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Abstract We study the dependence of the Hausdorff dimension of the limit set of a hy-
perbolic Fuchsian group on the geometry of the associated Riemann surface. In particular,
we study the type and location of extrema subject to restriction on the total length of the
boundary geodesics. In addition, we compare different algorithms used for numerical com-
putations.
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1 Introduction

The dependence of the Hausdorff dimension of dynamically defined sets on the underly-
ing dynamics has been studied by many different authors in many different settings. In the
case of limit sets Λ of convex cocompact Fuchsian groups this question is intimately con-
nected with the spectrum of the Laplacian, and aspects of this problem have been studied
rigorously by a number of authors, including Phillips–Sarnak [10], Pignataro–Sullivan [11]
and McMullen [9], and experimentally by Gittins–Peyerimhoff–Stoiciu–Wirosoetisno [6].
In this note we will concentrate on the simplest case of a convex cocompact Fuchsian group,
namely the one corresponding to a pair of pants, i.e., a Fuchsian group Γ generated by re-
flection in three disjoint geodesics in the hyperbolic plane. Each pair of pants are described
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up to isometry by the lengths b1,b2,b3 > 0 of three closed boundary geodesics fixed by pairs
of reflections.

2b1

2b2 2b3

Fig. 1 A pair of pants with geodesic boundary curves of lengths 2b1, 2b2, 2b3

We can consider the function dim : R3
+ → R which associates to each pair of pants

parameterised by b = (b1,b2,b3) ∈R3
+ the Hausdorff dimension dim(b) = dimH(Λb) of the

associated limit set Λb. Given any b > 0 we will also be considering the behaviour of the
restriction dim : ∆b→ R+ to the simplex

∆b = {b = (b1,b2,b3) ∈ R3
+ : b1 +b2 +b3 = b}

We will also be interested in the extension of dim to the closure ∆ b and its restriction to the
boundary ∂∆b. Our starting point is the following simple but useful result.

Theorem 1 Let b > 1.

1. The map dim : ∆b→ R+ is real analytic,
2. dim : ∆ b→ R+ is continuous, and
3. dim : ∂∆b→ R+ is real analytic.

Theorem 1 is a folklore fact, but we include a simple proof of the first part in §3 using
a slightly different viewpoint; and we give proofs in the same spirit of Part 2 and Part 3 (as
Theorem 5) in §6.

There has been much interest historically in the behaviour of dim(b) in a neighbourhood
of the boundary of ∆ . The case of a symmetric pair of pants (i.e., b1 = b2 = b3 = b/3) was
studied by McMullen and the limiting case of the Hecke group (i.e., b1 = 0 and b2 = b3 =
b/2) was studied by Phillips–Sarnak [10] and Pignataro–Sullivan [11].

The study of dim : ∆b→ R restricted to simplices ∆b seems to have begun with Gittins
et al who used a numerical method to describe empirically the function dim(·) providing
b is sufficiently large. Their experiments were carried out using an algorithm described by
McMullen. In fact, more accurate values can be obtained near the centre of the simplex using
a comparable amount of computation but a different algorithm based on the famous Selberg
zeta functions, as originally described in [8]. In particular, the dimension dim(b) occurs as
a zero of the Selberg zeta function

Zb(s) = ∏
γ

∞

∏
m=0

(
1− e−(s+m)λ (γ)

)
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Fig. 2 A contour plot for b = 9 with the seven critical points in the theorem 2.

where γ denotes a closed geodesic of length λ (γ). In §3 we will show that we can write

Zb(s) = 1+
∞

∑
n=1

a2n(s,b), (1)

where a2n(s,b) is given by a simple explicit expression defined in terms of the lengths of
closed geodesics (of word length at most 2n). This provides an efficient method for com-
puting the dimension (which also provides explicit bounds, see §9). One of the original
motivations for this note was to compare the relative efficiency of these two approaches in
the context of these canonical examples.

Example 1 When b = 9
2 and b1 = b2 = b3 =

3
2 then we can estimate dim(b) = 0 ·667232 . . .

which is empirically accurate to six decimal places and uses a truncation of the series (1) to
n≤ 8.

Based on their empirical results, Gittins et al proposed that there were four particular points,
including the centre of the simplex, which were local minima. We first show the following.

Theorem 2 Let b> 0. The following points in the simplex are critical points for the function
dim : ∆b→ R:

1. The centre ( b
3 ,

b
3 ,

b
3 );

2. The points ( 2b
3 , b

6 ,
b
6 ), (

b
6 ,

2b
3 , b

6 ) and ( b
6 ,

b
6 ,

2b
3 ); and

3. The points ( b
2 ,

b
4 ,

b
4 ), (

b
4 ,

b
2 ,

b
4 ) and ( b

4 ,
b
4 ,

b
2 ).

The proof of Theorem 2 appears in §4. We will also prove the following.

Theorem 3 The centre of the simplex ( b
3 ,

b
3 ,

b
3 ) is a local minimum for dim : ∆b→ R for b

sufficiently large.

The proof of Theorem 3 is presented in §5. The method of proof uses explicit bounds on
the Selberg zeta function Zb(s) which appear in §9.

Even with the use of our more efficient algorithm to plot dim : ∆b→R for smaller values
of b, the plots still seemed to support the conjecture that the four critical points from (1) and
(2) of Theorem 3 are local minima. However, in contrast to these results and Theorem 3, we
expect that ( b

3 ,
b
3 ,

b
3 ) is a local maximum for b sufficiently small (see comments in §10 for

some heuristic justification).
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Fig. 3 (a) The plot of dimension when b is large (b = 11); (b) The plot of dimension when b is smaller
(b = 4.5).

2 Hyperbolic Geometry

A Fuchsian group Γ is a discrete subgroup of the isometries Isom(H2) of the hyperbolic
plane H2 = {z = x+ iy : y > 0} with respect to the Poincaré metric

ds2 =
dx2 +dy2

y2 .

The orientation preserving isometries in Isom(H2) are linear fractional transformations z 7→
az+b
cz+d with ad−bc= 1. It is often convenient to identify these with matrices

(
a b
c d

)
∈ SL(2,R).

(The orientation reversing isometries in Isom(H2) are linear fractional transformations z 7→
az+b
cz+d with ad−bc =−1 and correspond to matrices with determinant −1.)

Definition 1 The limit set Λ = ΛΓ is the compact set of accumulation points in the Eu-
clidean norm for Γ i = {gi : g ∈ Γ }.

The limit set lies in the boundary ∂H2 = R∪{∞}.
It is sometimes convenient to use the equivalent Poincaré disk model for hyperbolic

plane, where D2 = {z = x+ iy : |z|< 1}, and the Poincaré metric in this case is of the form

ds2 =
4(dx2 +dy2)

(1− x2− y2)2 .

In this model limit set lies in the boundary ∂D∪{∞}, which is the unit circle.
In the present context the limit set Λ is a Cantor set. It is an interesting question to

estimate the size of the set Λ via its Hausdorff dimension and its dependence on the surface
Γ . The original approach to these problems was through the work of Patterson and Sullivan
on measures on Λ . This has been considered by a number of authors in particular special
cases:

Example 2 (b1 = b2 = b3) The case of a symmetric pair of pants (i.e., b1 = b2 = b3 = b/3)
was studied in [9]. In the case that b tends to zero or b tends to infinity we can deduce from
a result of McMullen [9] an asymptotic estimate for the dimension at the central point:

1. there exists c1 > 0 such that dim( b
3 ,

b
3 ,

b
3 )∼

c1
b as b→+∞; and

2. there exists c2 > 0 such that dim( b
3 ,

b
3 ,

b
3 )∼ 1− c2b as b→ 0.

Numerically, we can estimate the first constant as c1 = 0.6924 . . ..
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Example 3 (b1 = 0 and b2 = b3) The case of the Hecke group Γε = 〈− 1
z ,z+2+ ε〉, where

ε > 0 (i.e., b1 = 0 and b2 = b3 =
1
2 b) was studied by Phillips–Sarnak [10] and Pignataro–

Sullivan [11] who established an asymptotic formulae for the dimension of the limit set of
the form 1−dim(0, b

2 ,
b
2 )∼

b
2 as b→ 0.

3 Selberg zeta function

We can consider the pair of pants V =H2/Γ where Γ is the convex cocompact group gen-
erated by reflections in three disjoint circles. For each conjugacy class in Γ we can associate
a unique closed geodesic γ , and we let λ (γ) = λb(γ) denote its length. By analogy with the
familiar presentation of the Selberg zeta function for compact manifolds without boundary
we can define the following.

Definition 2 We can formally define the Selberg zeta function by

Zb(s) = ∏
m

∏
γ

(1− e−(s+m)λb(γ))

where the first product is taken over closed geodesics γ of length λb(γ).

There is a well known bijection between closed geodesics and cyclically reduced words
i = (i1, · · · , i2n) ∈ {1,2,3}2n, for n≥ 1, with

1. ik 6= ik+1 for 1≤ k ≤ 2n−1, and
2. i1 6= i2n.

Namely, to any closed geodesic on a pair of pants one can associate a periodic cutting se-
quence, which defines a conjugacy class in π1(V ). We shall denote the composition of 2n-
reflections with respect to the geodesics γi1 , γi2 , . . ., γi2n by Ri = Ri1 · · ·Ri2n .

Theorem 4 (after Ruelle) The infinite product Zb(s) converges to a non-zero analytic func-
tion for ℜ(s) > dim(b) and extends as an analytic function to C with a simple zero at
s = dim(b). Furthermore, we can expand

Z(s) = 1+
∞

∑
n=1

a2n(s), (2)

where

1. a2n(s) depends only on the lengths λ (γ) of closed geodesics γ corresponding to cycli-
cally reduced words of length 2n; and

2. There exists C > 0 and 0 < θ < 1 such that |a2n(s)| ≤Cnθ n2
.

The original proof was in the context of Anosov flows, which would correspond to the
geodesic flows on closed surfaces. The geodesic flow on (the recurrent part of) a pair of
pants is a more general hyperbolic flow, nevertheless, the method of proof easily adapts.
Since the proof of this theorem is a little technical we will postpone it until §9, including
explicit estimates on C > 0 and 0 < θ < 1 and showing their dependence on b. However,
for the present it suffices to show how the result above provides a proof of the first part of
Theorem 1. We begin by considering the values of the dimension where 0 < b1,b2,b3 < 1,
i.e., b ∈ int(∆ ).

We now give a simple proof of Part 1 of Theorem 1 using the Selberg zeta function and
Theorem 4.
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Proof (of Part 1 of Theorem 1) By Theorem 4 we have that

1. The function R×∆ 3 (t,b) 7→ Z(t,b) is real analytic;
2. For each b we have that ∂Z(t,b)

∂ t |t=0 6= 0; and
3. The Hausdorff dimension δ = dim(Λb) of Λb is the unique positive solution to the equa-

tion Zb(δ ) = 0.

It is an immediate consequence of the analyticity of the zeta function and the implicit func-
tion theorem that we have the result.

4 Critical Points

In this section we will prove Theorem 2. Our approach is completely elementary, making
use of the analyticity of dim(b) and the symmetry in the coordinate space.

We begin by giving some simple lemmas that will be used in the proof.

Lemma 1 For b = (b1,b2,b3) ∈ ∆ :

1. dim(b1,b2,b3) = dim(b2,b3,b1) = dim(b3,b1,b2)
2. dim(b1,b2,b3) = dim(b1,b3,b2)

Proof We can see from the geometry that the dimension is invariant under permutations of
the coordinates and the result follows by symmetry.

The following general results are elementary exercises in calculus.

Lemma 2 Let f : Rn→ R be a real analytic function.

1. Assume there exists a neighbourhood U of a point x0 and non-zero vectors v1,v2 ∈ Rn

with x0+v1,x0+v2 ∈U and such that f (x0+εv1) = f (x0+εv2) for ε > 0 small enough.
Then the directional derivative D(v1−v2) f = limδ→0

f (x+δ (v1−v2))
δ

vanishes at x0.
2. Assume that there exist n linearly independent vectors w1, . . . ,wn such that directional

derivatives in these directions are degenerate at the point x0. Then x0 is a critical point.

In order to understand the other critical points, we recall the following simple lemma,
relating values along lines from the centre of the simplex to the corners. It appears as Propo-
sition 4.2, in [6].

Lemma 3 (Gittins et al) Let 2(b1 +b2) = b. Then

dim(2b1,b2,b2) = dim(2b2,b1,b1).

For the reader’s convenience we provide a short proof in §8.
We now turn to the proof of Theorem 2 and begin with the proof of part (1). Observe that

the dimension of the limit set is invariant with respect to any permutation on coordinates. In
particular, this implies that for ε > 0 sufficiently small,

dimH

(b+ ε

3
,

b+ ε

3
,

b−2ε

3

)
=dimH

(b−2ε

3
,

b+ ε

3
,

b+ ε

3

)
=dimH

(b+ ε

3
,

b−2ε

3
,

b+ ε

3

)
.

Then any pair of the three vectors v1 = (1,1,−2), v2 = (−2,1,1), v3 = (1,−2,1) satisfy
the conditions of Lemma 2 where n = 3 and f = dim. Since w1 := v1 − v2 = (3,0,−3)
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and w2 := v1− v3 = (0,3,−3) are independent the lemma follows from the second part of
Lemma 2. This completes the proof of part (1) of the theorem.

We now turn to the proof of part (2). We can consider b= ( b
2 ,

b
4 ,

b
4 ), the other cases being

similar. We first prove that at these points the derivative is zero along the line to the centre.
By Lemma 3

dim
(b+ ε

2
,

b−2ε

4
,

b−2ε

4

)
= dim

(b−2ε

2
,

b+2ε

4
,

b+2ε

4

)
.

Thus by Lemma 1

Dv̄1 dim
(b

2
,

b
4
,

b
4

)
= 0, where v1 : =

(
1,−1

2
,−1

2

)
.

We next show that at these points the derivative is zero in the orthogonal direction to the
median. By a symmetry argument, based on dim being invariant under reflecting in the
median of the simplex ∆ ,

dim
(b

2
,

b
4
+ ε,

b
4
− ε

)
= dim

(b
2
,

b
4
− ε,

b
4
+ ε

)
.

Thus by Part 1 of Lemma 2

Dv̄2 dim
(b

2
,

b
4
,

b
4

)
= 0, where v2 : = (0,2,−2).

Two vectors v1 and v2 satisfy the conditions of part 2 of Lemma 2. This completes the proof
of part (2).

We now proceed to the proof of part (3). It suffices to consider b = ( 2b
3 , b

6 ,
b
6 ), the other

cases being similar. We first prove that at these points the derivative is zero along the line to
the centre. By Lemma 3

dim
(b+ t

2
,

b−2t
4

,
b−2t

4

)
= dim

(b−2t
2

,
b+2t

4
,

b+2t
4

)
.

Thus when we differentiate at t = b
3 we have that

Dv̄1 dim
(

2b
3
,

b
6
,

b
6

)
= Dv̄1 dim

(
b
3
,

b
3
,

b
3

)
= 0, where v1 : =

(
1,−1

2
,−1

2

)
.

We next show that at these points the derivative is zero in the orthogonal direction to the
line to the centre. By a symmetry argument, based on the invariance of dim under reflecting
in the median we have that

dim
(2d

3
,

d
6
+ ε,

d
6
− ε

)
= dim

(2d
3
,

d
6
− ε,

d
6
+ ε

)
.

Thus by Part 1 of Lemma 2

Dv̄2

(2d
3
,

d
6
,

d
6

)
= 0, where v2 : = (0,2,−2).

The two vectors v1 and v2 satisfy the conditions of part 2 of Lemma 2, and the result follows.
This completes the proof of part (3).
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5 Proof of Theorem 2

Recall that we want to show that the point
( b

3 ,
b
3 ,

b
3

)
is a local minimum providing b is

sufficiently large. To achieve this we will show that for large b a natural function for which
dim(b) is a solution can be approximated by a particularly simple function for which the
corresponding zero is easily seen to be a local minimum. The function we choose is the
Selberg zeta function and the content of the proof is to show that this approximation is
uniform in a suitable sense.

Lemma 4 We can write
Zb(s) = 1+a2(s,b)+ψ(s,b)

where:

1. a2(s,b) =−2(e−sb1 + e−sb2 + e−sb3) when b = (b1,b2,b3) ; and
2. ψ

( s
b ,b
)

tends to zero uniformly as b→ ∞,
(a) for s in a fixed complex neighbourhood [0,1]⊂U ⊂ C and
(b) x = (x1,x2,x3) := b/b in a compact region K ⊂ ∆ of the standard simplex

∆ = {ξ = (ξ1,ξ2,ξ3) : ξ1 +ξ2 +ξ3 = 1}.

Proof Recall that by (2) we can write

Zb(s) = 1+a2(s,b)+
∞

∑
n=2

a2n(s,b)

and so we denote

ψ(s,b) :=
∞

∑
n=2

a2n(s).

By construction,
a2(s,b) =−2(e−sb1 + e−sb2 + e−sb3).

By the bounds on the zeta function in Theorem 4 (see also §9) we know there exists C > 0
and 0 < θ < 1 such that |a2n(s)| ≤ Cnθ n2

, where C and θ can be chosen independent of
s ∈U and x ∈ ∆ . However, we use the more detailed description of these bounds given in §9
to provide the more explicit estimate on the dependence on C =C(b) and θ = θ(b) that are
required. More precisely, we see that for large b we can bound θ = O(1/b) and C = O(1/b).
In particular, we have that

|ψ(s,b)|= O

(
∞

∑
n=2

Cn
θ

n2

)
= O(1/b4)

for all s ∈U and x = b/b ∈ ∆ . This suffices to prove the lemma.

Writing 0 < xi = bi/b < 1 with x1 + x2 + x3 = 1, as above, we can then write

a2(s/b,b) =−2
3

∑
i=1

e−sxi .

It is easy to see by convexity that if d0 is the solution to

e−d0/3 + e−d0/3 + e−d0/3 =
1
2
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then for (nearby) (x1,x2,x3) ∈ ∆ −
{( 1

3 ,
1
3 ,

1
3

)}
we have that e−d0x1 + e−d0x2 + e−d0x3 > 1

2 .
In particular, the solution d1 = d1(x1,x2,x3) > 0 to e−d1x1 + e−d1x2 + e−d1x3 = 1

2 therefore
satisfies d1 > d0 and we deduce that

( 1
3 ,

1
3 ,

1
3

)
is a local minimum (with non-zero Hessian)

for 1+ a2(s,b). By choosing b sufficiently large and applying Lemma 4 we complete the
proof of Theorem 2.

6 Boundary behaviour

We begin with a few observations on the behaviour of the dimension dim(b) as b approaches
the boundary of ∆b.

Proposition 1 (after Beardon [1]) We have that if b ∈ ∂∆b then 1
2 ≤ dim(b)< 1.

Proof The observation that if b ∈ ∂∆b then dim(b) ≥ 1
2 is due to Beardon, although it also

possible to give an alternative proof by inducing on the boundary. The observation that
b ∈ ∂∆b then dim(b) < 1 is easily seen by introducing an extra circle into any gap on the
boundary of the Poincaré disk and observing that the dimension of the limit set correspond-
ing to reflections in this larger collection of circles would necessarily be strictly larger.

We let Li = {b = (b1,b2,b3) ∈ ∆b : bi = 0 and 0 < b j < b for j 6= i}, for i = 1,2,3, denote
the three one-dimensional boundary segments.

The next theorem is a more precise statement of Theorem 1, Part 3.

Theorem 5 For each i = 1,2,3 we have that Li 3 b 7→ dim(b) is analytic.

We now outline a proof of Theorem 5 using the viewpoint we have developed. With-
out loss of generality, we can use the upper half plane model and consider the limit set Λ

corresponding to the maps (on the extended real line)

S : z→−1
z

Ta : z→ a− z

T−c : z→−c− z

(where a,c > 2). These are three transformations given by: reflection in the unit circle, and
the reflections in the lines ℜ(z) = a/2 and ℜ(z) = −c/2, respectively. Up to a Möbius
transformation, this is the same limit set as for the pair of pants corresponding to b1 = 0,
say. Moreover, we can write a = a(b2) and c = c(b3) where these clearly have an analytic
dependence on b2,b3 > 0.

The limit set Λ generated by these three reflections will also have the same dimension
dim(b) as the limit set Λ0 generated by the countable family of transformations given by
inducing (with repeat to the reflection S in the unit circle). More precisely, we can denote

U (n)
1 (z) := S◦ (Ta ◦T−c)

n(z) =
−1

z+n(a+ c)

U (n)
2 (z) := S◦ (Ta ◦T−c)

n ◦Ta(z) =
1

z−a−n(a+ c)

U (n)
3 (z) := S◦Tc ◦ (Ta ◦T−c)

n(z) =
1

z+b+n(a+ c)
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for n≥ 1, and define

Λ0 =

{
lim

l→+∞
U (n1)

i1
◦ · · · ◦U (nl)

il
(0) : where n1, · · · ,nl ≥ 1 and i1, · · · , il ∈ {1,2,3}

}
It is easy to see that these maps are strictly contracting (i.e., maxi supn,z∈Λ |(U

(n)′
i (z)| < 1).

Moreover, if we choose 0 < ε < min{a,c}
2 −1 we observe that if B(0,1)⊂C denotes the unit

ball then U (n)
i (B(0,1))⊂ B(0,1) for n≥ 1 and i ∈ {1,2,3}.

To show the analyticity of the dimension it is convenient to characterize it in terms of
the following operator.

Lemma 5 If B denotes the Banach space of bounded analytic functions on B(0,1) with the
supremum norm then the operator Lt : B→B defined by

Ltw(z) =
∞

∑
n=1

3

∑
i=1

(
U (n)

i
′
(z)
)t

w
(

U (n)
i (z)

)
is a nuclear operator.

We refer to §9 for the definition of nuclear operator. The operator is well defined for t > 1
2 .

Moreover, the operator has an isolated maximal positive eigenvalue eP(t) (cf. [13]), where
P is the pressure function, P(t) = logλt , where λt is the maximal eigenvalue for Lt . Using
analytic perturbation theory, we deduce that the map (t,b2,b3) 7→ (t,a,c) 7→ P(t) is ana-
lytic. Since the dimension d is characterized by P(d) = 0, then since one can readily check
∂

∂ t P(t) 6= 0 it follows from the implicit function theorem that the dimension dim(b) depends
analytically on (b2,b3). This completes the proof of Theorem 5.

Now we explain a proof of Theorem 1, part (2). We can also use the construction
above to see that dim : ∆b → R extends continuously to the boundary. Let us consider
b = (b1,b2,b3) ∈ ∆b and assume for definiteness that b1 → 0 and b2,b3 remain bounded
away from zero. This corresponds to Ta and Tb being replaced by reflections in (large) cir-
cles. Furthermore, although the maps Ta ◦T−c are no longer translations, the corresponding

induced maps U (n)
i still satisfy U (n)

i B(0,1)⊂ B(0,1) and have an analytic dependence on b.
The proof of the continuity part of Theorem 1 follows from this.

7 The efficiency of the algorithm

In this section we will compare the two algorithms used to compute the dimension in a
number of examples. The first method is that of McMullen, as used in the article [6].

McMullen’s approach The zeta function Z(s) can be approximated by determinants det(I−
Bn(s)), where Bn(s) is a finite matrix indexed by allowed strings of generators Ri0 Ri1 . . .Rin−1 ,
say. The entries

1. vanish (equal to zero), if the row is indexed by Ri0 . . .Rin−1 and the column is indexed by
R j0 . . .R jn−1 and Ri1 . . .Rin−1 6= R j0 . . .R jn−2

2. are equal to (Ri0 . . .Rin−1)
′(xi0...in−1)

−s, if the row is indexed by Ri0 . . .Rin−1 and the col-
umn is indexed by R j0 . . .R jn−1 and Ri1 . . .Rin−1 = R j0 . . .R jn−2 , where xi0...in−1 is the re-
pelling fixed point on ∂D2 for Ri0 . . .Rin−1 .
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This is an implementation of the approach of McMullen in [9]. The approach in [9] was
based on characterising the dimension in terms of the largest eigenvalue of the transfer oper-
ator with the objective of numerically computing the dimension. The method we presented
leads to better approximations in the case of “moderate hyperbolicity” corresponding large
b; however for smaller values of b this advantage is often lost.

The zeta function approach The second method is to use the Selberg zeta function approach,
as described in the present article. More precisely, we compute approximations to Z(s) by
truncations of the series in (2) to give expressions in terms of finitely many closed geodesics.

In the tables below, ”time” refers to computational time (in milliseconds) obtained when
using the Matlab environment on a laptop with Intel Core 2 Duo processor. In Table 1, we
show the estimates for b1 = b2 = b3 =

3
2 (and b = 9

2 ) and for b1 = b2 = b3 = 4 (and b = 12)
using the McMullen approach.

b b N = 14 N = 16 N = 18
dim time dim time dim time

4.5 (1.5,1.5,1.5) 0.667462 5.905 0.667307 26.569 0.667254 118.082
12 (4,4,4) 0.33455 5.85 0.334543 26.07 0.334542 116.209

Table 1 Estimates for b1 = b2 = b3 =
3
2 (and b = 9

2 ) and for b1 = b2 = b3 = 4 (and b = 12), using the first
algorithm.

In Table 2 we show estimates for the same values, but this time using this new method.
The empirical improvement in the estimates is easy to observe with better convergence in a
shorter time.

b b N = 14 N = 16 N = 18
dim time dim time dim time

4.5 (1.5,1.5,1.5) 0.668836 2.487 0.667232 9.042 0.667232 41.513
12 (4,4,4) 0.334541 2.312 0.334541 8.921 0.334541 35.312

Table 2 Estimates for b1 = b2 = b3 =
3
2 (and b = 9

2 ) and for b1 = b2 = b3 = 4 (and b = 12) using the Selberg
zeta function method.

In these examples we are computing the dimension at the centre of the simplex. If we
consider the estimates on the dimension at points which are closer to the boundary then the
situation is slightly different.

In Table 3, we show the estimates for b1 = b2 = 0.5, b3 = 3.5 (and b = 9
2 ) and for

b1 = b2 = 0.5, b3 = 11 (and b = 12) using the McMullen method.

b b N = 14 N = 16 N = 18
dim time dim time dim time

4.5 (0.5,0.5,3.5) 0.690859 5.859 0.682198 26.267 0.676990 117.638
12 (0.5,0.5,11) 0.439097 5.827 0.425927 26.284 0.401183 116.020

Table 3 Estimates for b1 = b2 = 0.5, b3 = 3.5 (and b = 9
2 ) and for b1 = b2 = 0.5, b3 = 11 (and b = 12) using

the McMullen method.
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Finally, in Table 4 we show estimates for these same values, but this time using this
new method. Empirically we obtain poor estimates on the dimension that are strictly greater
than 1, which is impossible.

dim time dim time dim time
b b N = 14 N = 16 N = 18

4.5 (0.5,0.5,3.5) 1.89414 48.721 1.762531 219.539 1.502638 733.793
12 (0.5,0.5,11) 1.892794 48.137 1.76106 212.104 1.499075 728.036

Table 4 Estimates for b1 = b2 = 0.5, b3 = 3.5 (and b = 9
2 ) and for b1 = b2 = 0.5, b3 = 11 (and b = 12) using

the Selberg zeta function method.

In particular, we see that Selberg zeta function algorithm appears more efficient in the
case of b nearer the centre of the simplex. In this case the empirical approximations work
particularly well and convergence appears faster than with McMullen algorithm. On the
other hand, when (b1,b2,b3) is close to the boundary of the simplex, the Selberg Zeta func-
tion algorithm is not applicable, as the group is not hyperbolic enough to achieve conver-
gence. Indeed, if we consider the terms an(s) for different values of the exponent s we notice
that the coefficients decrease very slow, even with 18 matrices (see Table 5).

s a2 a4 a6 a8 a10 a12 a14 a16 a18
-0.05 -12.567 62.156 -174.142 320.462 -419.280 409.496 -308.455 183.393 -87.5483
0.05 -9.769 41.354 -103.342 173.389 -209.591 190.774 -134.735 75.436 -34.022
0.15 -8.498 32.653 -75.931 120.470 -139.242 122.168 -83.676 45.650 -2.0137
0.25 -7.765 27.704 -60.512 90.943 -100.205 84.217 -55.460 29.174 -12.436
0.35 -7.232 24.169 -49.68 70.524 -73.616 58.755 -36.814 18.454 -7.505
0.45 -6.783 21.307 -41.235 55.195 -54.398 41.037 -24.327 11.546 -4.449
0.55 -6.379 18.856 -34.363 43.339 -40.268 28.652 -16.027 7.181 -2.613
0.65 -6.004 16.710 -28.678 34.070 -29.824 19.998 -10.544 4.454 -1.528
0.75 -5.653 14.816 -23.947 26.794 -22.093 13.955 -6.931 2.759 -0.892
0.85 -5.324 13.139 -20.0 21.08 -16.367 9.737 -4.555 1.708 -0.520
0.95 -5.014 11.653 -16.704 16.578 -12.125 6.793 -2.993 1.057 -0.303
1.05 -4.722 10.335 -13.953 13.041 -8.982 4.740 -1.967 0.654 -0.177

Table 5 Coefficients of ζ (s,1) for b1 = b2 = 0.7 and b3 = 10.6 demonstrate poor convergence of the Selberg
zeta function method.

8 Proof of Lemma 3

In this section we recall the proof of Lemma 3, corresponding to Proposition 4.2 of [6].

Proof Denote by γ1, γ2 and γ3 the original three disjoint geodesics. Without loss of gen-
erality, we may assume that one these, γ1, say, is a diameter in the Poincaré disk model
and ρ(γ1,γ2) = ρ(γ1,γ3) = b2, ρ(γ2,γ3) = 2b1. Consider the two geodesics that are images
of γ2 and γ3 with respect to the reflection in R1 in γ1, and denote these γ4 : = R1γ2 and
γ5 : = R1γ3. The free group generated by Rγ2 ,Rγ3 ,Rγ4 ,Rγ5 has index 2 in the original group
and is therefore a normal subgroup:

〈Rγ2 ,Rγ3 ,Rγ4 ,Rγ5〉/ 〈Rγ1 ,Rγ2 ,Rγ3〉
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γ1γ2

γ4 γ6

b1

b1

b2 b2

γ3

b1

b1

γ5

b2b2

Fig. 4 Proof of Lemma 3. Original geodesics γ1,γ2,γ3 and supplementary geodesics γ4,γ5,γ6.

Indeed, by direct calculation, Rγ1 Rγ2 Rγ1 = Rγ4 and Rγ1 Rγ3 Rγ1 = Rγ5 . Hence the dimen-
sions of the associated limit sets are equal. Now observe that

ρ(γ1,γ2) = ρ(γ1,γ4) = ρ(γ1,γ3) = ρ(γ1,γ5) = b2

and, moreover, by construction,

ρ(γ2,γ4) = ρ(γ3,γ5) = 2b2

Finally, consider a sixth geodesic γ6, that is taken to be the diameter in the Poincaré disk
model, orthogonal to γ1. Then ρ(γ6,γ5) = ρ(γ6,γ3) = b1. Thus the group 〈R6,R5,R3〉 is
generated by reflections with respect to the geodesics γ6,γ5,γ3 with pairwise distances b1,b1,
and 2b2. By the same argument as above, 〈Rγ2 ,Rγ3 ,Rγ4 ,Rγ5〉 is its normal subgroup of index
2 and therefore the dimensions of the associated limit sets are equal.

9 Additional bounds for Theorem 4

The convergence of the series (2.2) in Theorem 4 follows from general estimates of Ruelle
and Fried, based on earlier ideas of Grothendieck. They can be formulated in terms of a
family of bounded linear operators Ls : A → A on a Banach space A . We begin with a
general definition

Definition 3 We say that an operator T : B→B on a Banach space B is nuclear if there
exist

1. a sequence of vectors wn ∈B, n≥ 1;
2. a sequence of linear functionals νn ∈B∗, n≥ 1; and
3. C > 0 and 0 < λ < 1 such that ‖wn‖B‖νn‖B∗ ≤Cλ n,

such that we can write T (w) =
∞

∑
n=1

wnνn(w), for w ∈B.
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D1 U1
0

D2U2

U3 D3

Fig. 5 Three circles of reflection on the unit circle and neighbourhoods

In the present context we want to apply this to the Banach space A of bounded analytic
functions on the union of disjoint discs U j = {z ∈ C : |z− z j| < r j} ⊂ C, ( j = 1,2,3) and
r j > 0 sufficiently small.

We want to consider the transfer operators Ls : A →A defined by reflections R j in the
boundary of much smaller disks D j ⊂U j given by

Lsw(z) = ∑
j 6=l
|R′j(z)|sw(R jz) for z ∈Ul .

Lemma 6 (after Ruelle [13], Grothendieck [7]) The operators Ls are nuclear. Further-
more, we can denote an(s) = ∑i1<···<in det

(
[νiu(wiv)]

n
u,v=1

)
and write

Z(s,b) = 1+
∞

∑
n=1

an(s).

Moreover, the following simple (and easily proved) identity is very useful in explicitly
bounding |an(s)|.

Lemma 7 (Euler) Given 0 < λ < 1 we have

∞

∏
n=1

(1+λ
nz) = 1+

∞

∑
n=1

cn(λ )zn where cn(λ ) =
λ n(n+1)/2

(1−λ )(1−λ 2) · · ·(1−λ n)
.

In particular, since the nuclearity of the operator means that |νi(wi)| ≤Cλ i, comparing
the two lemmas above gives that

an(s) = ∑
i1<···<in

det
(
[νiu(wiv)]

n
u,v=1

)
≤ C(s)nλ n(n+1)/2nn/2

(1−λ )(1−λ 2) · · ·(1−λ n)
(3)

where nn/2 bounds the absolute value of the determinant of any n×n matrix whose entries
bounded by 1.
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9.1 Asymptotic bounds

In order to understand the asymptotic dependence of the bounds C =C(b) and λ = λ (b) on
b it is convenient to map the unit disk to the upper half plane H2 = {z = x+ iy : y > 0} by
S(z) = 1

i
z−1
z+1 .

Furthermore, without loss of generality we can make the following simplifying assump-
tions:

1. The image disks Vi = S(Ui) (i = 1,2,3) can be chosen to remain independent of b pro-
vided only the values (x1,x2,x3) := (b1/b,b2/b,b3/b) remain in a bounded region in
the unit simplex ∆ away from boundary ∂∆ .

2. We can assume, after applying a Möbius map, if necessary, that V1 is centred at 0 , V2 is
centred at 1 and V3 is centred at −1.

The images Ei := S(Di) (i = 1,2,3) of the original circle of reflection are now circle
in which we now reflect in the transformed picture. We will concentrate on the case of E1
and E2, the others being similar. By assumption, we have that V1 intersects the real axis at
z1 =−r1 and z2 = r1 and E2 intersects the real axis at w1 = 1−r2, w2 = 1+r2 (cf. Figure 6).

E3 E1 E2

0 z1z2

V1

w1 w2

V2

−1 1

V3

Fig. 6 Three circles and their neighbourhoods moved to the real line

We now come to a useful geometric lemma. Given z1 < w1 < w2 < z2 we define the
cross ratio by

[z1,w1,w2,z2] =
(z1−w2)

(z1−w1)

(w1− z2)

(w2− z2)
.

We recall the following simple result (cf. [2] §7.23).

Lemma 8 Let L1,L2 be two disjoint geodesics with boundary end points z1,z2 and w1,w2.
The distance b between L1 and L2 satisfies [z1,w1,w2,z2] tanh−2(b/2) = 1.

We can apply this in the present setting to deduce the following corollary.

Corollary 1 As b→+∞ we have that |z1− z2|2 + |w1−w2|2 = e−b
( 1

2 +o(1)
)
. In particu-

lar, we have that r1,r2,r3 = O(e−b)

Finally, we observe that

1. For each i = 1,2,3, the images ∪ j 6=iRi(Vj) ⊂ S(Di) ⊂ Vi (i = 1,2,3) are contained in a
small disk of radius O(e−b) and thus by definition we can choose λ = O(e−b).

2. We can bound C = supz∈Di
|R′j(z)|= O(diam(Ei)) = O(e−b).
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9.2 Explicit bounds

This provides explicit estimates on an(s) via the constants C and 0 < θ < 1. Assume as
above that, after applying a Möbius map if necessary, that the circles in which we reflect in
H2 have centres 0,1,−1 and radii r1,r2,r3 > 0. Given b1,b2,b3 > 0 we can solve for the
radii using the equations

tanh−2(b1) =
1− (r1− r2)

2

1− (r1 + r2)2 , tanh−2(b2) =
1− (r2− r3)

2

1− (r2 + r3)2 and tanh−2(b3) =
1− (r3− r1)

2

1− (r3 + r1)2 .

We can then choose any value 0 < λ < 1 satisfying

max
{

r1

1+ r3
,

r1

1+ r2
,

r3

2− r2
,

r3

2− r3

}
< λ < 1.

Of course, this bound may be improved by transforming the reflections to different circles
under Möbius maps

10 Final remarks

In contrast to Theorem 2, there is a suggestion that for sufficiently small values of b we have
that ( b

3 ,
b
3 ,

b
3 ) is actually a local maximum, rather than a local minimum. These values of b

appear to be beyond the reach of numerical experiments. It is necessary to use quadruple
precision calculations in order to keep control of numerical error. Every quadruple preci-
sion number is stored in 16 bytes. There are exactly 22n + 2 closed geodesics of the word
length 2n, which means that one needs 16 · (22n + 2) bytes to store their lengths. For in-
stance, it takes about 4GiB of RAM to store the lengths of geodesics of the word length 26.
Using a contemporary computer with an Intel i7 processor, and a fast Fortran code, it is
possible to compute an approximation to dimension for a single value of b using periodic
points up to period 26 in about 4 hours. This allows us to consider values of b as small
as b = 3log(

√
2) ≈ 1.0397 . . .1, where a26 is of the order 10−7. The centre still appears

to be a local minimum, where dim(log(
√

2), log(
√

2), log(
√

2)) = 0.70721640 . . .2, while
dim
(
log(
√

2)+0.02, log(
√

2)−0.01, log(
√

2)−0.01
)
= 0.70721999 . . ..

The first piece of heuristic evidence supporting local maximum conjecture is based on
the following standard observation.

Lemma 9 Providing dim(b)> 1
2 we have that λ = λ (b) = dim(b)(1−dim(b)) is the small-

est eigenvalue for Laplacian −∆ .

For large b, following [11] and [4] we can assume that the eigenfunction ψb associated to
the eigenvalue

λ (b) = inf
∫
|∇ f |2∫
| f |2

will take values close to 1 on the convex core of the pair of pants and values close to 0 on
the funnels. Moreover, |∇ψb| is small except on hyperbolic collars for the short geodesics.
By the collar lemma the thin part is a hyperbolic cylinder of width

1
2

log
(

cosh(bi/2)+1
cosh(bi/2)−1

)
∼ | logbi|

1 The value is equal to three halves of the side length of the regular hyperbolic hexagon.
2 Perhaps curiously, this value is close to

√
1
2 ≈ 0.7071067 . . ..
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and area bi/(2sinh(bi/2))→ 1. As b tends to zero we can expect that λ (b) can be compared
with

1
| logb1|

+
1

| logb2|
+

1
| logb2|

subject to b1 +b2 +b3 = 1, which has a local maximum at b1 = b2 = b3.
The second indication comes from the following observation on lengths of closed geodesics.

If we denote by a,b the generators for the fundamental corresponding to two of the boundary
components then there is a one-one correspondence between closed geodesics and cyclically
reduced words. In particular, interchanging a and b maps a closed geodesic γ = γb to a re-
flected geodesic Rγb. Let us change the length of the boundary curve b1 corresponding to a
to b/3+ ε and the length of the boundary curve b2 corresponding to b to b/3− ε . Clearly
some geodesic curves will get shorter (for example, those containing a larger proportion of
generators b in their coding) while others will get longer (for example, those containing a
larger proportion of generators a in their coding) but for dim(b) to decrease for small ε one
would expect that “on average” closed geodesics get longer. To this end, for each closed
geodesic γ we can associate its image Rγ and consider the behaviour of the dependence of
the average of their lengths a(ε) = (l(γ)+ l(Rγ))/2. We claim that function ε 7→ a(ε) has
a local minimum at ε = 0. By symmetry we see that ε = 0 is a critical point. Moreover, the
dependence of l(γ) (and l(Rγ)) is strictly convex by [3] and [5].

Here we comment on a few problems which are related to the themes of this note.

1. We can also consider other zeros of Z(s) which correspond to zeros of zeta function
other than dim(b). These are frequently referred to as resonances. There are typically
many different such zeros, as is shown in the empirical work of Borthwick, but it is
potentially interesting to consider the behaviour of zeros closest to dim(b).

2. We can consider the case of the groups Γ = 〈R1, · · · ,Rn〉 generated by n reflections.
In this case the lengths of the boundary components alone may not be sufficient to de-
scribe a point in moduli space. However, the dimension of the limit set will still depend
analytically on the metric.

3. We can consider the case of higher dimensions. It we consider four circles in C (the re-
flections there is generating a group) then we can assume without loss of generality that
three of them will have centers on the unit circle, and have a similar parameterisation to
the pair of pants. However, the fourth circle will introduce three more real dimensions
(two given by the position of the centre and the third coming from the radii). Neverthe-
less, the dimension of the limit set will still depend analytically on the parameters.

4. We can consider the case that the pair of pants has variable negative curvature. In this
case the moduli space would be infinite dimensional, but the dimension of the limit set
will still depend analytically on the metric.

5. The determinant of the Laplacian det : ∆b→ R can be defined for infinite area surfaces
via the work of Efrat, generalising the approach of Sarnak. In particular, we can express
it in terms of the value ∂

∂ s Z(s,b)|s=0. Furthermore, the symmetry argument we used for
dim still applies in this context and we can deduce the following: The point b=

( b
3 ,

b
3 ,

b
3

)
is a critical point for det : ∆b→ R.
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