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A note on the shrinking sector problem for surfaces of
variable negative curvature

Mark Pollicott∗

Abstract

Given the universal cover Ṽ for a compact surface V of variable negative curvature
and a point x̃0 ∈ Ṽ we consider the set of directions ṽ ∈ Sex0

Ṽ for which a narrow sector
in the direction ṽ, and chosen to have unit area, contains exactly k points from the
orbit of the covering group. We can consider the size of the set of such ṽ in terms of the
induced measure on Sex0

Ṽ by any Gibbs measure for the geodesic flow. We show that
for each k the size of such sets converges as the sector grows narrower and describe
these limiting values. The proof involves recasting a similar result by Marklof and
Vinogradov, for the particular case of surfaces of constant curvature and the volume
measure, by using the strong mixing property for the geodesic flow, relative to the
Gibbs measure.

In memorium, Dmitri Victorovich Anosov

1 Introduction

We begin by recalling the famous classical circle problem of Gauss for Euclidean space. In
1834, Gauss estimated the number of lattice points

#{(x, y) ∈ Z2 : x2 + y2 ≤ r2} = πr2 +O(r)

as r tends to infinity. In this case the principal term is trivial and the difficulty is finding
a good error term. In the corresponding hyperbolic circle problem one can consider the
Poincaré disk D2 = {z = x+ iy ∈ C : |z| < 1} with the Poincaré metric d.

Let Γ < Isom(D2, d) be a uniform Fuchsian group Γ then we can consider the orbit
Γ0 = {γ0 : γ ∈ Γ} and count those points in Γ0 with t− s ≤ d(0, γ0) ≤ t (see Figure 1(a)).

More generally, let S0D2 denote the unit tangent vectors based at the origin and for
v ∈ S0D2 and 0 < θ ≤ π we denote by S(v, θ) ⊂ D2 the fixed sector bounded by (radial)
geodesics from 0 at an angle θ from v (see Figure 1(b)). In the hyperbolic circle problem
it is much harder to establish the principle term than in the Euclidean case. We recall two
asymptotic formulae for these hyperbolic counting problems.

∗Department of Mathematics, Warwick University, Coventry, CV4 7AL, UK
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1 INTRODUCTION
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Figure 1: (a) Points in the orbit Γ0 in the annulus t− s ≤ d(0, z) ≤ t; (b) Points in the orbit
Γ0 in the intersection of the annulus t− s ≤ d(0, z) ≤ t and the sector S(v, θ)

Theorem 1.1 (Hyperbolic Circle and Sector Problems, Huber ? and Nicholls ?). There
exists C > 0 such that for any s > 0 and 0 < θ ≤ π:

1. #{γ ∈ Γ : t− s ≤ d(0, γ0) ≤ t} ∼ Cet (1− e−s) as t→ +∞; and

2. #{γ ∈ Γ : t− s ≤ d(0, γ0) ≤ t and γ0 ∈ S(v, θ)} ∼ θ
π
Cet (1− e−s) as t→ +∞.

A variation on this problem is where the angle θ = θ(t) of the sector is allowed to tend
to zero as t → +∞. More precisely, we denote by R(v, t) := S(v, θ(t)) ∩ {z ∈ D2:t − s ≤
d(0, z) < t} the region which is the intersection of the annulus and the shrinking sector with
angles ±θ(t) to v (see Figure 2 (a)). We make the particular choice θ(t) = (8π(sinh2(t/2)−
sinh2(s/2)))−1 so that we have the normalisation AreaD2(R(v, t)) = 1. Let λ := µS0D2 be the
normalised Haar measure on the fibre S0D2, i.e., the natural volume on S0D2.
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Figure 2: (a) The region R(v, t) contained in a sector with angle 2θ(t); (b) Since the region
R(v, t) has constant area it becomes thinner as t increases.
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2 A GENERALISATION TO VARIABLE CURVATURE

Theorem 1.2 (Shrinking Sector Theorem, Marklof-Vinogradov ?). For each k ∈ N0 the
following limit exists:

Pk := lim
t→+∞

λ
({
v ∈ S0D2 : #{R(v, t) ∩ Γ0} = k

})
In the above, we have considered only those points that lie in annuli of width s > 0 (which

proves convenient in the proof). In the hyperbolic setting, unlike the Euclidean setting, most
of the area of the disk lies in annuli near the boundary. By letting s→ +∞ and applying the
dominated convergence theorem we see from the proof in §4 that the corresponding result
follows where the annulus is replaced by a ball of radius t.

The proof by Marklof and Vinogradov of Theorem ?? essentially uses the equidistribution
property of horocycles. In order to generalise the result to variable curvature and Gibbs
measures it is more convenient to use the strong mixing property of the Gibbs measure for
the geodesic flow. Of course, the equdistribution result is itself a consequence of the mixing
property in the constant curvature case, so our approach should be viewed as being closer
to being a reformulation of part of their proof, rather than being fundamentally new.

Acknowledgement. I am grateful to Jens Marklof for enlightening discussions on his work
with I. Vinogradov, and for posing the question of generalising the same to variable curvature
and Gibbs measures, during his lectures at MSRI in 2015.

2 A generalisation to variable curvature

We want to formulate a suitable generalisation of Theorem ?? to the case of variable negative
curvature. In this more general setting, it is natural to begin with a compact surface M
with variable negative curvature and let M̃ be the universal cover for M . In particular, M̃
is equipped with the Riemannian metric dfM(·, ·) lifted from M . (In the special case that
M has constant curvature κ = −1 then this setting reduces to the previous setting, where
M̃ = D2 with the Poincaré metric.)

We denote by Γ < Isom(M̃) the covering group for M . Then Γ is isomorphic to π1(M)

and M̃/Γ = M . We let Sex0M̃ denote the unit tangent vectors based at a point x̃0 ∈ M̃

and consider a subarc B ⊂ Sex0M̃ and the corresponding sector S ⊂ M̃ , i.e., the union of
geodesics starting from x̃0 in the directions in B.

Given x̃0 ∈ M̃ , we want to consider the orbit Γx̃0 = {γx̃0 : γ ∈ Γ}.

Theorem 2.1 (Margulis ?, Sharp ?). There exists h > 0 and C = C(S) such that for any
s > 0:

1. #{γ ∈ Γ : t− s ≤ d(x̃0, γx̃0) ≤ t} ∼ C
(
1− e−hs

)
eht as t→ +∞; and

2. There exists a probability measure mex0 on Sex0Ṽ such that

#{γ ∈ Γ : t− s ≤ d(x̃0, γx̃0) ≤ t and γ0 ∈ S} ∼ Cmex0(B)
(
1− e−hs

)
eht

as t→ +∞.
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ṽ
x̃0

gx̃0
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Figure 3: (a) The sector-like region R(ṽ, t) in variable curvature is defined in terms of ṽ and

the arc length 2η; (b) The associated vector w̃ = φ̃tṽ.

The value h is precisely the topological entropy of the associated geodesic flow. We next
want to consider a suitable analogue of the family of shrinking sectors.

In the more general setting of variable curvature one needs to define a suitable analogue
of a sector associated to a vector ṽ ∈ Sex0M̃ . It transpires that it is more natural to define
these sets in terms of the distance on the perimeter of the circle, rather than using angles in
Sex0M̃ . To simplify the proofs it is also more convenient to initially study the position of the
sector that lies in an annulus.

Definition 2.2. Given t > s > 0 and ṽ ∈ Sex0M̃ we can consider a region in M̃ bounded by:

1. an arc in the circle of radius t centred at x̃0, of length 2η and centred at the projection
to M̃ of w̃ = φ̃tṽ;

2. an arc in the circle of radius t− s centred at x̃0; and

3. two segments of geodesics emanating from x̃0,

as in Figure 3. Finally, we choose η so that the area of the projection is equal to 1. We
denote this region by R(ṽ, t).

In the variable curvature case η(ṽ, t) typically depends on ṽ as well as t. This is in
contrast to the constant curvature case where η(ṽ, t) is independent of ṽ. Let λ = µSx̃0

fM be

a normalised volume on the fibre Sx̃0M̃ induced from the Liouville measure µ on SM .

Theorem 2.3 (Shrinking Sector Theorem for variable curvature). For each k ∈ N0 we have
that the following limit exists:

Pk := lim
t→+∞

λ
({
ṽ ∈ Sx̃0M̃ : #{R(ṽ, t) ∩ Γx̃0} = k

})
.
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3 GEODESIC AND ANOSOV FLOWS

In the special case of a surface of constant negative curvature this reduces to Theorem ??.
The proof of Theorem ?? is very robust. It uses only a simple geometric argument

involving the hyperbolicity of the geodesic flow and the mixing property of the Liouville
measure. In particular, it readily generalises to other Gibbs measures and slightly more
general settings (see §4 and §5, respectively).

Remark 2.4. For each s > 0 exists k0 = k0(s) such that Pk = 0 for k ≥ k0. However, as
s→ +∞ then k0(s)→ +∞.

Remark 2.5. Theorem ?? remains true if instead of #{R(ṽ, t) ∩ Γx̃0} = k one counts
#{R(ṽ, t) ∩ Γỹ0} for any other point ỹ0 ∈M .

3 Geodesic and Anosov flows

In this section we want to introduce the more dynamical setting which will be used in proving
Theorem ??. We begin by recalling the definition of an Anosov flow.

Definition 3.1. A C∞ flow φt : N → N on a compact manifold N is an Anosov flow if

1. there is a Dφt-invariant continuous splitting TN = E0 ⊕ Es ⊕ Eu such that E0 is
one dimensional and tangent to the flow direction, and there exists C, λ > 0 such that
‖Dφt|Es‖ ≤ Ce−λt and ‖Dφ−t|Eu‖ ≤ Ce−λt, for t ≥ 0; and

2. φt : N → N is transitive.

Anosov flows provide the correct dynamical context, as is shown by the following classical
result.

Proposition 3.2 (Anosov ?). The geodesic flow φt : SM → SM on the three dimensional
unit tangent bundle SM of a compact surface M is an Anosov flow.

We next collect together here some basic results on Anosov geodesic flows which will be
of use later.

3.1 Foliations

There are several natural foliations of SM each of which are preserved by the geodesic flow.

Definition 3.3. For each w ∈ SM we can associate a strong stable manifold defined by

W ss(w) = {w′ : d(φtw, φtw
′)→ 0 : t→ +∞}.

We can similarly define for each w ∈ SM a strong unstable manifold defined by

W su(w) = {w′ : d(φ−tw, φ−tw
′)→ 0 : t→ +∞}.

The following result on the regularity of these foliations in the case of geodesic flows on
negatively curved surfaces is also well known.

5



3.2 Gibbs measures on N 3 GEODESIC AND ANOSOV FLOWS

Lemma 3.4 (Hirsch-Pugh, ?). Let φt : SM → SM be a geodesic flow on a compact nega-
tively curved surface.

1. Each strong stable manifold W ss(w) is a C∞ one dimensional immersed submanifold
and the family F ss = {W ss(w)}w∈SM of such leaves forms a C1 foliation of the manifold
M .

2. Each weak unstable manifold Wwu(w) is a C∞ two dimensional immersed submanifold
and the family Fwu = {Wwu(w)}w∈SM of such leaves forms a C1 foliation of the
manifold M .

For geodesic flows, the following trivial geometric fact will be useful later.

Lemma 3.5. For each v ∈ Sx0M the one dimensional tangent fibre Tv(Sx0M) doesn’t coin-
cide with any of the one dimensional fibres E0

v , Es
v or Eu

v .

To formulate the next statement, it is convenient to introduce some standard notation:

Definition 3.6. Let M be a compact surface with negative curvature with universal cover
M̃ and unit tangent bundle SM .

1. Let ρ : SM →M denote the canonical fibre projection from SM to M .

2. Let π : M̃ →M denote the canonical covering projection from M̃ to M .

The hyperbolicity of the geodesic flow means that the effect of φt on the individual
fibres Sx0M is to stretch them and flatten them towards the weak unstable manifolds. The
following is then easily seen (see Figure 4).

Lemma 3.7. For each ṽ ∈ Sx0M̃ , the subarc of the circle of radius t in part 1 of Defintion 2.2
is arbitrarily close to a pre image π−1W ss(w) (where v = ρ(ṽ) and w = φtv) for sufficiently
large t.

3.2 Gibbs measures on N

We now consider a standard general class of flow invariant measures for the Anosov flow
φt : N → N .

Definition 3.8. Given a Hölder continuous function F : N → R we define the associated
Gibbs measure µ = µF to be the unique invariant probability measure such that

h(φ, µ) +

∫
Fdµ = sup

{
h(φ, ν) +

∫
Fdν : ν = φ-invariant probability measure

}
where h(φ, ν) denotes the entropy of the time-one Anosov flow.

The Gibbs measures µ are always non-atomic and fully supported. We recall two best
known Gibbs measures measure on N .
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ṽ
x̃0

t
η

η

π−1W ss(w)

w̃

Figure 4: The circular arc of length 2η is approximated by a lift π−1W ss(w)

1. The Sinai-Ruelle-Bowen measure µ is the unique φt-invariant probability measure
which is equivalent to the Riemannian volume on the unstable manifolds of φt.

2. The Bowen-Margulis measure mBM is the unique φt-invariant probability measure with
entropy h(φt,mBM) = h(φt).

In the particular case of geodesic flows φt : SM → SM the Sinai-Ruelle-Bowen measure
µ coincides with the Liouville measure, which is the unique φt-invariant probability measure
equivalent to the Riemannian volume on SM .

One of the most important distinctions between constant and variable curvature is that
in the constant curvature case the natural Liouville-Haar measure µ coincides with the
Bowen-Margulis measure or measure of maximal entropy, which is not the case for surfaces
of variable curvature.

3.3 The strong mixing property

In this section we want to recall a simple mixing result which is the main ingredient in the
proof of Theorem ??.

Definition 3.9. We say that a φt-invariant probability measure ν on SM is strong mixing if
for any Borel measurable sets A,B ⊂ SM we have that ν(φtA∩B)→ ν(A)ν(B) as t→ +∞.

This property holds for Gibbs measures ?.

Proposition 3.10 (Strong mixing property). Let µ be a Gibbs measure (for a Hölder con-
tinuous function) then µ is strong mixing.

We will apply this result with A being a neighbourhood of Sx0M .

7



3.4 Induced measures on Sx0M 3 GEODESIC AND ANOSOV FLOWS

3.4 Induced measures on Sx0
M

Let ht : SM → SM be a horocycle flow whose orbits are leaves of the C1 stable foliation
and whose parameterization comes from the induced Riemannian metric. We can choose a
neighbourhood A = A(ε, δ) of the one dimensional curve Sx0M of the form

Sx0M ⊂ A := φ[−ε,ε]h[−δ,δ]Sx0Ms = {φuhv(x) : v ∈ Sx0M,−ε < u < ε and − δ < v < δ}

for small ε, δ > 0 (cf. Lemma ??). The basic idea is that we are “fattening up” Sx0M in
both the strong stable direction and flow direction (see Figure 5).

Sx0M

h[−δ,δ]Sx0M

A

2ε

2δ

Figure 5: The set Sx0M is a one dimensional embedded circle in SM . Applying h[−δ,δ] gives
a two dimensional embedded annulus. Then applying φ[−ε,ε] gives the three dimensional
neighbourhood A of Sx0M .

Given any Gibbs measure µ we can induce probability measures µε,δx0
on Sx0M as follows.

Definition 3.11. For sufficiently small ε, δ > 0 we define a family of equivalent probability
measures µε,δx0

(B) by

µε,δx0
(B) =

µ
(
φ[−ε,ε]h[−δ,δ]B

)
µ (A(ε, δ))

.

where B ⊂ Sx0M is a Borel subset. Moreover, the following limit exists and defines a
probability measure µx0 on Sx0M by

µx0(B) = lim
δ→0

lim
ε→0

µε,δx0
(B)

In the case that µ is the Liouville measure then µε,δx0
and µx0 will be absolutely continuous

measures on Sx0M with C1 densities. In the particular case that M has constant negative
curvature we see by symmetry considerations that µx0 is Haar measure on Sx0M .

Remark 3.12. Induced measures are usually only defined up to mutual equivalence, due to the
freedom in choosing sub-sigma algebras. In the above concrete formulation the ambiguity
comes from the freedom in the choice of the parameterisation ht and the corresponding
density D : Sx0M → R.

8



4 THE PROOF OF THEOREM ??

4 The proof of Theorem ??

We will actually prove a more general result for Gibbs measures µ. Let µx0 and µε,δx0
be

measures on Sx0M introduced in the previous section and let µ̃ε,δx0
and µ̃x0 , respectively, be

the lifts to Sex0M̃ .

Theorem 4.1 (Generalized version for Gibbs measures). For each k ∈ N0 we have that the
following limit exists:

Pk := lim
t→+∞

µ̃x0

({
ṽ ∈ Sx̃0M̃ : #{R(ṽ, t) ∩ Γx̃0} = k

})
.

In the particular case that µ is Liouville measure, Theorem ?? reduces to Theorem ??
stated in §2.

We can use the canonical projection π : M̃ → M to translate the formulation of the
statement in Theorem ?? to a corresponding one down on the compact surface M . More
precisely, we denote the image of R(ṽ, t) ⊂ M̃ under π by Q(v, t) := π(R(ṽ, t)) ⊂ M . Then
each Q(v, t) can be visualised as a strip wrapped around the surface M like a bandage. We
can then reformulate the counting function in terms of SM as follows:

Lemma 4.2. Q(v, t) := #{R(ṽ, t) ∩ Γx̃0} is the number of times that the point x0 ∈ M is
covered by Q(v, t) (see Figure 6 (b)).

The proof of Theorem ?? will make use of two partitions of the unit tangent bundle SM .
We first partition SM into pieces corresponding to level sets of the counting function as
follows:

Lemma 4.3. For t > 0 and sufficiently large N ≥ 1 we can divide SM = ∪Nk=0Fk,t into sets

Fk,t = {w ∈ SM : Q(φ−tw, t) = k}

for 0 ≤ k ≤ N .

We observe that one can choose N to be uniformly bounded in t since, for example, M
has a non-zero injectivity radius.

The strategy of the proof is to approximate Q(v, t) by a more dynamically defined region
P (w) ⊂M (where w = φtv) and then to use the strong mixing property.

We are now in a position to explain the construction of the approximation P (w) to Q(v, t)
(where w = φtv) which leads to the second partition of SM . Let λ(2) denote the normalised
Riemannian volume λ(2) on M .

Definition 4.4. We can associate to each point w ∈ SM :

1. A value η′ = η′(w) > 0 (which depends continuously on w);

2. A piece U(w) = h[−η′,η′](w) ⊂ W su(w) ⊂ SM of the strong unstable manifold; and

3. A piece W (w) = φ[−s,0]h[−η′,η′](w) ⊂ Wwu(w) ⊂ SM of the weak unstable manifold

9
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w̃ = φ̃tṽṽ
x̃0

gx̃0

R(ṽ, t)
η

η

s
w

P (w)

Q(v, t) η′

η′

Figure 6: (a) The region R(ṽ, t) ⊂ M̃ ; (b) The image Q(v, t) ⊂M (dotted lines) is approxi-
mated by P (w) ⊂M (solid line) with w = φtv

where η′ = η′(w) > 0 is chosen so that the canonical projection P (w) = ρ(W (w)) has unit
area with respect to the volume element on M( i.e., λ(2)(P (w)) = 1). (See Figure 6 (b))

We next want to introduce the second (more dynamical) partition of the unit tangent
bundle SM . Given w ∈ SM the set P (w) can be visualised as a strip wrapping around the
surface M (see Figure 6 (b)). Let P(w) denote the multiplicity of the number of times P (w)
covers x0 ∈M .

Definition 4.5. For sufficiently large N ≥ 1 we can partition SM = ∪Nk=0Ek into dynami-
cally defined level sets

Ek = {w ∈ SM : P(w) = k}

for 0 ≤ k ≤ N .

In order to compare these two partitions SM = ∪Nk=0Ek = ∪Nk=0Fk,t we use the following
straightforward property of Gibbs measures (which is clearly immediate in the particular
case of the Liouville measure).

Lemma 4.6. The sets Ek have the property that µ(∂Ek) = 0 (i.e., their boundaries have zero
measure with respect to Gibbs measure). Moreover, limξ→0 µ(Bξ(∂Ek)) = 0 where Bξ(∂Ek)
is an ξ-neighbourhood of Ek.

Proof. This follows easily from the useful fact that Gibbs measures are non-singular (with
uniform bounds on the Radon-Nikodym derivative) under local homeomorphisms which pre-
serve the strong stable and strong unstable manifolds. For hyperbolic transformations this
was shown in ? and the extension to hyperbolic flows is similar. If we assumed for a con-
tradiction that µ(∂Ek) > 0 then we could arrange many disjoint images under such local
homeomorphisms the sum of whose measures would contradict µ being a probability mea-
sure.

For each k we want to relate the sets Ek and Fk,t in the partitions above.

Lemma 4.7. Let k ≥ 0.

10



5 GENERALIZATIONS

1. For all ξ > 0 there exists t0 > 0 such that Fk,t ⊂ Bξ(Ek) and Bξ(Ek) ⊂ Fk,t for all
t > t0.

2. limt→+∞ µ(Fk,t) = µ(Ek).

Proof. The first part follows from the definitions of P (w) and Q(v, t) and Lemma ?? which
imply, in particular, that these two sets are close in the Hausdorff topology. The second part
follows from Lemma ??.

To complete the proof it only remains to approximate the partition {Fk,t} by the partition
{Ek} and apply the strong mixing property, as follows. Let δ > 0 and ε > 0 be sufficiently
small. By Lemma ?? we can bound

lim sup
t→∞

µ̃ε,δx0

({
ṽ ∈ Sx̃0M̃ : #{R(ṽ, t) ∩ Γx̃0} = k

})
= lim sup

t→∞
µε,δx0

({v ∈ Sx0M : φtv ∈ Fk,t})

≤ lim sup
t→∞

µε,δx0
({v ∈ Sx0M : φtv ∈ Bξ(Ek)})

= lim sup
t→∞

µ (A(ε, δ) ∩ φ−tBξ(Ek))

µ(A(ε, δ))

= µ (Bξ(Ek)) ,

using Lemma ?? and the strong mixing property in Lemma ??. Letting ε, δ → 0 (and then
letting ξ → 0 and applying Lemma ??) gives that

lim sup
t→∞

µ̃x0

({
ṽ ∈ Sx̃0M̃ : #{R(ṽ, t) ∩ Γx̃0} = k

})
≤ µ (Ek) .

A similar argument gives that

lim inf
t→+∞

µ̃x0

({
ṽ ∈ Sx̃0M̃ : #{R(ṽ, t) ∩ Γx̃0} = k

})
≥ µ (Ek) .

This completes the proof of Theorem ?? with Pk = µ(Ek), for k ≥ 0.

5 Generalizations

The basic method of proof is straightforward and the same method leads to a number of
simple generalisations, which we briefly describe.

1. If we assume that the surface M has finite area and negative curvature bounded away
from zero then Theorem ?? still holds. In particular, the geodesic flow is still strong
mixing for the Liouville measure by ?.

2. The same general method can be used to prove results for d-dimensional manifolds
(d ≥ 3) with negative sectional curvatures in higher dimensions with suitable definitions
of the shrinking sectors. For example, one can consider a region R(ṽ, t) which is the
intersection of

11
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(a) the set {x̃ ∈ M̃ : t − s < d(x̃, x̃0) < t} bounded between spheres of radius t and
t− s centred at x̃0; and

(b) the cone bounded by geodesics from x̃0 to the boundary of the ball {ỹ : dfM(x̃, ỹ) =

t and dfM(π(φ̃tṽ), ỹ) < η} contained in the larger sphere, where η = η(ṽ, t) is
chosen so that volfMR(ṽ, t) = 1.

With these changes, the statements and proofs of Theorem ?? and Theorem ?? gen-
eralise to higher dimensions.

3. Let φt : M →M be a three dimensional Anosov flow and let S1, S2 ⊂ SM be compact
one-dimensional submanifolds for which the tangents TS1SM and TS2SM are at no
point tangent to either the unstable bundle or the stable bundle, respectively. Fix
s > 0, then given v ∈ S1, t > 0 and η > 0 we define a two dimensional subset
R(v, t) = {φ[t−s,t]v

′ ∈ S1M : d(φtv, φtv
′) < η}, say, where η(v, t) > 0 is chosen so that

vol(2)(R(v, t)) = 1 (i.e., the two dimensional area is normalised). The analogues of
the statements of Theorem ?? and Theorem ?? then hold for the counting function
#{R(v, t))∩S2}. This can be generalized to Axiom A flows in a natural way and then
covers the case of geodesic flows on convex co-compact surfaces, making a connection
with the Patterson-Sullivan measure on the boundary at infinity.
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