a composite of wind turbine technology 

available in 2002. Clearly, technology has changed since 2002 

and these changes are not incorporated into the current 

analysis. Future studies may conduct uncertainty analysis 

using the HDS approach to analyse these technological 

changes in the development of newer wind turbines and other 

renewable technologies. This would be another excellent 

application for the HDS methodology. 
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