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Abstract: A XYθz stage is designed and experimentally tested. This developed stage 

is driven by three piezoelectric actuators (PZTs) and guided by a flexure hinge based 

mechanism with three symmetric T-shape hinges. It was manufactured monolithically 

by using wire electrical discharge machining (WEDM) technology. In addition, 

considering the both electrical and mechanical characteristics, a third-order dynamic 

model of the 3-DOF system has been established to investigate the relationship 

between the input voltage and the output displacement of the entire system. The 

parameters of the third-order dynamic model were estimated by using the system 

identification toolbox. Furthermore, decoupling control is also proposed to solve the 

existed coupling motion of the stage. In order to compensate the hysteresis of PZT, 

the inverse Bouc-Wen model was utilized as a feedforward hysteresis compensator. 

Finally, extensive experiments were performed to verify the good decoupling and 

tracking performances of the developed stage. 
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1. Introduction  

Nanopositioners are commonly used in various academic and industrial fields, 

such as micro/nano manipulation system, microelectronics processing, optical 

instruments and measurement systems. For example, in scanning probe microscopy 

systems, the nanopositioners are used to control an ultra-sharp tip relative to a sample 

surface for machining, imaging, and manipulating objects at nanometer scale [1, 2]. In 

addition, it is also one of the key components of thermosonic bonding equipments [3]. 

Precision positioning system is mainly composed of actuation device, guide 

mechanism and end effector. The piezoelectric actuator (PZT) is a good choice as 

actuation device, because it can provide excellent resolution actuation with high 

stiffness and high output force. In order to guarantee positioning accuracy, one of the 

best choices is to utilize flexure based mechanism as guidance of the motion, due to 

the advantages of flexure hinges including no backlash, free of wear, no lubrication, 

and low friction. 

In the past few decades, parallel flexures have been confirmed to be applicable 

for the micro/nano positioning mechanism. For example, Stewart and Delta 

mechanisms [4, 5], are widely utilized on account to provide adequate motions in 

spatial or planar applications. The flexure based mechanisms are generally developed 

by replacing the conventional joints of the conventional parallel mechanism with 

flexure hinges. Therefore, design of the flexure hinges is a key issue. In the literature, 

there are a variety of flexure hinges that have been proposed and utilized in the 

precision positioning system, including notch-type hinge [6-8], leaf-spring hinge 



[9-11], right elliptical hinge [12], V-shape flexure hinge [13], cross-axis flexural 

pivots [14-16], split-tube flexural pivots [17], cartwheel hinges [18-22], and so on. 

Among these proposed flexure hinges, the notch-type hinge and leaf-spring hinge are 

the most popular and widely utilized in precision positioning systems. Especially, the 

leaf-spring hinges are capable of achieving large working range. In this paper, the 

proposed T-shape flexure hinge consists of three leaf-spring hinges subsections 

connected together like a T-joint. Benefiting from this design, the movement of the 

special hinge is more flexible. 

In the structural design of flexure-guided nanopositioners, many novel 

mechanisms are used in the micro/nano positioning domain. For example, Tian et al. 

developed a 5-bar mechanism for micro/nano operations [23, 24]. And design of a 

2-DOF precision positioning platform featuring the parallelogram decoupling 

mechanisms [25]. Qin et al. [26, 27] focused on the designs of two different type 

decoupling positioning stages with 2-DOF. Wang et al. [28-30] designed a 

high-acceleration precision positioning system with a novel flexible decoupling 

mechanism. Polit and Dong [31] developed a high-bandwidth and decoupling XY 

positioning stage. In order to implement the positioning and orientation of the sample 

for the precision measurement and characterization, it is necessary to develop a XYθz 

positioning stage which can be utilized to conduct the in-plane motion. Tian et al. 

have designed a 3-DOF flexure-based mechanism for micro/nano manipulation [5]. 

Qin et al. proposed a design of a novel 3-DOF monolithic manipulator with three 

improved Scott-Russell (ISR) mechanisms [31]. Guo proposed a XYθz stage with the 



parallelogram decoupling mechanisms [33]. In these developed mechanisms, a series 

of the notch-type hinges have been adopted as a guide mechanism. However, the 

mechanical design of the 3-DOF positioning system with combination of the notch 

type and leaf-spring hinges has also been provided by Kim et al. [34] and Bhagat et al. 

[35]. In addition, Kim et al. presented the mechanical design of a 3-DOF 

flexure-based parallel compliant mechanism for the hollow type biomedical specimen 

stage base on notch-type hinges and cartwheel hinges [36]. In this paper, the proposed 

XYθz stage is guided by a flexure hinge based mechanism with three symmetric 

T-shape hinges, and each T-shape flexure hinge mechanism consists of three 

leaf-spring hinge subsections connected together like a T-joint. The structure of the 

stage is more simple and compact by the symmetrical arrangement of the T-shape 

flexure hinge. 

In current research efforts on piezo-driven compliant mechanisms, the control 

voltage is generally adopted as the input during the dynamics modeling. However, in 

the dynamic modeling, the PZT is generally modeled as a force generator with a 

built-inspring-damper component. It is common to define the driving force as the 

input into the system in the dynamics modeling. Other characteristics of the PZT are 

generally ignored. However, Tian [37] proposed the PZT could be electrically 

considered as a capacitance with an equivalent circuit. Similar modeling approach has 

been used in [47-49]. 

Since the control voltage is generally adopted as the input during operation, the 

hysteresis and creep nonlinearities of the PZT are included in the actual measurement. 



It is easily observed that the existence of hysteresis loop in the measured results. 

Therefore, the piezo-driven compliant mechanism also suffers from the hysteresis of 

the PZT. In the past decade, different hysteresis models [38,40,41,43,45] have been 

established. It would be very desirable to remove the nonlinearities of the PZT in the 

dynamics modeling and identification. 

In this paper, a novel XYθz stage is designed and experimentally tested. The 

remainder of this paper is organized as follows: Section II introduces the mechanical 

the design of the 3-DOF (Degree of Freedom) stage and prototype development. In 

Section III, a dynamic model of the system is established, and system identification is 

then implemented. The experimental tests are conducted in Section IV, and Section V 

concludes this paper. 

2. Mechanical design and prototype development 

The solid model of the 3-DOF stage is shown in Fig. 1. The parallel driven 

configuration is utilized in the design. It can be seen that the stage is mainly 

composed of three piezoelectric actuators (PZTs), three T-shape flexure hinge 

mechanisms, a moving platform and a base. Three T-shape flexure hinge mechanisms 

are located at the same circle with the separation angle of 120°. Each T-shape flexure 

hinge mechanism consists of three leaf-spring hinge (I, II and III) subsections 

connected together like a T-joint as shown in Fig. 2. One end of each T-shape flexure 

hinge mechanism is connected to the moving platform and the others are fixed on the 

base. On the same circumference of the T-shape flexure hinge mechanism, there are 

three slots to install PZTs with the separation angle of 120°. Each slot separates from 



the T-shape flexure hinge mechanism with an angle of 60°. The PZT can be preloaded 

through the behind fine screw bolt. By controlling the PZTs simultaneously, the 

moving platform can implement the translations in the X and Y directions, and 

rotation about the Z axis.  

 

Figure 1 3D solid model of the developed 3-DOF stage 

 

Figure 2 Schematic diagram of the T-shape flexible hinge structure 

The proposed 3-DOF stage was manufactured monolithically using wire 

electrical discharge machining (WEDM) technology, and the material was selected as 

I 

II 

III 



Aluminum 7075-T6 with a Young’s modulus of 72 GPa, a yield strength in excess of 

434 MPa. The top and bottom surfaces were machined using a milling machine to 

guarantee the parallelism. Subsequently, artificial aging treatment method was utilized 

to release the residual stress. Considering that the T-shape flexible hinge mechanism 

must be inside the small and compact stage, the following parameters were 

determined: the stage diameter is chosen as ϕ 150 mm, the thickness is set as 18 mm, 

and the moving platform diameter is chosen as ϕ 100 mm. Therefore, three leaf-spring 

hinges have the same hinge width of b=18 mm. The geometric parameters of the 

T-shape flexible hinge are listed in Table I. 

Table I: Geometric parameters of the T-shape flexible hinge. 

Geometric parameters t l b 

Value(mm) 1.0 10.0 18.0 

In order to examine the performance of the stage described above, modal 

analysis is performed to examine the dynamic characteristics of the stage using finite 

element analysis package ANSYS Workbench software. The material for the stage is 

chosen as Aluminum 7075-T6 with a density of 2770 kg/m3, a Young's modulus of 

71 GPa, and a Poisson's ratio of 0.33. In order to improve the computational accuracy, 

the mapping mesh method is adopted. The mesh is strictly controlled in the areas of 

flexure hinges, where the large deformation is generally occurred. The results are 

shown in Fig. 3. When the piezoelectric actuators are not installed on the stage, the 

first mode shape is the rotation about the Z-axis, and its frequency is 528.11Hz; the 

second and third modes shape are the translations along the X and Y axes, 



respectively, with the corresponding frequencies of 626.92 Hz and 626.95 Hz. If the 

PZTs are installed, it can be realized by incorporating spring-damper components into 

the stage. It is considered as a spring with a constant stiffness k, and one end of the 

spring is fixed and the other end is attached on the moving platform. The simulation 

results show that the first three natural frequencies increase to 806.04 Hz, 801.13 Hz 

and 931.20 Hz, and the corresponding mode shapes are the moving platform 

translating in the Y-axis and X-axis, and rotating about the Z axis, respectively. 

 

 

(a) 

    

(b)                                  (c) 

Figure 3 First three mode shapes of the 3-DOF stage with no PZTs installed: (a) first mode shape 

(528.11Hz), (b) second mode shape (626.92Hz) and third mode shape (626.95Hz). 



According to the above characteristics analysis, it validates that the stage can 

provide both translational and rotational motions. In addition, the stage has a high 

natural frequency, which ensures that the system has good dynamic characteristics. 

The prototype of the developed XYθz stage is shown in Fig. 4. The 3-DOF stage 

is mounted on a Newport RS-4000 optical table to reduce the ground vibrations. 

Three AE0505D18 PZTs were used with the maximum displacement of 15µm under 

the input voltage of 100V. The dSPACE DS1103 controller was used to generate the 

controlling signal, and the PI E-505.00 amplifier was used to amplify the signal to 

drive the PZTs. Three KEYENCE laser displacement sensors LK-H050 were used to 

measure the motion of the stage. 

 
Figure 4 Experimental setup of the stage 

 

3. Dynamics modeling and system identification 

3.1 Dynamics modeling 

The model of the stage can be considered as mass and spring system, and it is 

shown in Fig. 5. Based on the Newton’s second law of motion, the differential 

equations for the dynamic motion of the flexure mechanism are given as Eq. (1). The 

dynamic model is established based on the assumption that only first three modes are 



considered and all higher modes are neglected. 

 

 

Figure 5 Dynamics model of the 3-DOF stage 
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fpzt represents the driving force of the PZT, meq, ceq and Izz denote the equivalent mass, 

the equivalent damping coefficient of the stage and moment of inertia about the 

Z-axis, respectively, keqx is the X-axis linear stiffness of the stage, kjx is the X-axis 

equivalent stiffness of the “T” type flexible hinge, kpzt is the stiffness of PZT, kc is the 

equivalent Hertzian contact stiffness, r is the radius of the moving platform. B is 

Jacobian matrix, which represents the kinematic relationship of the 3-DOF system. A 



is equal to BB
T
, which represents the equivalent relationship between X, Y and θ. 

To ensure that the PZTs and the moving platform are not separated during normal 

operation, the PZTs are installed in slots and connected to the base by the bolt preload. 

Therefore, the driving force of PZT can be obtained: 

d
kk

kk
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where d is the displacement output of the free PZT is given by: 

pzteVdd                               (3) 

where de is a piezoelectric constant, Vpzt is the applied voltage. Thus: 
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where: zzeqxeqeqxeqeqx Ikrwmkwmkw
nnynx

2222 3,23,23 
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. 

For dynamics modeling, it is usually defines the driving force as the input into 

the system, which means that the PZT is considered to be a force generator with a 

spring-damper mass units. However, the PZT has electric characteristics. In [37], Tian 

proposed that the PZT could be electrically considered as a capacitance with an 

equivalent circuit. Similar modeling approach has been used in [47-49]. 

Thus, in this paper, the piezoelectric actuator could be electrically considered as 

a capacitance with an equivalent circuit as shown in Fig. 6, where Vpzt(t) is the actual 

voltage applied to the piezoelectric actuator, Vd(t) is the input control signal, C, R is 

the equivalent capacitance and resistance of PZT, respectively. Based on the 

Kirchhofff’s law, the following relationship can be obtained: 



 

Figure 6 Equivalent driving circuit of the piezoelectric actuator 
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When the initial input voltage is 0, based on Eq. (5) and it's Laplace transform, the 

relationship between the input and output can be obtained: 
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In this case, the signal from input voltage to the output of the displacement in (4) and 

(6) can be described by a third-order system: 
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(7) 

Thus, the 3-DOF system can be described including both electrical and mechanical 

characteristics. 

3.2 System identification 

From Eq. (7), it's known that the parameters for the dynamic model cannot be 

obtained by simply using the theoretical calculations, because the exact information of 

the parameters ceq, kc, R and C is generally incalculable. Therefore, the 3-DOF system 



should be identified based on the input control voltage and the corresponding output 

displacement. 

In this study, a sweep signal is employed as the control input, which covers a 

frequency range from 1 Hz to 3 kHz. In this case, the X and Y axes output 

displacements are measured and recorded from 0 to 10 s. Fig. 7 shows the frequency 

spectra of the stage’s responses in the X and Y axes, when only the PZT2 is activated. 

Based on the frequency spectra, the first natural frequencies in the X and Y axes are 

estimated to be 851.14 Hz and 812.83 Hz, respectively. Compared with the simulation 

results, experiment results show that the natural frequencies of the stage are increased, 

it means that the stage has better dynamic characteristics. This is benefited from the 

installation of PZTs, which increase the stiffness in the actuation directions. In 

addition, it can be seen that the motion of the 3-DOF stage is coupled. 

 

Figure 7 Frequency spectra of the stage’s response (only PZT2 is activated) 

Based on the system modeled by Eq. (7), the identification is carried out with the 

Matlab system identification toolbox. During the identification process, the 

third-order systems are adopted to fit the measured data, and the identified results are 

given in the following equations: 
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(8) 

Fig. 8(a) shows the comparisons the X axis transfer function of the identified 

model and experimental result. Similar result in the Y axis is obtained. The θ axis 

transfer function of the identified model and experimental result also is described in 

Fig. 8(b), and the natural frequencies in the θ axis are estimated to be 945.74 Hz. It 

can be observed that the identified model can reasonably represent the physical 

system in the frequency response. However, the deviation exists in the phase plot at 

high frequencies. One of the reasons is the hysteresis effect, which always causes the 

phaselag. 

 

(a) 



 

(b) 

Figure 8 (a) Frequency response of the transfer function in X axis, and (b) Frequency response of 

the transfer function in θ axis 

 

4. Experiments and discussions 

4.1 Decoupling control 

 

Figure 9 Decoupling control block diagram 

As mentioned previously, the motion of the 3-DOF system is coupled. In order to 

eliminate this coupling, the system is controlled in open-loop via inverse kinematics. 

The control block diagram is presented in Fig. 9. Therefore, each axis output of the 

system can be controlled independently when the system is controlled by the 

simultaneous control of three PZTs. 



The motion stroke and coupled motion are tested, and the result is shown in Fig. 

10. It can be seen that the maximum translational displacements in the X- and Y- 

directions are 6.9 μm and 8.6μm, respectively, and rotational motion range is 289 μrad. 

The decoupling characteristic is confirmed, the maximum coupled displacements in 

the X- and Y- directions are 0.2346 μm and 0.2752 μm, respectively, and the 

cross-axis coupling ratio is below 3.5% (3.4% in the X axis, 3.2% in the Y axis), it is 

mainly due to the assembly errors, manufacture errors and the external disturbances. 

In this case, the 3-DOF system, which is controlled in open-loop via inverse 

kinematics can be treated as three Single-Input-Single-Output (SISO) systems. 

 

(a)                                (b) 

 

(c) 



Figure 10 Experiment test of the motion stroke 

4.2 Trajectory tracking 

During operations, the control voltage is applied on the PZT, which is defined as 

the input into the system. Due to the hysteresis and creep effects of the PZT, the 

relationship between the input control voltage and the output displacement of the PZT 

is nonlinear. In the literature, many hysteresis models have been developed to describe 

the hysteresis nonlinearities such as Preisach model [38, 39], Maxwell model [40], 

Duhem model [41], Bouc-Wen model [42-44], and Prandtl-Ishlinskii model [45]. In 

this paper, the Bouc-Wen hysteresis model is selected as an illustration. Certainly, 

other hysteresis models can also be selected. Without loss of generality, it has already 

been verified that the Bouc-Wen model is suitable to describe the hysteresis loop of 

PZT [46]. On the other hand, the model is considered in this work since it has fewer 

parameters. The equation of a B-W model is shown as follows: 

hVchVbVadh pztpztpzte
 

                   
 (9) 

where a, b and c are the parameters of this model, h is the hysteresis variable. And the 

parameters identification is implemented by nonlinear least square toolbox running in 

Matlab environment. 

For the proposed 3-DOF stage, the hysteresis can be considered as B-W 

hysteresis model. It describes the relationship between the input voltage and output 

displacement. On the contrary, the input voltage used to produce a desired output 

displacement is solved by its inverse hysteresis model, which will be applied to the 

piezoelectric actuator. The block diagram of the control with hysteresis compensation 

is shown in Fig. 11. 



 

Figure 11 Block diagram of the 3-DOF system with hysteresis compensation 

The inverse B-W model can be cascaded to the physical system as a feedforward 

hysteresis compensator. In order to improve the stability of the tracking performance, 

a feedback controller is necessary. Therefore, a proportional-integral controller is 

employed to establish a feedforward-feedback hybrid controller. The schematic 

diagram of the hybrid controller is proposed in Fig. 12. 

 

 

Figure 12 The schematic diagram of the hybrid controller 

To test the tracking capability of the 3-DOF system under the hybrid control 

scheme, sinusoidal trajectory motion tests are conducted to evaluate the tracking 

performance. Five sinusoidal trajectories with the same amplitude of 6 μm and 

different frequencies of 0.1, 0.5, 1, 3 and 5 Hz, respectively, are utilized. Due to the 

symmetry, only the tracking performance in the Y axis is presented. Fig. 13 shows the 

experimental results on the five sinusoidal trajectories. For trajectories below 1 Hz, as 

shown in Figs. 13(a), (b) and (c), the maximum tracking errors can be reduced to ±0.1 

μm, which can be treated as external noise disturbances. However, for the fast 

trajectory, as shown in Figs. 13(d) and (e), the maximum tracking errors increases to 



±0.2036 and -0.3042 μm, which are as large as 3.393% and 5.07% with respect to the 

output displacement. 

Fig. 14 shows two sinusoidal trajectories tracking on a rotation motion about the 

Z axis with the same amplitude of 180 μrad and frequencies of 1 and 5 Hz, 

respectively. The maximum tracking errors ±5.01 μrad and -15.21 μrad are observed 

in the motion, which are as large as 2.783% and 8.45%, respectively, with respect to 

the angular displacement. 

Based on the above experimental results, we can find that with the increase of 

the frequency of the input signal trajectory, the tracking capability of the stage is 

severely decreasing. It means that the tracking errors increase with the increase of the 

input frequencies. Thus, the method with fixed parameters is only applicable to 

improve the tracking performance of the stage at low frequencies. 

 

 

(a)                              (b) 



 

(c)                              (d) 

 

(e) 

Figure 13 The result of five different frequencies sinusoidal motion tracking: (a) 0.1 Hz, (b) 0.5 

Hz, (c) 1 Hz, (d) 3 Hz and (e) 5 Hz 

 

 

(a)                              (b) 

Figure 14 The result of 1 Hz and 5 Hz sinusoidal motion tracking 



 

(a)                              (b) 

Figure 15 The result of two superimposed signal tracking: (a) smooth trajectory and (b) 

non-smooth trajectory 

The stage’s tracking performance in the Y axis is also verified by tracking two 

superimposed signal, a smooth trajectory defined by: 

)5.710sin()5.46sin()5.12sin(22)(   tttty      (10) 

Multiple triangular signals are superimposed and selected as other reference 

trajectories. Period of the non-smooth signal is 2 seconds. The tracking results of the 

above two trajectories are shown in Fig. 15. Different from the result in smooth 

trajectories, the large tracking error for this non-smooth signal is found at the corners. 

In order to examine the planar trajectory tracking performances of 3-DOF stage, 

experimental results on the following trajectories are presented: (1) Two circular 

trajectories of different frequencies centered at point (2.0 μm, 2.0 μm) with a radius of 

2.0μm. (2) Two complex trajectories are chosen as the reference trajectories defined 

by Eqs. (11) and (12), respectively. 
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(a)                                 (b) 

Figure 16 The result of two different frequencies circular trajectory tracking performance: (a) 0.1 

Hz and (b) 0.5 Hz 

 

 
(a)                                 (b) 

Figure 17 The result of two complex trajectories tracking performance 
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The experimental results are shown in Figs. 16 and 17. It provides the 

discrepancies between the desired and actual trajectories. The tracking errors in the X 

and Y axes are also recorded, respectively. 



From the experimental result, for the circular trajectories, it can be obviously 

observed that the tracking error increases with the increase of the input frequencies. 

This is similar to uniaxial motion tracking. As shown in Fig. 16(b), the maximum 

tracking errors (0.0748 μm in X axis and 0.0596 μm in Y axis) with respect to the 

output displacement are as large as 1.87% in the X axis and 1.49% in the Y axis, 

respectively. However, for the complex trajectories, as shown in Fig. 17, compared 

with the circular trajectories, it is found that the tracking performance is 

unsatisfactory and obviously increased in tracking error. The maximum tracking error 

(0.1536 μm in the X axis and 0.1069 μmin the Y axis) with respect to the output 

displacement is as large as 2.56% in the X axis and 1.78% in the Y axis, respectively. 

The results of the cross-axis coupling displacement are also obtained in the 

hybrid controller experiment. The coupled displacements in the X- and Y- directions 

are 0.175 μm and 0.151 μm, respectively. The cross-axis coupling ratio is 2.91% in 

the X axis and 2.52% in the Y axis, respectively. This indicates that the proposed 

closed-loop control methodology can reduce the cross-axis coupling motion and 

further improve the positioning accuracy. 

It is difficult to reduce the tracking error of the 3-DOF system for double axes 

trajectories. This is because the cross-axis couplings errors. Therefore, the future work 

is committed to developing suitable controllers that are capable of improving the 

tracking performance of the stage. 

 

 

 



5. Conclusion 

A XYθz stage has been developed, and the dynamic modeling, system 

identification and experimental evaluation for the motion control of the stage have 

been explored. The obtained conclusions of this paper are summarized as follows: 

1) A XYθz stage is designed, and it is driven by three PZTs and guided by three 

special T-shape hinges. Each T-shape hinge consists of three leaf-spring hinge 

subsections connected together like a T-joint. 

2) Considering both of the electrical and mechanical characteristics, the dynamic 

model of the 3-DOF stage can be established as a third-order dynamic system to 

investigate the relationship between the input voltage and the output displacement. 

The system identification toolbox is utilized to estimate the parameters of the 

third-order dynamic model. 

3) Experimental tests of the prototype stage with the decoupling control are 

conducted to verify the effectiveness of decoupling control law. The proposed stage 

has the translation motion strokes of 6.9 and 8.6 µm in the X- and Y-axes, respectively, 

and rotational range of 289 µrad about the Z-axis. The different motion trajectories 

are also performed to verify the tracking capability of the stage, which validates good 

tracking performance of the stage. 
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