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ABSTRACT 

There is great interest in finding and developing new, efficient and more active electrocatalytic 

materials. Surface modification of highly oriented pyrolytic graphite (HOPG), through the 

introduction of surface “blisters”, is demonstrated to result in an electrode material with greatly 

enhanced electrochemical activity. The increased electrochemical activity of these blisters, which 

are produced by electro-oxidation in HClO4, is revealed through the use of scanning 

electrochemical cell microscopy (SECCM), coupled with complementary techniques (optical 

microscopy, FE-SEM, Raman spectroscopy, and AFM). The use of a linear sweep voltammetry 

(LSV)-SECCM scan regime allows for dynamic electrochemical mapping, where a 

voltammogram is produced at each pixel, from which movies consisting of spatial electrochemical 

currents, at a series of applied potentials, are produced. The measurements reveal significantly 

enhanced activity at blisters when compared to the basal planes, with a significant cathodic shift 

of the onset potential for the hydrazine electro-oxidation reaction. The improved electrochemical 

activity of the hollow structure of blistered graphite could be explained by the increased adsorption 

of protonated hydrazine at oxygenated defect sites, the ease of ion-solvent intercalation/de-

intercalation, and the susceptibility to N2 nanobubble attachment (as a product of the reaction). 

This study highlights the capability of electrochemistry to tailor the surface structure of graphite 

and presents a new electrocatalyst for hydrazine electro-oxidation.  

 

KEYWORDS: Graphite, Nanoelectrochemistry, Electrocatalysis, Scanning Electrochemical Cell 

Microscopy, Hydrazine Oxidation 
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INTRODUCTION 

There has been an intense push towards efficient and inexpensive alternatives to noble-metal 

electrocatalysts (i.e. platinum and ruthenium) for a wide range of applications.1-4 Great efforts have 

been made in developing non-noble metals catalysts through means of surface modification, 

doping, and alloying,5, 6 with varying degrees of success.7 Beyond metals, carbon-based materials, 

which have mainly been used as supports for electrocatalysts,8, 9 are receiving increasing attention 

as electrocatalysts in their own right.7, 10-12 Carbon is an attractive proposition, due to the possibility 

of modification by doping and surface functionalization in a wide variety of ways.13-15 This is 

particularly true of graphite, which comprises stacked graphene layers with weak van der Waals 

force present between the layers.7  

While outer sphere redox processes, and some more complex electron-proton coupled 

processes, occur readily at the basal structure of graphite,16-21 electrocatalytic (bond-breaking) 

reactions often require additional efforts to promote the electrochemical activity. There are 3 broad, 

and somewhat interrelated, approaches and effects to consider: (i) selective doping of sp2 materials 

by various heteroatoms (e.g. N,22 B,23 S,24 and P25); (ii) surface modification with different 

functional groups by chemical oxidation, or grafting26, 27 and (iii) defects, which may promote 

electrocatalysis.28, 29 An interesting way to introduce defects is by the intercalation of anions (ClO4
−, 

NO3
−, and SO4

2−) during the electrochemical oxidation of sp2 carbon materials (e.g. graphite), which 

ultimately leads to delamination, followed by fracturing into a bubble-like blister structure (hollow 

interior), that is presented on the graphite surface.30-32 These are interesting structures, but their 

electrocatalytic properties have not been widely studied. 



 4 

Herein, we investigate the electrocatalytic activity of blisters on an HOPG surface for 

hydrazine (N2H4) oxidation. Hydrazine is a high-energy fuel molecule, which has been 

investigated for the development of high power density direct hydrazine-air fuel cells.33 Separately, 

hydrazine is a carcinogenic and hepatotoxic compound, which affects glutathione levels in the 

brain and liver,34 and a such, the development of strategies for hydrazine detection is an important 

task, with electrochemical detection showing promise.35, 36 

Electrochemical measurements with high spatial and temporal resolution, can provide 

major insights into the activity of functional electrode materials, and our group has shown that 

scanning electrochemical cell microscopy (SECCM) is particularly promising for revealing 

nanoscale electrochemical activity and topographical information at a variety of substrates. 

SECCM is especially powerful when combined with other forms of microscopy, applied to the 

same area as electrochemical mapping, in a correlative approach.37-40 In this paper, we use a 

hopping voltammetric mode SECCM regime, in which a linear sweep voltammetry (LSV) 

measurement is performed at each location (pixel) of the defined scan area. These data can be 

processed to provide electrochemical activity maps, comprising hundreds of spatially-resolved 

current measurements as a function of potential, that can be played back as a movie, from which 

potential-resolved snapshots can be extracted, and from which current-voltage curves, Tafel 

analysis, etc. can be performed at individual pixels. The use of complementary microscopy 

techniques applied to the same area, including optical microscopy, scanning electron microscopy 

(SEM), atomic force microscopy (AFM), and micro-Raman, permits a detailed investigation into 

the structure-activity relationships of nanoscale features. 
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METHODS 

Materials. All chemicals were used as received. Electrolyte solutions were prepared freshly using 

deionized water produced by a Purite Select HP system (resistivity of 18.2 MΩ cm at 25 oC) and 

HClO4 (70 %, Sigma Aldrich). 5 mM Hydrazine (64 %, Acros Organics) was prepared in 0.1 M 

phosphate-buffered solution (PBS, pH 7.4). PBS was prepared in house from sodium phosphate 

dibasic heptahydrate (Na2HPO4
.7H2O, Sigma-Aldrich, 98-102 %) and sodium dihydrogen 

orthophosphate dihydrate (NaH2PO4
.2H2O, Fisher Scientific, 99-101 %). Pd wire (99.9 %, 0.25 

mm diameter, Alfa Aesar) was used to make Pd-H2 quasi-reference counter electrodes (QRCEs) 

and quasi-reference electrodes as described elsewhere.38 All reported potentials are against the 

reversible hydrogen electrode (𝐸Pd−H2
= 50 mV 𝑣𝑠. RHE).41 A high-quality AM-grade HOPG 

sample was used as a substrate, originating from Dr. A. Moore, Union Carbide (now GE Advanced 

Ceramics), and kindly provided by Prof. Richard L. McCreery (University of Alberta, Canada). 

Droplet experiments. The electrochemical formation of blisters was carried out in a 3-electrode 

setup, with freshly cleaved AM-grade HOPG acting as the working electrode (WE). Electrical 

contact to the WE was made via conductive Ag paint applied to the electrometer head unit. A drop 

of electrolyte solution (~10 µL of 0.1 M HClO4, ~ 4 mm dia.) was placed on the HOPG surface 

(Figure 1a). A Pt wire (99.95 %, 0.6 mm diameter, Alfa Aesar) was used as a counter electrode 

(CE) and Pd-H2 wire acted as a quasi-reference electrode. These were positioned within the droplet 

of solution.18, 42 The electrochemical measurements were performed with a CHI 730 

electrochemical workstation (CH Instruments, TX, USA).43, 44 

Hopping SECCM-LSV experiments. Borosilicate theta (dual channeled) capillaries (ID = 1.0 mm, 

OD = 1.5 mm, Harvard Apparatus, UK) were pulled using a laser pipette puller (P-2000, Sutter 
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Instrument Co., USA) to produce nanopipettes with a diameter of around 400 nm (200 nm each 

channel). Nanopipettes were silanized using dichlorodimethylsilane (>99 %, Acros) to produce a 

hydrophobic outer surface, whilst Ar gas was flowed through to prevent any internal silanization. 

This process ensured a confined aqueous meniscus contact during SECCM experiments.37  

A schematic illustrating the hopping SECCM method is shown in Figure 1b. Briefly, a dual 

barreled nanopipette, filled with 5 mM N2H4 solution as well as a Pd-H2 wire in each channel, 

which act as QRCEs, functions as both a conductimetric and voltammetric cell. The nanopipette 

was approached towards the surface of the HOPG substrate until the meniscus made contact 

(without contact from the nanopipette itself). The nanopipette was used to make a series of 

measurements by landing the meniscus at a set of predefined locations. Electrolyte residues from 

the SECCM meniscus (vide infra) were visualized after experiments using field emission-scanning 

electron microscopy (FE-SEM) (Supra 55-VP, Zeiss) to provide key information about the 

meniscus size and location. The hopping distance between each pixel was 2 µm to avoid overlap 

of the probed areas (~ 900 nm in dia.).  

High precision control of the meniscus contact was achieved by applying a bias voltage 

(V2, 200 mV) between the two QRCEs to produce a direct ion current (IIC) across the meniscus. 

The nanopipette was oscillated perpendicular to the surface (267 Hz, 14 nm peak-to-peak 

amplitude) to induce an alternating current (AC) component of the ionic current signal between 

two barrels as the meniscus came into contact with the surface. The AC signal, at the generated 

oscillation frequency, was detected using a lock-in amplifier (SR380, Stafford Research System) 

and the resulting AC response served as the feedback signal for positioning the nanopipette at a 

set distance from the electrode surface. The working electrode potential (Es) was – (V1 + V2/2) vs. 

Pd-H2, against which all the electrochemical currents of the substrate (IEC) were measured using a 
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custom built, high-sensitivity, current-to-voltage converter. The voltammetric scan rate was 500 

mV s-1, applied at each point of meniscus contact, giving a spatial array of voltammograms. Data 

analysis was performed in Matlab (R2014b, Mathworks Inc.) to provide IEC spatial maps over a 

set of potentials which could also be presented as movies (see, for example, Supporting 

Information, Movie S2 and S3, which are discussed later).37, 45  

 

Figure 1. Experimental setup for (a) blister formation on HOPG using the droplet method43, 44 (0.1 

M HClO4) and (b) nanoscopic electrocatalytic measurement using voltammetric hopping mode 

SECCM. For SECCM, a bias voltage (V2) was applied between two QRCEs and the resulting ion 

conductance current (IIC) was measured and used for nanopipette positioning. A substrate voltage 

(V1) was applied to one of the QRCEs to control the working electrode potential (Es = – (V1 + V2/2) 

vs. Pd-H2), and the working electrode current (IEC) was measured. Small amounts of residue were 

left on the surface after withdrawing the nanopipette from each position, which aided location 

identification by other techniques. The arrows show the movement of the nanopipette.  

Micro-Raman and AFM experiments. Micro-Raman spectroscopy (InVia Reflex Raman, 

Renishaw, UK) fitted with a solid state 532 nm laser and a 50× lens was used to determine the 
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nature of the treated HOPG surface. For Raman mapping, the laser beam was raster-scanned across 

the area of interest, with spectra obtained every 0.8 µm and 1.0 µm over two predefined areas. 

Tapping mode AFM imaging of the HOPG was carried out in air (Innova, Veeco-Bruker). 

RESULTS AND DISCUSSION 

Surface Blistering of HOPG. Perchlorate (ClO4
−) is known to intercalate into HOPG at anodic 

potentials, with the extent of intercalation depending on the potential applied and exposure time.30, 

42, 46 Three consecutive cyclic voltammograms were performed on freshly cleaved HOPG in 0.1 

M HClO4, with start and reverse potentials of 0.15 VRHE and 2.35 VRHE, respectively (25 mV s-1). 

The insertion and removal of ClO4
− ions is manifest as redox peaks, as shown in Figure 2a and the 

inset. For the first anodic scan, small oxidation peaks at 1.95 VRHE (I), 2.12 VRHE (II), and 2.22 

VRHE (III) are similar to those seen previously that were attributed to three different anion 

intercalation stages.30-32, 47 A broad reduction peak at ca. 1.7 VRHE on the reverse scan corresponds 

to de-intercalation of ClO4
−  from the graphite. The current magnitudes for the redox peaks 

increased and progressively shifted towards more cathodic values, as the number of cycles 

increased, which can be attributed to more facile anion intercalation/de-intercalation.  

On the anodic scan, ClO4
− ions, along with solvent and acid molecules, are incorporated 

into the graphite lattice through defect sites, overcoming the weak van der Waals’ interactions 

between the graphene layers.32, 48 The intercalation process31 can be described by: 

                                             Cx + ClO4
− +  yHClO4 ⇌ Cx

+ClO4
−(HClO4)y + e−   (1) 

Irreversible side reactions involving graphite oxide formation and water electrolysis may 

also occur at anodic potentials. These reactions contribute to the anodic currents at relatively high 
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positive potentials.46 Surface quinone-hydroquinone redox reactions49 may also occur at 

electrochemically-functionalized graphite surface involving the alcohol and carbonyl groups that 

are formed at edge planes and defect sites.  

Figure 2b shows an FE-SEM image of HOPG after oxidation in HClO4 for three potential 

cycles (as defined above). The image reveals the formation of blisters along grain boundaries. The 

magnified FE-SEM image (Figure 2c) shows large blisters of irregular shapes, aligned along the 

boundaries with small blisters extending to the surrounding grain boundaries, consistent with 

previous studies.30 The mechanism of blister formation on HOPG is shown schematically in Figure 

2d.30-32 Anion intercalation starts close to, or at, surface defects (Figure 2d (1)). Intercalation of 

anions (ClO4
−) first expands the interlayer gap for efficient intercalation of the solvent molecules 

into the graphite lattice during the anodic scan (Figure 2d (2)). Figure 2d (3) shows gas evolution 

(e.g. O2 formation) from side reactions, occurring concurrently with the production of 

electrochemically generated graphite oxide. The mechanical stress, originating from the gas 

evolution, in particular, induces surface blistering on HOPG. De-intercalation of anion occurs 

during the reverse scan (Figure 2d (4)). 
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Figure 2. (a) Three consecutive voltammograms recorded at HOPG in 0.1 M HClO4 (25 mV s-1). 

Peak positions on the potential scale (inset figure) are mentioned in the text. (b and c) 

Corresponding FE-SEM images recorded on a blistered region of HOPG after the measurement in 

(a). (d) Schematic depicting the formation of a blister on HOPG.30-32 1) The basal plane and surface 

defects (step edges and grain boundaries) on an HOPG electrode, prior to electro-oxidation in 0.1 

M HClO4 solution. 2) Intercalation of ClO4
− ions occurs along with the intercalation of HClO4 and 

H2O at defect sites during the anodic scanning of the electrode potential. 3) At more anodic 

potentials (and/or more extensive electro-oxidation times), blister formation occurs due to the 

mechanical stress produced, for example, by gas evolution. The orange colored area represents 

electrochemically formed graphite oxide. 4) Ions de-intercalate during the reverse scan (reduction 

reaction), leaving behind the blister.   

Characterization of Surface Blisters on HOPG Using AFM and Raman Microscopy. 

A typical AFM image of AM-grade HOPG recorded prior to electrochemical cycling in 0.1 M 

HClO4 is shown in Figure 3a. The HOPG surface is characterized by extensive flat terraces, with 

a few step edges clearly visible. The HOPG surface is dramatically changed after performing three 

initial consecutive voltammetric cycles in 0.1 M HClO4 (same conditions as Figure 2a). Figure 3b 
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shows two small blisters of circular shape, ca. 1.2 µm across and 10 ‒ 14 nm in height (Figure 3d). 

Figure 3c shows a mixture of small and large blisters of irregular shape, ranging from 0.5 ‒ 5 µm 

across and 10 ‒ 90 nm in height (Figure 3e). The elongated shape of blisters could be due to the 

blister formation along the grain boundaries and extension in those directions, which then results 

in several smaller blisters merging. Mechanical forces originating from gas evolution in the anodic 

oxidation process is known to promote blister growth.31 

 

Figure 3. Typical AFM images of AM HOPG (a) before and after (b and c) voltammetric cycling 

0.1 M HClO4 (conditions as Figure 2a), leading to surface blistering. (d and e) Corresponding 

height cross sections of surface blistered regions. Note the different height scale bars.    
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Figure 4a(i) and b(i) show optical micrographs of two “blistered” areas on HOPG. Within 

these two regions are areas with basal planes and blisters, and these were analyzed with micro-

Raman spectroscopy in terms of D band intensity (Figures 4a(ii) and 4b(ii)) and G/D ratio (Figures 

4a(iii) and 4b(iii)). The micro-Raman spectra in Figures 4a(iv-vi) and b(iv-vi) were normalized 

with respect to the intensity of the second-order double resonance (2D) at 2710 cm-1 to permit easy 

comparison. The D-peak at 1350 cm-1 originates from the breakup of hexagonal sp2 carbon atoms 

in the graphitic planes.50 The Raman maps in Figures 4a(ii) and b(ii) show a higher intensity of the 

D-peak at blisters that are aligned along the grain boundaries. Corresponding micro-Raman spectra 

of the D-peak intensity for the surface blistered region increases by ca. 360 % (Figure 4a(iv and 

vi) and ca. 870 % (Figure 4b(iv and vi)) relative to the basal plane region. Oxidation of HOPG in 

0.1 M HClO4 above 1.5 V evidently caused damage to the graphite lattice as indicated by the 

increased intensity of the D-peak.46, 51 The intense line at 1565-1595 cm-1 is assigned to the G-

peak, which is also indicative of sp2 carbon.52 The G-peak in Figures 4 a(iv-vi) show little, or no 

difference between the blister and basal planes, but the G-peak bands in Figures 4 b(iv and vi) are 

significantly broader than usual. This can be attributed to an electrochemically formed graphite 

oxide region, produced during the anodic oxidation process, that varies across different regions of 

the “blistered” HOPG, with the broader G-band response caused by a thicker electrochemically 

formed graphite oxide film.53 Typically, electrochemically formed graphite oxide films contain 

many anionic sites and are highly permeable to small molecules.54  

The same scenario is apparent for the intensity of the G-peak with respect to the intensity 

of the D-peak i.e. (iG /iD), which is often used for the evaluation of the defect density in graphite.50 

Clearly, the value of iG /iD decreases in the blistered region. It should be noted that blisters were 

found only inside the contact area of the droplet at the surface of the HOPG substrate in Figures 
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2b, indicating that they were generated by the electrochemical process. Thus, these results show 

that the electrochemical generation of graphitic blisters leads to a considerable alteration of local 

structure. 

Figure 4. Optical micrographs (i) of two surface blistered regions (a and b) with corresponding 

micro-Raman maps of: (ii) iD, and (iii) iG/iD ratio, along with individual Raman spectra at (iv) 

blistered and (v) basal plane regions of an electrochemically-treated HOPG surface. (vi) Averaged-

spectra (n = 3 ‒ 5) of the surface blistered region (red) and basal plane (blue) of the treated HOPG 

surface.  
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SECCM Imaging at the “Blistered” HOPG for Hydrazine Oxidation. We first consider 

an area (40 µm × 30 µm) of an electrochemically-treated HOPG surface, consisting of blisters 

formed where two or more grains meet. The SECCM voltammetric scan regime provides a series 

of potential-resolved images of IEC at a set of x-y coordinates from which individual 

electrochemical (current) maps, at a given potential, can be extracted, or alternatively a movie of 

current varying with potential can be created. Figures 5a shows a current map at the most positive 

potential obtained from the SECCM-LSV movie file (Movie S2) in the Supporting Information 

which contains 191 images (336 pixels), one image every 2.56 mV, with the potential scanned 

from 0.45 VRHE to 2.35 VRHE. FE-SEM performed after SECCM imaging showed residues from 

the SECCM meniscus were left on the surface which had fairly consistent shape and size (Figure 

5b), from which one can deduce that each measurement has a very similar local working electrode 

area. By coupling the SECCM measurements with FE-SEM applied to the same area, a detailed 

correlation of structure with electrocatalytic properties is revealed. The immediate and striking 

observation is that the electrochemical map in Figure 5a shows relatively high electrochemical 

activity at the blisters presented along the grain boundaries (region 1), as compared to the basal 

plane area (region 2).  

To analyze the electrochemical behavior in detail, raw LSV data were extracted from two 

regions, 1 and 2 (Figures 5c), with LSVs from 5 individual pixels in each area (black), along with 

the resulting average LSV for each area (red). At a potential of 1.5 VRHE, the peak current for 

hydrazine electro-oxidation in the blister (region 1) is ca. 1.3 nA. This current is significantly 

enhanced compared with the basal plane (region 2) which exhibits a peak current of ca. 0.5 nA at 

a much higher overpotential, ca. 2.05 VRHE. Furthermore, the onset potential for hydrazine electro-

oxidation at a blister (ca. 0.8 VRHE) is significantly shifted to a more cathodic potential when 
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compared to voltammetry performed at the basal plane (ca. 1.6 VRHE), indicating that the blister 

has greatly enhanced electrocatalytic activity for the electro-oxidation of hydrazine. Note that the 

limiting current is higher for the blistered graphite, as compared to a standard gold electrode in the 

same SECCM configuration (Supporting Information, section S1). Furthermore, SECCM 

voltammetry at the basal graphite surface gives a limiting current similar to gold (albeit shifted 

catholically by a large value). The higher current magnitude at the blister, is most likely due to the 

electrowetting of the substrate by the meniscus during ions intercalation/deintercalation, driven by 

the applied potential.42 Interestingly, however, the electroactivity of the blistered region lies 

between that of the gold electrode and basal plane graphite, highlighting how simple surface 

modification can impart significant electrocatalytic effects. 

A Tafel map (Figure 5d) was obtained to highlight the different kinetic regimes across the 

treated HOPG surface. The voltammetric data were analyzed in the potential intervals from 0.65 

to 1.10 V (blistered region) and 1.40 to 1.70 V (basal plane region) corresponding to the foot of 

the wave, where mass transport and, as such, concentration polarization could be neglected in each 

case. The Tafel slope was in the range 100 ‒ 180 mV/decade (region 1) and 250 ‒ 400 mV/decade 

(region 2), as shown in Figure 5e. The Tafel slopes of the blistered region are superior to alternative 

carbon-based electrode catalyst, such as polypyrrole55 or curcumin modified multi-walled carbon 

nanotubes56 on a glassy carbon support. The charge transfer coefficient, α, was 0.33 ‒ 0.59 in the 

blistered region which was determined from the Tafel slope, indicating a, more or less, one-

electron process in the rate determining step, followed by processes amounting to the transfer of a 

further three electrons to give N2 as a final product:57, 58 

N2H5
+ → N2H3(ads) + 2H+ + e−             (2) 
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N2H3(ads)  → N2 + 3H+ + 3e−              (3) 

 

Figure 5. Electrochemical map of the modified HOPG substrate at (a) 2.35 VRHE (5 mM N2H4). 

(b) FE-SEM image after SECCM imaging showing the locations of the individual pixels. (c) 

Individual LSVs (black, n = 5) and averaged LSV (red) for different regions marked in (a). (d) 

Tafel map (mV per decade) determined using data from 0.65 > Es > 1.10 VRHE (blister) and 1.40 

> Es > 1.70 VRHE (basal plane). (e) Example Tafel plots highlighting the difference between regions 

1 and 2 of (d). 

To investigate further the influence of the HOPG structure on hydrazine oxidation, SECCM 

imaging was performed in a different area (40 µm × 44 µm) of an acid modified HOPG sample, 

comprising of small blisters as well as a relatively large blister along the grain boundaries. The 

current map in Figure 6a was extracted from an SECCM-LSV movie file (Supporting Information, 

Movie S3) in which the potential was scanned from 0.45 VRHE to 2.1 VRHE at each pixel (483 pixels 

with a hopping distance of 2 µm, Figure 6b). Strikingly, the electrochemical map, shows high 

activity at the blisters present along the grain boundaries with higher activity, particularly 

noticeable at the circumference of the large spherical blister (Figure 6b). Raw LSV data for the 

hydrazine oxidation were extracted at two pixels, spot 1 and spot 2, (Figures 6c). At a potential of 
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1.5 VRHE, the peak current of the hydrazine electro-oxidation was ca. 5.4 nA (spot 1) and ca. 1.8 

nA (spot 2). These result reveals heterogeneous electroactivity within the blister structure, with the 

highest activity attributed to the blister edge.  

For comparison, Figures 6d and 6e show individual LSVs (n = 5), and the averaged 

response for regions A and B, respectively. The electrochemical behavior of the center of the 

blister (region A) is similar to the basal plane (region B), and displays low activity compared to 

the much more active regions of the blisters. Tafel analysis was performed on the SECCM scanned 

area and the resulting Tafel map is shown in Figure 6f. The analysis was in the potential range 

from 0.75 to 1.05 V (active region) and 0.90 to 1.30 V (less active region). The Tafel slope was 

961 mV/decade (spot 1), 1602 mV/decade (spot 2), and in the range 250 ‒ 450 mV/decade 

(region A and B), with typical Tafel plots shown in Figure 6g. These data again reveal the power 

of the SECCM voltammetric mode to highlight key areas of activity on an electrocatalytic surface 

and, in this case, to even pinpoint differences in activity within blisters.   

At pH 7.4, hydrazine (pKa = 8.1)59 is largely protonated and, the blistered region has a high 

density of negatively charged electrochemically formed graphite oxide film evident from the 

broader G-band (Figure 4b(iv)) and oxygen groups (‒COOH, ‒OH, ‒CHO) formed during 

potential cycling in acid.60 These groups on the modified graphite surface can act as potential sites 

to adsorb active species, leading to enhanced electron transfer kinetics.61 Further, the more 

disordered nature of the blister (increased D-band in Figure 4a(vi) and 4b(vi)) compared to the 

basal surface, leads to more ready ion-solvent intercalation during electrocatalysis, which could 

be important for improving the electrochemical activity. It should further be pointed out that N2 

nanobubbles can be formed during N2H4 electrooxidation and block the electrode surface.62 The 

porous structure of blistered regions may aid the evolution of N2 nanobubbles, resulting in an 
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enhancement of electrochemical activity. Finally, and significantly, the electronic properties of 

graphite change dramatically by the introduction of defects,63 in particular, resulting in a high 

density of state near the Fermi level at defective graphite,17, 52, 64 which would be expected to 

significantly enhance electrocatalysis.  

 

Figure 6. Electrochemical map of a modified HOPG substrate at (a) 2.1 VRHE (5 mM N2H4) (b) 

FE-SEM image after SECCM imaging. LSV for different regions: (c) blister spots (1 and 2 in (a)), 

(d) Inner blister (A) (n = 5), and (e) basal plane (B) (n = 5). (f) Tafel map (mV per decade) 

determined using data from 0.75 > Es > 1.05 VRHE (blister) and 0.90 > Es > 1.30 VRHE (basal plane). 

(g) ExampleTafel plots from the labelled regions in (f). 

CONCLUSIONS 
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In this study, we have shown that structural defects (surface blisters) which form on HOPG (at 

grain boundaries and step edges) during voltammetric cycling in 0.1 M HClO4 can be readily 

characterized by FE-SEM and Raman microscopy. These structures show considerable 

electrocatalytic activity compared to basal HOPG areas on the same surface, as revealed by 

SECCM imaging. The use of the LSV-SECCM approach, in the study of these surface features, 

has enabled a potential sweep at every pixel of the scanned area to be performed, providing detailed 

information of microscopic activity. The extensive data sets produced have allowed us to observe 

an earlier onset potential, higher peak current, and smaller Tafel slope at the blistered area, all of 

which are indicative of enhanced electrocatalysis compared to the basal plane.  

Several factors need to be considered to explain the dramatic effect of HOPG blisters on 

hydrazine electro-oxidation. These include enhanced adsorption of protonated hydrazine at the 

defect sites, the hollow nature of the blistered graphite that allows ion-solvent intercalation/de-

intercalation during the electrocatalytic reaction, and the porous structure of the blistered region 

that would be less susceptible to N2 nanobubbles blocking access to the surface. Overall, the results 

show that electrochemistry is a powerful tool for engineering the surface properties of graphite to 

make an effective electrocatalyst, and that state of the art electrochemical imaging, in combination 

with other microscopy techniques allows detailed correlations between structure and activity to be 

drawn and explained.  

Supporting Information. S1. Linear sweep voltammograms (LSVs) of hydrazine oxidation at a 

gold electrode in a scanning electrochemical cell microscopy (SECCM) setup. S2. Electrochemical  

current (IEC) movie of hydrazine oxidation area 1; S3. Electrochemical current (IEC) movie of 

hydrazine oxidation area 2. 
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