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Abstract

We consider the recent novel two-step estimator of Iaryczower and Shum
(2012), who analyze voting decisions of US Supreme Court justices. Motivated
by the underlying theoretical voting model, we suggest that where the data
under consideration displays variation in the common prior, estimates of the
structural parameters based on their methodology should generally benefit
from including interaction terms between individual and time covariates in
the first stage whenever there is individual heterogeneity in expertise. We
show numerically, via simulation and re-estimation of the US Supreme Court
data, that the first order interaction effects that appear in the theoretical
model can have an important empirical implication.
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1 Introduction

How individuals and groups make decisions under uncertainty is important in many

areas of economics and political economy, and numerous theoretical models empha-

size that decision makers can differ both in terms of their knowledge of an underlying

state of the world and their preferences.1 A key challenge for taking these models to

data is to estimate the decision-making parameters and understand, quantitatively,

the role played by different factors in decision making. Iaryczower and Shum (2012)

(hereafter IS) have proposed an empirical voting model and a novel procedure for

estimating the voting behavior of US Supreme Court justices. IS consider a frame-

work in which each justice has to vote for the Plaintiff or Defendant, based on the

observed evidence and his private interpretation of the law and other specifics of

the case. Specifically, each justice is allowed to differ in his ideology, or bias (πit),

as well as in his ability to interpret the law and the specifics of the case (θit). This

decision problem is based on the theoretical voting model of Duggan and Martinelli

(2001), and can be applied to other voting games (e.g. Iaryczower et al. (2013) or

Hansen et al. (2014)).

IS estimate (πit, θit) in two steps. In each period, a binary, unobserved state is

realized; in one, the law favors the Plaintiff and in another it favors the Defendant.

The first step is to estimate the probability that justices vote for the Plaintiff in

both states, controlling for justice and case covariates. The second is to recover the

parameters of interest by solving the structural equations imposed by the equilib-

rium condition of the voting game. This note proposes a simple way that can help

improve their estimates. Whenever justices differ in their ability θit to perceive the

state, which is typical of most interesting voting problems, the theoretical model

predicts that justices will display heterogeneous responses across cases in terms of

how much information they require to vote for the Plaintiff. To capture this behav-

1For example, see the literatures on various aspects of committee decision making (Gerling
et al. 2005); career concerns (Sorensen and Ottaviani 2000, Prat 2005, Levy 2007); and political
economy (Maskin and Tirole 2004, Besley 2006).
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ior empirically, we propose including interaction terms in the first stage estimation.

Monte Carlo simulation exercises illustrate that the interaction terms can play an

important role empirically, and a re-estimation of the Supreme Court data supports

the simulation results.

2 Estimation of Structural Model

This section presents the empirical model IS propose, and motivates why it may

be empirically useful to explicitly allow justices with heterogeneous ability to react

differently to changes in common prior beliefs that the decision should favor the

Plaintiff. For brevity and notational simplicity we only consider the sincere voting

version of the model.

2.1 Model

For each case t there is a common unobserved state ωt ∈ {0, 1}, unknown to every

decision marker and the econometrician, that equals 1 if the law in case t favors

the Plaintiff and 0 if it favors the Defendant. ωt is drawn from a Bernoulli prior

distribution with Pr [ωt = 1 ] = ρt. Each justice i has to make a binary decision

vit ∈ {0, 1}—where 1 (0) is a vote for the Plaintiff (Defendant)—based on a private

signal sit = ωt + σitεt with εt ∼ N(0, 1). An appropriate measure of expertise

in this setting is θit = σ−1it , which measures justice i’s ability to infer the state.

Justices’ payoffs are state dependent and parametrized by πit ∈ (0, 1). All justices

get a payoff of 0 if their vote matches the state. Justice i gets payoff −πit when

vit = 1 and ωt = 0, and − (1− πit) when vit = 0 and ωt = 1. πit is essentially a

bias parameter that captures a justice’s inclination to favor the Plaintiff: when it is

close to 0 (1), the justice has a strong leaning to the Plaintiff (Defendant), while an

unbiased justice has πit = 0.5.
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Given this setup, it can be shown that justice i chooses vit = 1 if and only if

Pr [ωt = 1 | sit ]

Pr [ωt = 0 | sit ]
≥ 1− πit

πit
. (1)

Bayes’ Rule allows one to express

ln

(
Pr [ωt = 1 | sit ]

Pr [ωt = 0 | sit ]

)
= ln

(
ρt

1− ρt

)
+

2sit − 1

2σ2
it

. (2)

The normal distribution satisfies the Monotone Likelihood Ratio Property, which

Duggan and Martinelli (2001) show implies the optimal voting rule is characterized

by a threshold crossing condition. Specifically, by combining (1) and (2), it follows

that vit = 1 if and only if

sit ≥
1

2
− θ−2it

[
ln

(
πit

1− πit

)
+ ln

(
ρt

1− ρt

)]
≡ s∗ (θit, πit, ρt) . (3)

Letting s∗it denote s∗ (θit, σit, ρt), the equilibrium probability of voting high in state

ωt is γit,ωt ≡ 1− Φ [θit (s∗it − ωt)], where Φ is the normal cdf.

Expressed in this way, the voting rule (3) makes clear that justices with different

expertise have heterogenous responses to changes in ρt. The voting rule of a justice

with very high expertise will be nearly unaffected by a change in ρt. Since the signal

is very accurate, he disregards the prior whatever its value in deciding the vote. On

the other hand, the voting behavior of a justice with low expertise will be much

more affected by changes in ρt. So, it is potentially important to allow, as a first

order effect, for such heterogeneity in estimating voting probabilities.

The likelihood of observing the vector of votes vt = (v1t, . . . ,vnt) is

Pr [vt ] = ρt

n∏
i=1

[
γvitit,1 (1− γit,1)1−vit

]
+ (1− ρt)

n∏
i=1

[
γvitit,0 (1− γit,0)1−vit

]
. (4)
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Given γit,0 and γit,1, θit and s∗it can be recovered via

θit = Φ−1 (1− γit,0)− Φ−1 (1− γit,1) and s∗it =
Φ−1 (1− γit,0)

Φ−1 (1− γit,0) + Φ−1 (γit,1)
. (5)

The bias parameter πit relates to all other variables in the model according to (3).

Therefore one can recover (θit, πit) if ρt, γit,0, and γit,1 are known.

2.2 Methodology

For some observable characteristics of the cases Xt and the justices Zit, IS consider

the following reduced form parametric terms that mimic the theoretical parameters

above:

ρt (Xt; β) =
exp (X ′tβ)

1 + exp (X ′tβ)
(6)

γit,0 (Xt, Zit; ζ, η) =
exp (X ′tζ + Z ′itη)

1 + exp (X ′tζ + Z ′itη)
(7)

γit,1 (Xt, Zit;α, δ, ζ, η) =
γit,0 + exp (X ′tα + Z ′itδ)

1 + exp (X ′tα + Z ′itδ)
. (FS:IS)

ρ̂t, γ̂it,0, and γ̂it,1 can be estimated in the first stage from the maximum likelihood

estimators of α, β, γ, δ, ζ, and η that maximize the natural logarithm of

∏
t


ρt (Xt; β)

n∏
i=1

[
γit,1 (Xt, Zit;α, δ, ζ, η)vit (1− γit,1 (Xt, Zit;α, δ, ζ, η))1−vit

]
+ (1− ρt (Xt; β))

n∏
i=1

[
γit,0 (Xt, Zit; ζ, η)vit (1− γit,0 (Xt, Zit; ζ, η))1−vit

]
 . (8)

Then in the second stage θ̂it and π̂it can be obtained from solving the structural

relationships in (4) and (5).

In order to allow for first order heterogenous effects for changes in s∗it with respect

to ρt, we propose an additional vector of a simple interaction terms Wit between

elements of Xt and Zit be included in the reduced form parametric terms in the first
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stage. More concretely, replace γit,0 and γit,1 with

γ̃it,0 (Xt, Zit,Wit; ζ, η, λ) =
exp (X ′tζ + Z ′itη +W ′

itλ)

1 + exp (X ′tζ + Z ′itη +W ′
itλ)

(9)

γ̃it,1 (Xt, Zit,Wit;α, δ, ζ, η, λ, ξ) =
γit,0 + exp (X ′tα + Z ′itδ +W ′

itξ)

1 + exp (X ′tα + Z ′itδ +W ′
itξ)

. (FS:ALT)

Following the theoretical model, we expect Wit to play a particularly important

role in empirical problems where there is a large degree of heterogeneity in justices’

expertise.

3 Evaluating the importance of the interaction

terms

In order to develop an intuition for how the IS methodology may generally benefit

from the inclusion of interaction terms we first present some results from a small

Monte Carlo study. We then replicate and re-estimate the structural parameters for

the US Supreme Court voting data used in IS.

3.1 Monte Carlo

In order to test the extent to which the inclusion of interaction terms matters for

the estimation of voting games, we:

1. Generate a group of 9 decision makers (the size of the Court), each making

150 independent decisions over time.

(a) 5 members are type A with preferences πA and expertise σA; 4 members

are type B with preferences πB and expertise σB.

(b) We use various parameter values that are “reasonable” in the sense of

being in line with estimates in IS. We examine πA = 2
3

and πB = 1
3
, and
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σA = 1−x and σB = 1 +x for x ∈ {0, 0.05, 0.1, . . . , 0.5}. So, our baseline

comparisons are for eleven unique sets of parameters.2

2. For each unique set of π and σ values, we run 1,000 simulations. For each

simulation, we generate theoretical decision data according to the following

procedure:3

(a) In each period t, ρt is drawn from U [0.2, 0.8] (independent across periods).

(b) ωt is drawn from a Bernoulli distribution with Pr [ωt = 1 ] = ρt.

(c) vit is drawn from a Bernoulli distribution with Pr [ vit = 1 | ωt ] = γit,ωt ,

as defined in section 2.

3. Given these data, we construct Xt = (1, ρt) and Zit = (1, DA), where DA is a

dummy variable that indicates membership of group A (and thus not actually

time-varying). We use these data to estimate two separate specifications of

the first-stage regressions given by (FS:IS) and (FS:ALT).

4. After we obtain estimates of first-stage coefficients, we use the structural equa-

tions (3) and (5) to recover π̂it and σ̂it for j ∈ {A,B} as described above. We

present as time-invariant point estimates the median values of these values

across all periods.

Figure 1, which shows the percentage bias for each value of the expertise dif-

ference, summarizes the main results of the simulation exercise.4 When expertise

differences are small, the results indicate that the interaction terms do not matter

much; the estimates of the parameter levels and differences are estimated reasonably

2As a robustness exercise we also reverse the values of the bias (i.e. πA = 1
3 and πB = 2

3 ) as
well as consider πA = πB = 1

2 . Our findings do not change much. Numerical results are available
upon request. We focus on estimation of σ rather than θ since the parameterization of the normal
distribution in terms of its standard deviation is more common in many settings.

3Maximum Likelihood Estimation is done in R with the BFGS algorithm; code is available on
request.

4This section focuses on the key results of the simulations, full results available on request.
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accurately in specifications (FS:IS) and (FS:ALT), and neither appears to outper-

form the other. However, as σA − σB increases, specification (FS:ALT) performs

much better, especially in estimating the differences between groups, while at the

same time improving in accuracy. For example, when σA − σB = 0.6, specification

(FS:ALT) estimates 1−πB
πB
− 1−πA

πA
and σA−σB to 3% accuracy, whereas specification

(FS:IS) displays biases of 47% and 87% respectively. Here we report the results in

terms of the ratio 1−π
π

since it is the key quantity for determining whether a justice

votes for the Plaintiff.5

[Figure 1 about here.]

We also plot the complete distribution of the simulation results when σB−σA = 0

and when σB − σA = 0.8 in figure 2. With no σ differences, the results from

both specifications are again very similar. But even at relatively modest expertise

differences, the results show that not only does the inclusion of interaction terms

ensure that the results stay anchored around the true parameters, but also that the

distribution around the estimates is less dispersed too.

[Figure 2 about here.]

3.2 US Supreme Court Data

We take data from IS that contains the vote of every justice (31 in total) on every

case from 1953-2008. IS run separate regressions on four subsets of cases according

to the issue at stake (business, basic rights, criminal, federalism). We focus on the

results for economics and basic rights cases, the two subsets IS treat as their baseline

cases.

5The representation of this quantity as 1−π
π is a very common, but ultimately arbitrary, mod-

elling choice. One could for example model the quantity as 1−g(π)
g(π) for any positive monotonic

function g, and clearly change the magnitude of the estimated π while leaving invariant the ratio.
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The first specification we run is (FS:IS), taking Xt and Zit to be the same sets of

variables as in IS. This replicates their results.6 The second is (FS:ALT), including

in the set of interaction terms Wit what appears to us to be the relevant subset of

individual and meeting characteristics for influencing justices’ prior beliefs.7

[Figure 3 about here.]

Since the effect of interaction terms only matters when there is meaningful vari-

ation in the prior ρt, it is important to quantify its range in the data. Figure 3

plots histograms of the estimated priors from specification (FS:IS) (the results with

(FS:ALT) are very similar), and shows they range from around 0.3 to around 0.9,

with a fairly dispersed distribution. This variation in the prior suggests, along with

heterogeneity in justices’ expertise, that interaction terms may play an important

role in describing voting behaviour of judges in this dataset.

Our two specifications each produce 31 estimates (corresponding to the number

of justices) of 1−π
π

and σ for business and rights cases. Table 1 displays a number of

summary statistics related to the distributions of these estimates. The simulation

exercise above shows that not explicitly controlling for heterogeneous effects that

exist across judges and cases tends to inflate estimated differences between decision

makers. This is consistent with our estimates using the US Supreme Court data. As

the table shows, the inclusion of the interaction terms reduces justice heterogeneity

both in terms of variances and ranges. For rights case this reduction is particularly

notable: the variance from the specification with interaction terms is around one

sixth the value of the variance without.

[Table 1 about here.]

6We perform this re-estimation since IS do not report the median value of the structural pa-
rameters across all values of the fitted priors.

7We do not interact the mean value of other justices’ Segal-Cover ideology or quality scores—
covariates within Xit—with any Zt variables, nor chief justice dummies—covariates within Zt—
with any Xit variables. They remain included within Xit and Zt, respectively.
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Finally, the radar charts in figure 4 are helpful for comparing the distributions

from the two specifications more directly. Justices are ordered lowest to highest

moving clockwise based on the (FS:IS) estimates. Within this disc we plot both sets

of estimates. The (FS:ALT) estimates, particularly for rights cases, display notably

less heterogeneity.

[Figure 4 about here.]

4 Conclusion

Given the high level of interest within economics in how individuals and groups

of individuals make decisions under uncertainty, the recent two-step methodology

proposed by IS provides a useful way to analyze such problems empirically. They

estimate a voting model of US Supreme Court justices that accounts for voters’

private information (e.g. level of expertise) and their ideological differences and this

methodology can also be applied in other voting contexts.

In order to capture the main theoretical property of the model that voters with

heterogeneous ability react differently to changes in the common prior belief, we

propose the inclusion of interaction terms between case and justice characteristics

in the first stage reduced form estimation. This should help improve the estimates

of the structural parameters, especially where voters differ in their expertise. We

perform some Monte Carlo studies and re-estimate the US Supreme Court data used

in IS to support our estimation approach.

Finally, we end with some remarks to emphasize that we are not simply advo-

cating making the reduced-form estimation in the first stage as flexible as possible,

either by artificially including more regressors (of higher order terms) or, in the

extreme, taking a completely nonparametric approach. While a more flexible spec-

ification in the first stage is appealing theoretically from the point of robustness, it

may lead to more biased and imprecise estimates in the second stage, especially in
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finite samples. In contrast, our motivation for the inclusion of interaction terms is

led by an inherent implication of voting models when voters are heterogeneous. Our

numerical results show that imposing such theory-driven structure can significantly

improve the structural estimates. Hence a broader message is that economic the-

ory can be used to help inform the specification of the reduced-form component of

two-step estimators in structural models.
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Figure 3: Histograms of Estimated Priors
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Notes: This figure plots, for business cases (left figure) and rights cases (right figure),

histograms of the estimated priors ρt from specification (FS:IS).

14



Figure 4: Radar Plots of Supreme Court Data Re-estimation Exercise
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π (row 1) and σ (row 2), the estimate of each Jus-

tice’s parameter specification (FS:IS) along with the equivalent parameter estimated

under the specification (FS:ALT). In each case, the Justices are ordered lowest to

highest moving clockwise based their FS:IS estimates. Column 1 refers to Rights

Cases and column 2 to Business Cases.
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