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Abstract

Climate change poses a major threat to electricity power infrastructure due to expected increase in

magnitude and frequency of extreme storm events. This paper uses a methodology for assessment of the

vulnerability of UK transmission tower infrastructure to such events, within a framework of performance

based engineering.

The challenge of estimating future storm magnitudes is addressed by applying a Change Factor

Methodology to present day wind speeds using information provided by 2009 UK Climate Change

Projections. A Weibull distribution is employed to obtain wind speeds for storm events at different

recurrence intervals. Wind loading on the structure and cables is then determined using Eurocodes, and the

structure analysed by pseudo-static finite element analysis, considering material and geometrical

nonlinearity as well as linear and nonlinear buckling effects.

The outcome of the research is that despite a significant projected increase in wind velocities due

to climate change, the typical tower analysed in the study continues to perform satisfactorily at all hazard

levels. If this performance can be demonstrated more generally across the UK transmission tower

infrastructure network, then it is likely that the cause can be traced back to the high factor of safety applied

in the original design of the towers.

Keywords: Steel structures; Wind loading & aerodynamics; Risk & probability analysis
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Introduction

Typhoon Haiyan in the Philippines in 2014 illustrated the vulnerability of power infrastructure to extreme

wind loading events and consequential adverse effects on communities. This was also shown on a smaller

scale in a succession of storms events in the UK early 2014 that damaged a transmission line tower in the

northeast of England (Fig. 1) (BBC News, 2014). An increase in magnitude and frequency of extreme storm

events in the UK is expected as a result of climate change (Natural England, 2009).

The high voltage transmission line network is a key element of the electrical power infrastructure

(Ahmed, et al., 2010). The mainland UK network and location of nuclear power stations is shown in Figure

2. For this project, a critical area of the network strategically located between England and Scotland and

close to two nuclear power stations was selected (marked with a red circle) to explore its vulnerability to

climate change. Coincidentally, this is also the area of the Houghton-le-Spring failure (Fig. 1).

The electricity transmission network comprises transmission lines and two types of towers:

suspension and tension. Suspension towers occur on straight sections of the network, supporting only the

cables’ self-weight and wind loading on them as well as the tower itself. Tension towers are placed at

changes in line direction, subjected to additional forces induced by the cable tensions as a result of the

direction change, and are thus heavier and more visually intrusive than suspension towers (GHD, 2013).

Heights of both types of tower range from 40 – 50 � (National Grid, 2012), and all towers in the UK

currently are of steel lattice type with angle members, a cost effective structural form for this purpose

(Lomas, 1993).

Because most towers are of the suspension type, they were taken as the subject of this study. A

particular D L6 Blaw Knox type tower located in Dorset was nominated as typical on the network (Fig. 3).

The tower has a total height of 53 � and square base with side length 10 �, with six arms supporting 24

transmission cables (4 per arm) plus an earth wire at the top. Equal angle (EA) and unequal angle (UA)

sections were utilised for its construction, ranging in size from 45x45x5 EA to 200x200x16 EA.

Performance of Transmission Towers in Extreme Storm Events

Extreme wind events have caused about 80% of tower failures in the USA, Australia, South Africa and

other countries (Savory, et al., 2001; Dempsey & White, 1996), failures resulting in high costs for repair or

reconstruction, as well as from power outages and litigation (Albermani, et al., 2009). 161 towers collapsed

during the period 1948-2009 in the North-western USA (Xie & Sun, 2013) and similar events in Australia

caused failure of more than 94 towers (Hawes & Dempsey, 1993). An extreme wind event in China in 2005

caused the collapse of more than 75 towers (Xie & Sun, 2013). In Europe, the Lothar and Martin

windstorms of 26th-28th December 1999 caused 280 towers to fail, leading to power outages affecting 10

million people (RMS, 2002). More recently, the Kyrill windstorm of January 2007 was one of the most

damaging events experienced in Northern Europe, causing the collapse of towers in the UK and across

central Europe. These and other events led to the conclusion that climate change is expected to enhance the

magnitude and frequency of extreme storm events (Rademaekers, et al., 2009) and that European standards

for tower design need to be revised (Anagnostatos, et al., 2013).
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Damage to transmission line networks may be associated with failure of the tower substructure

(Richards, et al., 2010) or superstructure, or breakage of transmission lines (Pang, et al., 2013). This paper

focusses on the superstructure of the towers. Substructure stiffness influences stresses in the superstructure,

with spring supports reducing the maximum stresses (Newton, 2004). However, unless soil parameters are

available with sufficient certainty at the site, foundations are usually taken as rigid, a safe assumption for

the superstructure.

Failure under extreme wind loads has been investigated by means of numerical modelling and full-

or large-scale model tests. In several such tests, it has been observed that tower failure under lateral loading

is caused by flexural-torsional buckling of the main legs and diagonal bracing members and is normally

confined to the bottom two stages of the tower (Xie & Sun, 2013). Transfer of bending moments to the

diagonal bracing members at the joints with main leg members induces out-of-plane buckling of the bracing

members. This causes the main members to lose restraint whilst simultaneously experiencing torsion due to

the bracing out-of-plane deformations. This is affirmed by field observations from Germany, where some

tower failures were caused by buckling of the main leg members as a result of failure of bracing members

(Klinger, et al., 2011).

Performance Based Wind Engineering Framework

This paper aims to assess the vulnerability of UK transmission tower infrastructure within a Performance

Based Wind Engineering (PBWE) framework. PBWE examines the adequacy of a structure for different

“Hazard Levels” via the aid of “Decision Variables” and “Performance Objectives”. (Ciampoli, et al.,

2011).

Hazard Levels (HL) at a site are defined by the intensity or recurrence interval of wind events

(Petrini, et al., 2009). For this project, five HL were considered: Frequent (2-3 years), Occasional (10

years), Rare (50-100 years, the usual basis for structural design), Very Rare (250 years) and Maximum

Considered (500-1000 years).

Decision Variables (DV) are specific measures of the consequence of structural failure from the

point of view of structure owners, users or wider society (Ciampoli, et al., 2011). Those applicable to

electricity transmission towers are judged as follows:

• Large numbers of people and industries affected and put at risk by power outages;

• High costs arising from structural and non-structural damage, power outages and litigation;

• Long duration of repair or reconstruction works, further increasing discomfort.

These DV are used to decide the “Importance Level” of the structure, either Normal, Essential or

Safety Critical. Normal importance is applicable when a small number of people might be affected by

damage or failure, whereas Essential is when a large number of people are affected (e.g. hospitals, schools).

Safety Critical is appropriate for nuclear facilities or structures storing toxic or explosive materials

(SEAOC, 1999). Transmission towers are judged to be of Essential importance.

Performance Objectives (PO) are assigned to each HL depending on the Importance Level of the

structure. Four PO were defined following the philosophy of the performance-based seismic engineering
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framework of SEAOC (1999), comprising two repairable damage states (Fully Operational and

Operational) and two non-repairable (Damage Control and Near Collapse). Conceptually, the damage level

for each PO may be described via either “Engineering Demand” parameters (e.g. displacement at a specific

location of the structure) or “Damage Measure” parameters (DM) (i.e. allowable extent of damage) (Petrini,

et al., 2009). In this project DM parameters were used to simplify the framework, determined as follows:

• Negligible Damage (Fully Operational): No yielding or buckling of structural elements at any

location of the structure

• Slight Damage (Operational): Slight yielding or buckling of a small number of elements causing

some permanent deformations. Structure remains operational, no power outages, and damage

might be economically repairable without significant disruption.

• Moderate/Heavy Damage (Damage Control): Significant yielding or buckling of a considerable

number of structural elements, with large deformations although a margin maintained against onset

of collapse (no mechanism formed). Structure no longer operational and damage usually not

economically repairable.

• Severe Damage (Near Collapse): Severe yielding or buckling of a large number of critical

structural elements (e.g. main leg members). Gravity loads may still be supported by the structure

but formation of a mechanism highly likely, leading to partial or total collapse.

The damage to the structure at each HL is estimated by numerical simulation and compared with the

allowable extent of damage for each PO to evaluate the structural performance (Petrini, et al., 2009). A

framework for making these comparisons is given in Table 1. As HL increases, the required performance

level decreases, and for a given HL, as Importance Level increases, the required performance level

increases. If allowable damage is exceeded for a particular HL, the structure has failed to meet its PO,

indicated ‘Unacceptable’. For transmission towers (Essential importance), slight damage is considered

acceptable under Rare storm events, moderate/heavy damage for a Very Rare storm and severe damage for

Maximum Considered events.

Magnitude and Frequency of Future Extreme Wind Events

The input to the PBWE framework in Table 1, i.e. the Hazard Levels, are magnitudes of future extreme

storm events at different return periods. The only reliable future wind projections currently available for the

UK are contained in the open access 2009 UK Climate Projections (UKCP09) resource (UKCP, 2012a),

produced using the Met Office Hadley Centre Coupled Model 3 (HadCM3) and a weather generator

(Sexton & Murphy, 2010). HadCM3 is an Atmosphere-Ocean Global Circulation Model that recognises the

significant influence that oceanic processes have on the atmosphere (UKCP, 2012b). The weather generator

produces a long time series of future climate data from past weather observations over a baseline period,

1961-1990 (UKCP, 2012c).

UKCP09 does not attempt to provide absolute projections of future wind speed or direction, due to

lack of robustness of the dataset (Eames, et al., 2011). Instead, projections of changes in mean wind speed

relative to the 1961-1990 period can be extracted for certain emissions scenarios (Murphy, et al., 2009)

from data files of Batch 3 of the “UK Probabilistic Projections of Climate Change over Land” accessible
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via the UKCP09 User Interface (UKCP UI, 2012). These projected changes require statistical manipulation

involving the Change Factor Method (CFM) to compute mean and extreme future wind speeds.

UKCP09 data files are grouped with respect to location, future time period, emissions scenario and

temporal averaging period. For location, the UK is divided into 16 administrative regions. There are seven

future overlapping time periods from 2010-2039 to 2069-2099, of 30-year duration to reduce uncertainties

from variability in natural internal processes within the climate system (Jenkins, et al., 2009). Three

emission scenarios have been extracted from the Special Report on Emission Scenarios by the

Intergovernmental Panel on Climate Change, namely High (A1FI), Medium (A1B) and Low (B1) (Warren,

2010). All projections are provided for three temporal averaging periods – monthly, seasonal and annual

(Jenkins, et al., 2009) and are probabilistic, comprising Cumulative Distribution Function (CDF) data of

changes in mean wind speeds over 107 pre-defined probability levels, from 1% to 99.9 % (UKCP, 2012d).

The critical area of the transmission line network considered in this paper is in administrative

region (�) North East England (NEE). The 2080s (2069-2099) time period (T) was chosen to maximise

climate change effects on the towers. In terms of emissions scenarios (�), Low (B1) is considered unlikely,

given current carbon emissions (Eames, et al., 2010). Medium and High both belong to the A1 family; High

results from intensive use of fossil fuels (FI), which is quite conservative and so Medium emissions (A1B)

was assumed, where ‘B’ denotes ‘balanced’ use of fossil and non-fossil energy sources. The accuracy of

projections decreases as the temporal scale increases, so a monthly averaging period was selected. Finally,

the probability level (�) for projected changes in mean wind speeds was taken as 95%, typical for

determination of characteristic actions on structures.

In the CFM there are several change factor types, classified with respect to their temporal scale,

temporal resolution, mathematical basis (additive or multiplicative) and number (single or multiple)

(Anandhi, et al., 2011). Temporal scale is related to the temporal averaging period of the data files, either

daily, monthly, seasonal or annual. Temporal resolution is associated with time of year as well as start and

end dates of the historical and future observations. Additive change factors quantify the differences between

current and projected future values while multiplicative factors express the ratio of future values to current

values. Single change factors remain unchanged for all possible values or probability levels of a variable

(Hay, et al., 2000), whilst multiple change factors have to be computed separately (Kilsby, et al., 2007).

As stated earlier, a monthly temporal averaging period was selected to maximise the accuracy of

the results. Temporal resolution is determined in the UKCP09 data files that are produced for a specific

baseline period and selected 30-year future time periods. In order to avoid inheriting variations from the

long-term average, the period of weather data observations should not be less than 30 years (Lun & Lam,

2000). UKCP09 projections for changes in mean wind speeds from the baseline period are inherently

additive change factors, and are provided for different percentiles via the aid of a CDF, indicating the

presence of multiple change factors for each month. Therefore, the CFM in this project uses multiple

monthly additive change factors, and the following expression applies:

���,� = ���,�(�) + ���������,�(�,�,�,�) (1)

where � is the month under consideration, ���,� is the projected future mean wind speed for month �, and
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���,� the baseline period mean wind speed for month � for the selected region � available on the Met

Office website (Met Office, 2013). ���������,� is the additive change factor for month �, which is dependent

on selected region �, future time period �, emissions scenario � and desired CDF probability level �.

After calculating projected future mean wind speeds for all 12 months of the year using Equation (1), the

maximum mean monthly wind speed is selected for both baseline and future periods. These maxima are

used for determination of future extreme storm event magnitudes. For the region under consideration, the

maximum baseline mean wind speed (���,���) was computed as 11.54 �/� in January (month 01) and the

maximum future projected mean wind speed calculated:

���,��� = ���,�� = ���,��(���) + ���������,��(���, 2080�,���, 0.95) = 11.54 + 0.20 = 11.74 �/� (2)

Having obtained a projection of future maximum mean monthly wind speeds, the next stage is to extend the

analysis to extreme wind events. This is normally done statistically with Extreme Value Theory, based on

the Generalised Extreme Value (GEV) distribution (Chiodi & Ricciardelli, 2014). However, to determine

the parameters of the GEV distribution, extreme wind data should be utilised (Xiao, et al., 2006).

Considering that only projections of future mean wind speeds are available, not extreme values, it is

deduced that extreme value distributions are not appropriate for this case.

On the other hand, the two-parameter Weibull distribution is reasonably robust for representing

both mean and extreme wind speed data (Chiodi & Ricciardelli, 2014) and may be used to obtain estimates

of extreme wind speeds from mean wind speeds provided plausible values for the Weibull parameters can

be obtained. Even though fitting a Weibull distribution is an empirical method, it produces results very

close to the Offset Elliptical Normal model which has a strong theoretical background, over the range of

practical values (Harris & Cook, 2014).

The PDF and CDF of the Weibull distribution are (Lun & Lam, 2000):

PDF: �(�) = �
�

�
�
�

�
�
���

���
�

�
�
�

�� � ≥ 0

0 �� � < 0
(3)

CDF: �(�) = �1 − exp �− �
�

�
�
�

�� (4)

Where � is the wind speed, � the scale parameter and � the shape parameter. The smaller �, the greater the

deviation of wind speeds from the mean, implying more extreme events. A relationship between the two

Weibull parameters has been established (Seguro and Lambert, 2000):

�� = � ∙ � �1 +
1

�
� (5)

Where �� is the mean wind speed, and � the gamma function.

Although Weibull parameters cannot be obtained from the UKCP09 data directly because it

provides projections only of future mean wind speeds, they may be computed from recorded wind speed

data if the assumption is made that the same distribution of wind speeds will apply in the future. Recorded

data is available for the UK from the British Atmospheric Data Centre (BADC) and the Natural

Environment Research Council (NERC) “Met Office Integrated Data Archive System (MIDAS) Land and
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Marine Surface Stations” datasets, which provide hourly mean wind speeds for the period 1853 to the

present for several locations (BADC & NERC, 2011). Although data is available from the 1961-1990

baseline period, there were more weather stations in the UK from the 1970s onwards, so the 1971-2005

period was used instead.

There are several methods by which shape parameter � can be computed from a set of hourly wind

speed data. The Maximum Likelihood Method (MLM) has been found to provide reasonably accurate

estimates (Kaoga, et al., 2014; Ahmed, 2013) provided wind data are available in time series format

(Seguro & Lambert, 2000), which is the case for this project. According to the MLM, � can be computed as

follows:

� = �
∑ ��

� ln��
�
���

� ��
��

���

−
1

�
� ln��

�

���

�

��

(6)

Where � is the number of non-zero wind speed observations, � the measurement interval (one hour) and ��

the wind speed at time interval �.

The only location in northeast England with at least 30 years of wind speed observations is

Durham (MIDAS Station 326). Using its 1971-2005 data, � computes as 1.28, and the fit of the Weibull

distribution to the data is shown in Figure 4. All zero values are replaced by 0.5 knots (0.25 m/s), the

threshold below which wind speed measurements are recorded as zero (Young, 2010).

The fit of the Weibull PDF with � = 1.28 to the recorded data is good, especially at high wind

speeds. By substituting mean wind speed and � into Equation (5), the scale parameter � for the baseline and

future time periods can be determined (Table 2) and PDFs for both periods plotted (Figure 5). The

distributions for the baseline and future time periods are similar in shape (as the same shape parameter � is

used), but there is a decrease in the future in the probability of wind speeds up to 15 �/� and an increase in

the probability of speeds higher than 15 �/�, indicating climate change causing an increase in magnitude

and frequency of future extreme storm events.

Recurrence Intervals for Future Wind Speeds

The probability of occurrence of a specified wind speed provides input to the PBWE framework (Table 1).

The annual exceedance probability (���) of a specified wind speed is directly related to the CDF of the

Weibull distribution (USGS, 2014):

��� = 1 − �(�) (7)

Recurrence interval (��) in years is the inverse of the ���, hence:

�(�) = 1 − 1/�� (8)

Substituting Equation (8) into (4) and after some manipulation, an expression relating wind speed and ��

can be derived:
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� = � �− ln
1

��
�
�/�

(9)

By substituting Weibull parameters � and � into Equation (9), future hourly mean wind speeds with

recurrence intervals corresponding to the PBWE Hazard Levels are determined. These are compared with

the baseline 1961-1990 data in Table 3. At longer ��, wind speeds are considerably higher, suggesting the

possibility of catastrophic structural damage.

To summarise, the methodology followed to determine the magnitude of future extreme storm

events is presented in the form of a flowchart in Figure 6.

Wind Loading Calculations

Future wind speeds obtained by the methodology described above were used to obtain the wind loads on the

transmission tower using the procedure in Eurocode 1 Part 1-4 (BSI, 2005). This applies an amplification

factor to account for dynamic response of the structure due to effects of wind turbulence, so that pseudo-

static analysis is sufficient to assess the tower’s performance.

Future hourly mean wind speeds are converted first to 10-minute mean wind speeds for input into

the Eurocodes. Durst (1960) developed a non-hurricane wind gust duration curve giving relationships

between wind speeds averaged over arbitrary intervals to the 1-hour mean wind speed (Tamura & Kareem,

2013). According to this curve, the 10-minute mean wind speed is approximately 7% larger than the hourly

mean, and applying this factor to the future hourly mean wind speeds presented in Table 3, future 10-

minute wind speeds are obtained (Table 4).

A typical wind loading profile was taken, with wind speed increasing with height for two wind

incidence angles: 0° and 45° from the normal to the front face of the tower. 45° incidence transpires to be

most adverse because the reference (frontal) area of the structure is larger, and the wind-induced

overturning moment is resisted by only two out of the four main legs of the tower in opposing corners on

the diagonal parallel to the wind (Fig. 7). More detail of the steps in the wind load calculation and the

values of certain variables used are given in the Appendix.

Structure assessment philosophy and modelling strategy

A basic dynamic analysis of a lattice structure would assume linear elastic behaviour, with connections

considered as pinned and members assumed subjected to axial loading only (ArcelorMittal, 2010).

However, full scale transmission tower tests have shown that bending stresses in some members can be as

high as axial stresses (Albermani & Kitipornchai, 2003), and that nonlinear effects should be taken into

account (Albermani, et al., 2009).

Most connections in towers have multiple high-strength friction grip bolts leading to a high degree

of restraint, which although not significantly changing axial force magnitudes, does give rise to secondary
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bending moments (ArcelorMittal (2010)). Connections should therefore be modelled as rigid and members

with beam-column elements (Battista, et al., 2003; Albermani, et al., 2009). Slip theoretically may occur in

bolted connections and including it in an analysis has been shown to improve prediction of tower

deformations, but not affect load-bearing capacity or failure mode significantly (Eltaly, et al., 2014; Jiang,

et al., 2011). Hence, joint slip was not included in this study.

The two main sources of nonlinearity are (Eltaly, et al., 2014; Jiang, et al., 2011):

• Geometric nonlinearity that accounts for the effect of changes in geometry and accumulated strain

on the structural stiffness of elements (Hrinda, 2006)

• Material nonlinearity that accounts for permanent (or plastic) deformation in materials subjected to

stresses exceeding their yield point (Souza Neto, et al., 2008)

To determine the dynamic response of the towers accurately, wind-induced response of the

transmission lines should also be included in the model (Zhang, et al., 2013; Battista, et al., 2003). Although

a model with three towers and four spans of transmission lines is the optimal configuration for analysis

(Zhang, et al., 2013), one tower and two spans of transmission lines can produce reasonably accurate results

with enhanced computational efficiency (Li, et al., 2012).

Fatigue failure is not analysed in this study because the focus of the study is on survivability under

extreme loading events. The general increase in wind loading predicted due to climate change would be

expected to increase the stress ranges acting on fatigue-critical elements or connections, and thus shorten

the service life of the structure.

Numerical Modelling Implementation

The LUSAS Finite Element Analysis program was used (LUSAS, 2015). Tower geometry was available

from a previous research project that utilised drawings provided by National Grid (Tyndel, 2006).

Elements were assigned as thick nonlinear three-dimensional (3D) beams (BTS3), which support materially

and geometrically nonlinear and linear eigenvalue buckling analyses. BTS3 is compatible with a stress

resultant material model (Model 29) for material nonlinearity (hardening behaviour of materials is not

supported), and co-rotational formulation for geometric nonlinearity (large displacements and rotations,

small strains).

All beam ends (and foundation supports) were set as fully restrained to model rigid connections.

An element discretisation length of 0.05 � was determined after carrying out a mesh sensitivity analysis to

minimise load factor. Geometric properties of the elements were assigned from the in-built section library

of UK equal and unequal angles. Crucially, the orientation of all elements in the model was set according to

the tower drawings. A view of the resulting model for the base of a main leg member is shown in Figure 8.

Yield strength of steel was taken as 275 �/���. Young’s modulus, Poisson’s ratio and mass

density were set as 209 ���, 0.3 and 7800 ��/�� respectively. Loading applied to the tower included

gravity on all structural elements, together with concentrated loads on the arms to account for self-weight of
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the cables and wind-induced forces on them. Wind load on the structural elements was applied using

uniform Global Distributed Loads, with half of the calculated wind load applied to the front face(s) of the

tower and the remainder to the back.

Modelling Results

The transmission tower model was analysed numerically for the three Hazard Levels of Rare, Very Rare

and Maximum Considered (Table 4). Results are presented in the form of an overall load factor. If this is

considerably larger than 1.0, there are no concerns with the performance of the structure, but if close to or

smaller than 1.0, then scrutiny is required before a decision is made.

Material and Geometrically Nonlinear Analyses

Load factors obtained considering material nonlinearity (MNL), and material and geometric nonlinearity

(MGNL), are presented at Table 5. Analyses halted when only a small number of elements had yielded, not

with formation of a collapse mechanism, due to inability of the Stress Resultant material model to support

post-yield hardening behaviour of materials. Smallest load factors were obtained from the MGNL analyses

for 45° wind incidence. For a Rare event (�� = 50 years), the lowest overall load factor is 1.06, indicating

no damage and the structure remaining Fully Operational (Table 1). It was also found (not shown in Table

5) that for a Rare event with �� = 100 years, the load factor reduces to 0.87 indicating the structure

experiencing slight damage (yielding of a small number of elements) but remaining Operational. Thus the

structure meets its PO for Rare storm events.

For Very Rare and Maximum Considered events, smallest load factors are 0.63 and 0.52

respectively. It is therefore necessary to investigate further the post-yielding behaviour of the structure. A

pushover analysis was performed for the Very Rare event (�� = 250 years) under 45° wind. Load factor

against top deflection of the tower is shown in Figure 9.

Up to point 1 (i.e. Analysis 1) in Figure 9, the structure behaved linear elastically. The load factor

peaks at point 2, with significant deflection due to yielding of one of the main leg members. Between points

2 and 6, there is a reduction of approximately 60% in load factor with large increase in deflection. Usually,

20-30% loss of peak strength is considered as structure failure, hence the structure can be viewed here as

severely damaged. At point 7, a small increase in strength is observed. The main leg members on the

diagonal in the direction of the wind have yielded, and the other two legs start to resist a portion of the

applied loads. However, they are much less efficient at resisting overturning, so the structure strength

decreases thereafter to only 15% of peak by point 12, accompanied by large deformations indicating the

onset of collapse. The evolution of yielding for points 2, 7 and 11 is shown in Figure 10 and the deformed

shape at the end of the analysis in Figure 11 from four different views. Displacements are not exaggerated

in scale and there is approximately 5.5 � displacement at the top.

The pushover analysis applied maximum wind loading as a steady force until failure was induced.

In reality however, wind storm loading is not a steady force but contains gusts with duration 2-3 �. Also,
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during yielding of members of the structure, there is significant energy dissipation due to formation of

plastic hinges. Therefore, the pushover analysis will overestimate the damage to the structure, which would

probably experience moderate/heavy damage but without collapse. Thus, the Damage Control PO (Table 1)

is likely to be satisfied for the Very Rare event. Under the Maximum Considered (�� = 500 years) event,

the structure would be closer to collapse under the load factor of 0.52, in agreement with the PO Near

Collapse.

Linear Eigenvalue Buckling Analyses

A linear eigenvalue buckling analysis determines the maximum load that can be sustained by the structure

before structural instability occurs. Table 6 shows the resulting load factors for the first two global buckling

modes, both of which involve out-of-plane buckling of the diagonal bracing elements in the bottom stage of

the structure (Fig. 12). A mode with lower load factors exists but comprises buckling of only one member

and is not critical for collapse of the structure. As for the MNL and MGNL analyses, lowest load factors are

obtained for the 45° wind incidence angle.

Table 6 shows that for the Rare storm, the structure remains Fully Operational as all load factors

are significantly larger than 1.0. For the Very Rare event, all load factors are larger than or equal to 1.0,

implying that the structure would at most experience only slight damage and remain Operational, again

exceeding the required PO. For the Maximum Considered event, three of the four load factors are smaller

than 1.0. The buckling mode shown in Figure 13 would induce torsion in and reduce restraint to the main

leg members and likely lead to their flexural-torsional failure, as observed in full scale tests noted earlier in

this paper. The structure would experience severe damage and potentially complete collapse. However, this

meets the PO for that Hazard Level which is Near Collapse.

Nonlinear Buckling Analyses

A buckling analysis taking into account material and geometric nonlinearity effects was also performed.

However, because the critical failure mode identified by the materially and geometrically nonlinear

analyses is similar to that in the linear buckling analyses, similar results were obtained when all the effects

were combined.

Summary of Vulnerability of UK Transmission Tower Infrastructure

A summary of the performance of the example transmission tower deduced from this research is given in

Table 7. Even though climate change is projected to significantly increase extreme wind velocities, tower

performance is satisfactory for all Hazard Levels.

Conclusions

This paper has used a methodology for estimating the magnitude of future extreme wind speeds by means

of a change factor methodology in which recorded mean wind speeds from a past 30 year baseline period

are uplifted by amounts proposed in the open access 2009 UK Climate Projections resource. Hourly mean

wind speeds for a range of recurrence intervals are then obtained using a Weibull distribution in which a
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necessary assumption is made that the Weibull parameters for future events will be the same as for past

historical data. Wind loading on a typical transmission tower is then calculated using established Eurocode

methodologies and the tower modelled and structurally assessed within a framework of performance-based

engineering, in which appropriate performance levels or damage are sought at different input hazard levels.

Performance of the tower was satisfactory at all hazard levels. The tower modelled is typical on a network

where a factor of safety of 2.5 was applied in the original design to enhance reliability during adverse

weather conditions (Lomas, 1993). It appears that this original safety allowance has given sufficient

robustness to the network under projected increased storminess due to climate change.
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Appendix

Determination of Wind Loads to Eurocode 1 Part 1-4

The wind pressure (��) acting on a structure or structural component is computed as follows (BSI, 2005):

�� = ���� �� ��,� �� (A.1)

Where ���� is the structural factor, �� the end-effect factor, ��,� the force (or drag) coefficient when wind

acts at an angle � normal to the surface without considering free-end flow and �� the peak velocity

pressure. The structural factor (����) is computed for the whole structure, while the other quantities may be

evaluated separately for different sections of the structure to improve the accuracy.

The force coefficient for lattice structures is a function of the solidity ratio (�) and wind incidence

angle. �	was calculated for the main body of the tower divided into six panels, plus the three arms, and

values ranging from 0.128 for the bottom stage to 0.419 for the upper arm were obtained. From these, force

coefficients from 3.50 to 2.15 were obtained from Figure 7.34 of BS EN 1991-1-4:2005 (BSI, 2005), taking

the tower as a spatial rather than a planar structure. The force coefficient for the cables was taken as 1.20.

End effect factor �� is a function of solidity ratio and effective slenderness, �. � was calculated for

each panel and arm of the structure, and taken as the minimum permitted value of 70 for the cables. Thus,

�� calculated as 0.938 – 0.983 for the structure, and 0.925 for the cables.

The peak velocity pressure for a structure or structural component at height � from the ground

level is determined as follows (BSI, 2005):

��(�) = [1 + 7��(�)]
1

2
���� ��

�(�) (A.2)

Where ��(�) is the turbulence intensity, ���� the air density taken as 1.226 ��/�� (BSI, 2008), and ��(�)

the mean wind velocity. ��(�) is the product of the basic wind velocity, roughness factor and orography

factor. Assuming an area with low vegetation and isolated obstacles, such as in Figure 1 (Terrain Category

II), an orography factor of 1.0 is taken. The roughness factor is evaluated using a roughness length �� of

0.05 �, minimum height ���� of 2 � and terrain factor calculated as 0.19. The basic wind velocity is

calculated using directional factor of 1.0, seasonal factor of 1.0 and future wind speed from Table 3 of this

paper. The partial factor for variable actions (��) was taken as 1.0.

The turbulence intensity ��(�) is calculated assuming a turbulence factor �� of 1.0. The resulting

peak velocity pressure profile for a 1 in 250 year Very Rare storm event is shown in Figure A1 (in which A-

F are the stages of the tower), showing constant pressure up to a height equal to ���� (2 �) and then

logarithmic increase with �.

The structural factor ���� consists of two components, size factor �� and dynamic factor ��. The

size factor accounts for the peak wind pressures not occurring simultaneously on the whole surface, and

becomes smaller as the structure size increases. The dynamic factor is an amplification factor (larger or

equal to 1.0) to account for the dynamic response of the structure to wind turbulence in its fundamental

(first) mode of vibration, and becomes larger as the dynamic sensitivity of a structure increases (Burgess, et

al., 2010; Tubman, et al., 2010; BSI, 2005). �� and �� are evaluated using expressions in BS EN 1991-1-
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4:2005 (BSI, 2005) that in turn utilise a number of intermediate parameters, calculated as follows:

• Reference height. For the tower, ��,� = 0.6	�, where H is the total height of the tower. For the

cables, ��,� is taken as the height from the ground to the axis of the cables

• Peak factor �� depends on the fundamental natural frequency �� of the structure. For the tower,

this is obtained from the numerical model as 2.27 ��. Natural frequencies of a cable can be

obtained by (Ren, et al., 2008):

�� =
�

2 ��
�
��
��

(A.3)

Where �� is the natural frequency of the �-th mode, �� the total length of the cable (assumed 400

m), �� the tension in the cable and �� the mass per unit length. A previous research study provided

estimates of �� = 23 �� and �� = 1.71 ��/� (Newton, 2004), so that �� for a transmission line

cable calculates as 0.15 ��.

• Background factor (��) accounts for the lack of full correlation of peak wind pressures on the

surface of the structure, and is described by the following expression (BSI, 2005):

�� =
1

1 + 0.9 �
� + �
�(��)

�
�.�� (A.4)

Where � and � are the average width and total height of the structure, respectively, and �(��) the

turbulent length scale at the reference height (��), from the following expression (BSI, 2005):

�(��) = �� �
��
��
�
�

(A.5)

Where �� is the reference length scale taken as 300 �, �� the reference turbulence height taken as

200 � and � taken as 0.52 for Terrain Category II.

• Resonance response factor (��) accounts for resonance due to wind turbulence in the fundamental

(first) mode of vibration and is determined as follows (BSI, 2005):

�� =
��

2 �
��(��, ��) ��(��) ��(��) (A.6)

Where � is the logarithmic decrement of damping, ��(��, ��) the power spectral density function at

the reference height (��) for the fundamental mode of vibration (��), and ��(��) and 	��(��) are

the aerodynamic admittance functions for the height � and average width of the structure �,

respectively. � has two components (BSI, 2005):

� = �� + �� (A.7)

�� is the structural logarithmic decrement of damping, equal to 0.03 for lattice steel towers and

0.006 for cables (BSI, 2005). �� is the aerodynamic logarithmic decrement of damping, defined as

(Sá Caetano, 2007; BSI, 2005):

�� =
���� ��,� ��(��)

2 �� ��
(A.8)

Where �� is the mass per unit area of the structure (using plan area for the tower and cross-
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sectional area for the cables).

The power spectral density function is dimensionless and described by the following expression

(BSI, 2005):

��(��, ��) =
6.8 ��(��, ��)

�1 + 10.2 ��(��, ��)�
�/� (A.9)

Where ��(��, ��) is a dimensionless function of frequency related to the fundamental natural

frequency �� (BSI, 2005):

��(��, ��) =
�� �(��)

��(��)
(A.10)

The aerodynamic admittance functions are defined as (BSI, 2005):

��(��) =
1

��
−

1

2 ��
�

(1 − ��� ��) (A.11)

In which:

�� =
4.6 �

�(��)
��(��, ��) (A.12)

Where � is substituted either as the height � or average width � of the structure.

By combining all the above with Equation (A.2), the wind pressure profile for the entire height of the tower

can be obtained. The wind pressure profile for RI = 250 years is shown in Figure A2, where again A-F are

the stages of the main body of the tower, and LA, MA and UA the lower, middle and upper arms

respectively.



Table 1: PBWE Framework (adapted from SEAOC, 1999)

Hazard Level (HL)

Performance Objective (PO)

Fully Operational Operational Damage Control Near Collapse

Repairable Damage Non-Repairable Damage

Frequent

(2 - 3 years)
Normal Unacceptable Unacceptable Unacceptable

Occasional

(10 years)
Essential Normal Unacceptable Unacceptable

Rare

(50 - 100 years)
Safety Critical Essential Normal Unacceptable

Very Rare

(250 years)
- Safety Critical Essential Normal

Maximum Considered

(500 - 1000 years)
- - Safety Critical Essential



Table 2: Weibull parameters and hourly mean wind speeds for the baseline and future time periods (medium
A1B emissions)

� ���,��� [�/�] �� [�/�] ���,��� [�/�] �� [�/�]

1.28 11.54 12.45 11.74 12.67



Table 3: Future hourly wind speeds for different Hazard Levels (NE England, medium emissions scenario)

Hazard Level Frequent Occasional Rare Very Rare Maximum Considered

Recurrence Interval [�����] 2.5 10 50 – 100 250 500 – 1000

Baseline Wind Speed [�/�] 11.6 23.9 36.2 – 41.1 47.3 51.9 – 56.4

Future Wind Speed [�/�] 12.2 25.3 38.3 – 43.5 50.2 55.1 – 59.7



Table 4: Future 10-minute wind speeds for different recurrence intervals (NE England, medium emissions
scenario)

Hazard Level Frequent Occasional Rare Very Rare Maximum Considered

Recurrence Interval [�����] 2.5 10 50 – 100 250 500 – 1,000

Future Wind Speed [�/�] 13.1 27.1 40.9 – 46.5 53.7 58.9 – 63.9



Table 5: Load factors from materially and geometrically nonlinear analyses

Type
of

Analysis

Load factor as function of Hazard Level and Wind Direction

Rare

�� = 50 years

Very Rare

�� = 250 years

Maximum Considered

�� = 500 years

0° 45° 0° 45° 0° 45°

MNL 2.04 1.12 1.18 0.66 0.96 0.56

MGNL 1.36 1.06 0.79 0.63 0.66 0.52



Table 6: Load factors obtained in linear eigenvalue buckling analyses

Global Mode

Linear Buckling Load Factor as function of Hazard Level and Wind Direction

Rare

�� = 50 years

Very Rare

�� = 250 years

Maximum Considered

�� = 500 years

0° 45° 0° 45° 0° 45°

1 1.99 1.70 1.16 1.00 0.97 0.83

2 2.19 1.76 1.28 1.04 1.07 0.86



Table 7: Summary of transmission tower performance for different Hazard Levels

Hazard Level
(Return Period)

Performance Level Performance
Assessment

SatisfiedMinimum Required MGNL Analysis Linear Buckling Analysis

Rare
(50 years)

Operational
(Slight Damage)

Fully Operational
(No Damage)

Fully Operational
(No Damage)



Very Rare
(250 years)

Damage Control
(Moderate/Heavy Damage)

Damage Control
(Heavy Damage)

Operational
(Slight Damage)



Max. Considered
(500 years)

Near Collapse
(Severe Damage)

Near Collapse
(Severe Damage)

Near Collapse
(Severe Damage)
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Figure 1: Damaged electricity pylon near Houghton-le-Spring, UK (BBC News, 2014)  

 

 



 

 

 

 

Figure 2: Electricity transmission networks of Great Britain (adapted from UK Parliament, 2010) 

 

 

 

 



 

 

 

 

Figure 3: D L6 Blaw Knox type suspension tower located in Dorset, UK (Hendry, 2005)  

 

 

 

Figure 4: Weibull distribution fit to recorded hourly mean wind speed data for Durham 1971-2005 

 

 

 

 



 

 

 

 

Figure 5: Weibull probability density functions for hourly mean wind velocity for NE England, 

baseline and future time periods (medium A1B emissions) 

 

 

 

Figure 6: Flowchart of methodology used for determination of magnitude of future storm events 
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Figure 7: Stress state (T: Tension / C: Compression) of the main leg members for two wind incidence 

angles 

 

 

 

Figure 8: Comparison of the orientation of the main and diagonal leg members in the real structure 

and numerical model 
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Figure 9: Pushover curve for a 1 in 250 year storm event and 45° wind incidence angle 

 

 

 

Figure 10: The evolution of plastic yielding in the structural members (Points 2, 7 and 11) 

 

 

 



 

 

 

 

Figure 11: Deformed shape at end of pushover analysis for Very Rare storm event and 45° wind 

incidence angle 

 

 

 

 

Figure 12: Critical buckled members (left) and deformed shape (right) for the 1st global model 



 

 

 

 

 

Figure A1: Peak velocity pressure profile for a 1 in 250 year storm event 

 

 

 

Figure A2: Wind pressure profile for a 1 in 250 year storm event 


