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RESEARCH PAPER

ON THE SOLUTION OF TWO-SIDED FRACTIONAL

ORDINARY DIFFERENTIAL EQUATIONS

OF CAPUTO TYPE ∗

Ma. Elena Hernández-Hernández 1, Vassili N. Kolokoltsov 2

Abstract

∗ A paper presented at Workshop “FaF”,
Lorentz Center - Leiden, The Netherlands, May 17-20, 2016

This paper provides well-posedness results and stochastic representa-
tions for the solutions to equations involving both the right- and the left-
sided generalized operators of Caputo type. As a special case, these results
show the interplay between two-sided fractional differential equations and
two-sided exit problems for certain Lévy processes.

MSC 2010 : Primary 34A08; Secondary 35S15, 26A33, 60H30

Key Words and Phrases: two-sided fractional equations, generalized
Caputo type derivatives, boundary point, stopping time, Feller process,
Lévy process

1. Introduction

The successful use of classical fractional derivatives to describe, for ex-
ample, relaxation phenomena, processes of oscillation, viscoelastic systems
and diffusions in disordered media (anomalous diffusions) among others,
have promoted an increasing research on the field of fractional differential
equations. For an account of historical notes, applications and different
methods to solve fractional equations we refer, e.g., to [7]-[10], [12], [14],
[21]-[22], [25], [29]-[32], [34], [39], and references cited therein.
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1394 M.E. Hernández-Hernández, V.N. Kolokoltsov

Apart from the different notions of fractional derivatives found in the lit-
erature (e.g., the Caputo, the Riemann-Liouville, the Grunwald-Letnikov,
the Riesz, the Weyl, the Marchaud, and the Miller and Ross fractional
derivatives), numerous generalizations (mostly from an analytical point of
view) have been proposed by many authors, we refer, e.g., to [2], [18]-[19],
[23]-[24], [33] for details. As for the generalized fractional operators of Ca-
puto type considered in this work, they were introduced in [27] by one of the
authors as generalizations (from a probabilistic point of view) of the clas-
sical Caputo derivatives of order β ∈ (0, 1) when applied to regular enough
functions. These Caputo type operators can be thought of as the gener-
ators of Feller processes interrupted on the first attempt to cross certain
boundary point (see precise definition later).

As a continuation of our previous works, which show a new link between
stochastic analysis and fractional equations (see [16]-[17], [27]), this paper
appeals to a probabilistic approach to study equations involving both left-
sided and right-sided generalized operators of Caputo type. We address the
boundary value problem for the two-sided generalized linear equation with

Caputo type derivatives −D
(ν+)
a+∗ and −D

(ν−)
b−∗ :

−D
(ν+)
a+∗ u(x)−D

(ν−)
b−∗ u(x)−Au(x) = λu(x)− g(x), x ∈ (a, b),

u(a) = ua, u(b) = ub, (1.1)

where λ ≥ 0, ua, ub ∈ R and g is a prescribed function on [a, b]. Notation
−A ≡ −A(γ,α) refers to the second order differential operator

−A(γ,α) := γ(·) d

dx
+ α(·) d2

dx2
. (1.2)

Equation (1.1) includes, as special cases, the fractional equations

Dβ1
a+∗u(x) +Dβ2

b−∗u(x) = g(x), x ∈ (a, b), β1, β2 ∈ (0, 1), (1.3)

u(a) = ua, u(b) = ub,

where Dβ1
a+∗ and Dβ2

b−∗ are the left- and the right-sided Caputo derivatives
of order β1 and β2, respectively. There are relatively scarce results dealing
with two-sided fractional ordinary equations. For example, to the best of
our knowledge, the Riemann-Liouville version of (1.3) was analyzed (in
the space of distributions) in [35]-[36], whereas the explicit solution to the
two-sided fractional equation in (1.3) was just recently provided in [27].

Another special case of equation (1.1) is the two-sided equation:

c1D
β1
a+∗u(x) + c2D

β2

b−∗u(x) + γ(x)u′(x) + λu(x) = g(x), x ∈ (a, b), (1.4)

u(a) = ua, u(b) = ub.

If c1 > 0, c2 = 0, β1 = 1
2 and λ = 1, then the (one-sided) equation is

known as the Basset equation, well-studied in the literature (see, e.g. [29]
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ON THE SOLUTION OF TWO-SIDED FRACTIONAL . . . 1395

and references therein). The one-sided case with β1 ∈ (0, 1) (known as
the composite fractional relaxation equation) was treated via the Laplace
transform method in [15, Section 4], whereas the left-sided case with Caputo
type and RL type operators was studied by the authors in [17].

Some other examples showing the relevance of left- and right-sided
derivatives in mathematical modeling appear in the study of FPDE’s on
bounded domains, as well as in fractional calculus of variations, see, e.g.,[1],
[3], [21], [31], [37].

In this paper we study the well-posedness of (1.1) by considering two
types of solutions: solutions in the domain of the generator and generalized
solutions. The first type is understood as a solution u that belongs to the
domain of the two-sided operator seen as the generator of a Feller process.
Since the existence of such a solution is quite restrictive once one imposes
boundary conditions, the notion of generalized solution is introduced via the
limit of approximating solutions taken from the domain of the generator.

Further, appealing to the relationship between two-sided equations and
exit problems for Feller processes (already mentioned in [27]), we provide
some explicit solutions to two-sided equations in the context of classical
fractional derivatives. Even though exit problems for Lévy processes have
been widely studied (see, e.g., [5]-[6], [28], [38]), to our knowledge fractional
equations of the type in (1.3) and their connection with exit problems seem
to be novel in the literature. We believe that the probabilistic solutions pre-
sented in this work can be used, for example, to obtain numerical solutions
to classical fractional equations for which explicit solutions are unknown.

The paper is organized as follows. The next Section 2 sets standard
notation and definitions. Section 3 gives a quick review about generalized
Caputo type operators. Section 4 provides preliminary results concerning
two-sided generalized operators and their connections with the generators
of Feller processes. Then, Section 5 addresses the well-posedness for the RL
type version of (1.1). The study of the Caputo type equation (1.1) is given
in Section 6. Some examples are presented in Section 7. Finally, Section 8
contains the proofs of some key results established in Section 4.

2. Preliminaries

2.1. Notation. Let N and R be the set of positive integers and the real
line, respectively. For any open set A ⊂ R, notation B(A), C(A) and
C∞(A) denote the set of bounded Borel measurable functions, bounded
continuous functions and continuous functions vanishing at infinity defined
on A, respectively, equipped with the sup-norm ||h|| = supx∈A |h(x)|. The
space of continuous functions on A with continuous derivatives up to and
including order k is denoted by Ck(A). This space is equipped with the
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1396 M.E. Hernández-Hernández, V.N. Kolokoltsov

norm ||h||Ck := ||h||+∑
k=1 ||h(k)||. For functions defined on the closure Ā

of A, notation Ck(Ā) means the space of k times continuously differentiable
functions up to the boundary. Further, spaces C0[a, b] and Ck

0 [a, b] stand
for the space of continuos functions on [a, b] vanishing at the boundary and
the space of functions C0[a, b] ∩ Ck[a, b], respectively.

Letters P and E are reserved for the probability and the mathematical
expectation, respectively. For a stochastic process Xx = (Xx(t))t≥0 with
state space A, the subscript x in Xx(t) means that the process starts at x ∈
A, so that notation E [f (Xx(t))] is understood as E [f (X(t)) |X(0) = x].
All the processes considered in this paper are assumed to be defined on a
fixed complete probability space (Ω,F ,P).

2.2. Feller processes: basic definitions. Let {Tt}t≥0 be a strongly con-
tinuous semigroup of linear bounded operators on a Banach space (B, ||·||B),
i.e. limt→0 ||Ttf − f ||B = 0 for all f ∈ B. Its (infinitesimal) generator L
with domain DL, shortly (L,DL), is defined as the (possibly unbounded)
operator L : DL ⊂ B → B given by the strong limit

Lf := lim
t↓0

Ttf − f

t
, f ∈ DL, (2.1)

where the domain of the generator DL consists of those f ∈ B for which the
limit in (2.1) exists in the norm sense. We also recall that, if L is a closed
operator, then a linear subspace CL ⊂ DL is called a core for the generator
L if the operator L is the closure of the restriction L

∣∣
CL [13, Chapter 1,

Section 3]. If additionally TtCL ⊂ CL for all t ≥ 0, then CL is said to be
an invariant core. The resolvent operator Rλ of the semigroup {Tt}t≥0 is
defined (for any λ > 0) as the Bochner integral (see, e.g., [11, Chapter 1],
[13, Chapter 1])

Rλg :=

∫ ∞

0
e−λtTtg dt, g ∈ B. (2.2)

By taking λ = 0 in (2.2), one obtains the potential operator denoted by
R0g (whenever it exists).

We say that a (time-homogeneous) Markov process X = (X(t))t≥0

taking values on A ⊂ R
d is a Feller process (see, e.g., [25, Section 3.6]) if

its semigroup {Tt}t≥0, defined by

Ttf(x) := E [f (X(t)) |X(0) = x] , t ≥ 0, x ∈ A, f ∈ B(A),

gives rise to a Feller semigroup when reduced to C∞(A), i.e. it is a strongly
continuous semigroup on C∞(A) and it is formed by positive linear con-
tractions (0 ≤ Ttf ≤ 1 whenever 0 ≤ f ≤ 1).

3. Generalized fractional operators of Caputo type and RL type

The generalized Caputo type operators introduced in [27] are defined
in terms of a function ν : R× (R \ {0}) → R

+ satisfying the condition:
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ON THE SOLUTION OF TWO-SIDED FRACTIONAL . . . 1397

(H0) The function ν(x, y) is continuous as a function of two variables and
continuously differentiable in the first variable. Furthermore,

sup
x

∫
min{1, |y|}ν(x, y)dy < ∞, sup

x

∫
min{1, |y|}

∣∣∣ ∂

∂x
ν(x, y)

∣∣∣dy < ∞,

and

lim
δ→0

sup
x

∫
|y|≤δ

|y|ν(x, y)dy = 0.

Definition 3.1. Let a, b ∈ R with a < b. For any function ν satisfying

the condition (H0), the operators −D
(ν)
a+∗ and −D

(ν)
b−∗ defined by(

−D
(ν)
a+∗h

)
(x) =

∫ x−a

0
(h(x − y)− h(x))ν(x, y)dy

+ (h(a) − h(x))

∫ ∞

x−a
ν(x, y)dy, (3.1)

for functions h : [a,∞) → R, and by

(
−D

(ν)
b−∗h

)
(x) =

∫ b−x

0
(h(x + y)− h(x))ν(x, y)dy

+ (h(b)− h(x))

∫ ∞

b−x
ν(x, y)dy, (3.2)

for functions h : (−∞, b] → R, are called the generalized left-sided Ca-
puto type operator and the generalized right-sided Caputo type operator,
respectively. The values a and b will be referred to as the terminals of the
corresponding operators.

Remark 3.1. The sign − appearing in the previous notation is intro-
duced to comply with the standard notation of fractional derivatives.

Due to assumption (H0), the operators (3.1)-(3.2) are well defined at
least on the space of continuously differentiable functions (with bounded
derivative).

Remark 3.2. The left-sided (resp. right-sided) generalized Riemann-

Liouville type operator −D
(ν)
a+ (resp. −D

(ν)
b− ) is defined by setting h(a) = 0

(resp. h(b) = 0) in (3.1) (resp. (3.2)). Hence,

−D
(ν)
a+∗h(x) = −D

(ν)
a+ [h−h(a)](x) and −D

(ν)
b−∗h(x) = −D

(ν)
b− [h−h(b)](x).
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1398 M.E. Hernández-Hernández, V.N. Kolokoltsov

3.0.1. Particular cases. For smooth enough functions h, the standard

analytical definitions of the left-sided Caputo derivative Dβ
a+∗ and the right-

sided Caputo derivatives Dβ
b−∗ of order β ∈ (0, 1) (see, e.g., [10, Definition

2.2, Definition 3.1]) can be rewritten as (see, e.g., [27, Appendix])(
Dβ

a+∗h
)
(x) =

β

Γ(1− β)

∫ x−a

0

h(x− y)− h(x)

y1+β
dy − h(x) − h(a)

Γ(1− β)(x− a)β
,

(3.3)

and(
Dβ

b−∗h
)
(x) =

β

Γ(1− β)

∫ b−x

0

h(x+ y)− h(x)

y1+β
dy − h(x)− h(b)

Γ(1− β)(b − x)β
.

(3.4)

Hence, for h regular enough, Dβ
a+∗h (resp. −Dβ

b−∗h) is a particular case of

−D
(ν)
a+∗h (resp. −Dβ

b−∗h) obtained by taking the function

ν(x, y) ≡ ν(y) = − β

Γ(1− β)y1+β
, β ∈ (0, 1). (3.5)

Remark 3.3. Other examples of generalized operators −D
(ν)
a+∗ include

the fractional derivatives of variable order, as well as the generalized dis-
tributed order fractional derivatives (see [16], [27] for precise definitions).

4. Two-sided operators of RL type and Caputo type

Given two functions ν+ and ν− satisfying condition (H0), define the
function ν : R× R \ {0} → R

+ associated with ν+ and ν− by setting

ν(x, y) := ν+(x, y), y > 0, ν(x, y) := ν−(x,−y), y < 0. (4.1)

Define the two-sided operator of RL type −L[a,b] and the two-sided operator
of Caputo type −L[a,b]∗ by(−L[a,b]f

)
(x) :=

(
−D

(ν+)
a+ f

)
(x) +

(
−D

(ν−)
b− f

)
(x) +

(
−A(γ,α)f

)
(x),

(4.2)

and(−L[a,b]∗f
)
(x) :=

(
−D

(ν+)
a+∗ f

)
(x) +

(
−D

(ν−)
b−∗ f

)
(x) +

(
−A(γ,α)f

)
(x).

(4.3)

Notation −A(γ,α) stands for the differential operator given in (1.2). We
will see that the operator −L[a,b]∗ can be thought of as the generator of a
Feller process on [a, b], whereas −L[a,b] is related to the generator of a killed
process. For that purpose, let us introduce an additional definition for the
regularity of the boundary (see, e.g., [26, Chapter 6]).
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ON THE SOLUTION OF TWO-SIDED FRACTIONAL . . . 1399

Definition 4.1. For a domain D ⊂ R with boundary ∂D, a point
x0 ∈ ∂D is said to be regular in expectation for a Markov process X (or
for its generator ) if E [τD(x)] → 0, as x → x0, x ∈ D, where τD(x) :=
inf {t ≥ 0 : Xx(t) /∈ D}, with the usual convention that inf{∅} = ∞.

Theorem 4.1. Let ν be a function satisfying assumption (H0). Sup-
pose that γ ∈ C3

0 [a, b], α ∈ C3[a, b] with derivative α′ ∈ C0[a, b] and α being
a positive function. Then,

(i) the operator (−L[a,b]∗, D̂∗ ) generates a Feller process X̂ on [a, b]

with a domain D̂∗ such that{
f ∈ C2[a, b] : f ′ ∈ C0[a, b]

} ⊂ D̂∗. (4.4)

(ii) The points {a, b} are regular in expectation for (−L[a,b]∗, D̂∗). Fur-
ther, the first exit time τ̂(a,b)(x) from the interval (a, b) of X̂x, x ∈ (a, b),
has a finite expectation.

P r o o f. See proof in Section 8. �

Stopped and killed processes. To introduce the notion of solutions to
the equation (1.1) we are interested in, we need the stopped version of X̂ .

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 hold.
Let X̂x be the process started at x ∈ (a, b) generated by (−L[a,b]∗, D̂∗ ).

(i) The processX
[a,b]∗
x defined byX

[a,b]∗
x (s) := X̂x(s∧τ̂(a,b)(x)), s ≥ 0, is

a Feller process on [a, b]. If the operator (−Lstop,D
stop
[a,b]∗) denotes the

generator ofX [a,b]∗, then for any f ∈ D̂∗ satisfying
(−L[a,b]∗f

)
(x) =

0 for x ∈ {a, b}, it holds that f ∈ Dstop
[a,b]∗ and −Lstopf = −L[a,b]∗f .

(ii) The process X
[a,b]
x defined by X

[a,b]
x (s) := X

[a,b]∗
x (s) for s < τ̂(a,b)(x)

is a Feller (sub-Markov) process on (a, b). If (−Lkill,D
kill
[a,b]) denotes

the generator of X [a,b], then for any f ∈ Dstop
[a,b]∗ satisfying f(x) = 0

for x ∈ {a, b}, it holds that f ∈ Dkill
[a,b] and −Lkillf = −L[a,b]f .

P r o o f. See proof in Section 8. �

Remark 4.1. The operator −L[a,b]∗ can be obtained from the gener-
ator (L,DL) of a Feller process, say Xx, given by

(Lf)(x) =

∫ ∞

−∞
( f(x+ y)− f(x) )ν(x, y)dy + γ(x)f ′(x) + α(x)f ′′(x),

(4.5)
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1400 M.E. Hernández-Hernández, V.N. Kolokoltsov

by modifying it in such a way that it forces the jumps aimed to be out of
the interval (a, b) to land at the nearest (boundary) point (see also [27]).
If, instead, the process is killed upon leaving (a, b), then the corresponding
process has a generator related to the operator −L[a,b]. Thus, when start-
ing at the same state x ∈ (a, b), it holds that the paths of the processes

Xx, X̂x, X
[a,b]∗
x and X

[a,b]
x coincide before their first exit time from the in-

terval (a, b). Hence, the first exit time in all cases will always be denoted

by τ(a,b)(x). We refer to the processes Xx, X̂x, X
[a,b]∗
x and X

[a,b]
x as the

underlying process, the interrupted process, the stopped process and the
killed process, respectively.

5. Two-sided equations involving RL type operators

Let us now study the equation (1.1) for which we will also use the
notation

(−L[a,b]∗, λ, g, ua, ub
)
. We shall start with the boundary value

problem with zero boundary conditions: ua = 0 = ub. Thus, due to the
relationship between Caputo and RL type operators (see Remark 3.2), the
two-sided Caputo type operator −L[a,b]∗ can be replaced with the RL type

operator −L[a,b], so that the equation
(−L[a,b], λ, g, 0, 0

)
will be called the

two-sided RL type equation.

Definition 5.1. (Solutions to RL type equations) Let g ∈ B[a, b]
and λ ≥ 0. A function u ∈ C0[a, b] is said to solve the linear equation of
RL type (−L[a,b], λ, g, 0, 0) as (i) a solution in the domain of the generator

if u is a solution belonging to Dkill
[a,b]; (ii) a generalized solution if for all

sequence of functions gn ∈ C0[a, b] such that supn ||gn|| < ∞ uniformly
on n and limn→∞ gn → g a.e., it holds that u(x) = limn→∞wn(x) for all
x ∈ [a, b], where wn is the unique solution (in the domain of the generator)
to the RL type problem (−L[a,b], λ, gn, 0, 0).

Definition 5.2. For g ∈ B[a, b] and λ ≥ 0, we say that the equation
(−L[a,b], λ, g, 0, 0) is well-posed in the generalized sense if it has a unique
generalized solution according to Definition 5.1.

Theorem 5.1. (Well-posedness) Let ν be a function defined in
terms of two functions ν+ and ν− via the equalities in (4.1). Let λ ≥ 0

and assume that the assumptions of Theorem 4.1 hold. Let R̂λ denote the
resolvent operator (or the potential operator if λ = 0) of the process X̂x.

(i) If g ∈ C0[a, b] and
(
R̂λg

)
(x) = 0 for x ∈ {a, b}, then there exists

a unique solution in the domain of the generator, u ∈ C0[a, b], to

Auth
or'

s C
op

y



ON THE SOLUTION OF TWO-SIDED FRACTIONAL . . . 1401

the two-sided RL type equation (−L[a,b], λ, g, 0, 0) given by u(x) =

R
[a,b]
λ g(x), where R

[a,b]
λ denotes the resolvent operator (or potential

operator if λ = 0) of the process X
[a,b]
x .

(ii) For any g ∈ B[a, b], the equation (−L[a,b], λ, g, 0, 0) has a unique
generalized solution u ∈ C0[a, b] given by

u(x) = E

[∫ τ(a,b)(x)

0
e−λtg (Xx(t)) dt

]
, (5.1)

where τ(a,b)(x) denotes the first exit time from the interval (a, b) of
the underlying process Xx generated by the operator (4.5).

(iii) The solution in (5.1) depends continuously on the function g in
topology.

P r o o f. (i) Theorem 4.1 implies that (−L[a,b]∗ , D̂∗ ) generates a Feller
process X̂ and a strongly continuous semigroup on C[a, b]. Then, the re-

solvent equation −L[a,b]∗u = λu − g has a unique solution u ∈ D̂∗ given

by the resolvent operator R̂λg for λ > 0 and for any g ∈ C[a, b] [11, The-
orem 1.1]. In particular, the latter statement holds for g ∈ C0[a, b] such

that
(
R̂λg

)
(x) = 0 for x ∈ {a, b}. Further, Theorem 4.2 implies that

R̂λg = R
[a,b]
λ g, so that −L[a,b]∗u = −L[a,b]u. Hence, u is a solution to

(−L[a,b], g, λ, 0, 0) belonging to Dkill
[a,b], as required.

Since τ(a,b)(x) := inf{t ≥ 0 : X
[a,b]
x (t) /∈ (a, b)} is the lifetime of the

process X
[a,b]
x , the definition of R

[a,b]
λ and Fubini’s theorem imply

R
[a,b]
λ g(x) = E

[∫ τ(a,b)(x)

0
e−λtg

(
X [a,b]

x (t)
)
dt

]
, (5.2)

yielding (5.1) as the paths ofX
[a,b]
x andXx coincide before the time τ(a,b)(x).

If λ = 0, then setting λ = 0 in (5.2) implies (as τ(a,b)(x) has a finite
expectation) that

||R[a,b]
0 g|| ≤ sup

x∈[a,b]
E
[
τ(a,b)(x)

]
< +∞.

Therefore, the potential operator R
[a,b]
0 g provides the unique solution for

λ = 0 belonging to the domain Dkill
[a,b], [11, Theorem 1.1’].

(ii) Take g ∈ B[a, b] and any sequence {gn} satisfying Definition 5.1.
Fubini’s theorem and the dominated convergence theorem applied to (5.2)

imply the convergence of limn→∞R
[a,b]
λ gn(x) =: u(x), which in turn implies

that u is the unique generalized solution to (−L[a,b], λ, g, 0, 0).

(iii) Follows from the fact that, for any λ ≥ 0, the equality (5.1) implies
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1402 M.E. Hernández-Hernández, V.N. Kolokoltsov

||u− un|| ≤ ||g − gn|| sup
x∈[a,b]

E
[
τ(a,b)(x)

]
, (5.3)

for the solutions u and un to equations (−L[a,b], λ, g, 0, 0) and (−L[a,b], λ, gn,
0, 0), respectively. �

6. Two-sided equations involving Caputo type operators

We now turn our attention to the well-posedness for the Caputo type
equation with general boundary conditions. We will use that both operators
−L[a,b]∗ and −L[a,b] coincide on functions h vanishing on {a, b}.

Suppose that u solves (1.1). Take any function φ ∈ Dstop
[a,b]∗ satisfying

φ(a) = ua and φ(b) = ub. By Theorem 4.2 we can take, for example,
φ ∈ C2[a, b] such that φ′ ∈ C0[a, b] with

(−L[a,b]∗φ
)
(x) = 0 for x ∈ {a, b}

and φ(a) = ua and φ(b) = ub. Define w(x) := u(x)− φ(x), x ∈ [a, b], then

−L[a,b]w(x) = −L[a,b]∗w(x) = −L[a,b]∗u(x) + L[a,b]∗φ(x),
as w vanishes at the boundary. Hence,

−L[a,b]w(x) = λu(x)− g(x) + L[a,b]∗φ(x),
= λw(x) + λφ(x)− g(x) + L[a,b]∗φ(x), (6.1)

yielding the RL type equation (−L[a,b], λ, g − L[a,b]∗φ − λφ, 0, 0) for the
function w. Therefore, if w is the (possibly generalized) solution to (6.1),
then u = w + φ can be considered as a generalized solution to the Caputo
type equation (1.1). This motivates the definition below.

Definition 6.1. (Solutions to Caputo type equations) Let g ∈
B[a, b] and λ ≥ 0. A function u ∈ C[a, b] is said to solve the linear equation
(1.1) as (i) a solution in the domain of the generator if u is a solution

belonging to Dstop
[a,b]∗; (ii) a generalized solution if u can be written as u =

φ+w, where w is the (possibly generalized) solution to the RL type problem

(−L[a,b], λ, g − L[a,b]∗φ− λφ, 0, 0)

with φ ∈ C2[a, b] satisfying that φ′ ∈ C0[a, b],
(−L[a,b]∗φ

)
(x) = 0 in {a, b},

φ(a) = ua and φ(b) = ub.

Definition 6.2. For g ∈ B[a, b] and λ ≥ 0. We say that the two-sided
linear equation (1.1) is well-posed in the generalized sense if it has a unique
generalized solution according to Definition 6.1.

Theorem 6.1. If a generalized solution u = w + φ exists for the
Caputo type linear equation (1.1) with w and φ as in Definition 6.1, then
the solution u is unique and independent of φ.
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P r o o f. Suppose that there are two different solutions uj for j ∈ {1, 2}
to equation (1.1). Then, uj = wj + φj , where wj is the unique solution
(possibly generalized) to the RL type equation (−L[a,b], λ, g − L[a,b]∗φj −
λφj , 0, 0) for some φj satisfying the conditions stated in Definition 6.1.
Define u(x) := u1(x)− u2(x) for x ∈ [a, b], then

−L[a,b]u(x) = −L[a,b]∗u(x) = −L[a,b]∗u1(x) + L[a,b]∗u2(x) = λu(x).

Hence, u solves the RL type equation (−L[a,b], λ, g = 0, 0, 0) whose unique
solution (by Theorem 5.1) is u ≡ 0, which implies the uniqueness and so
the independence of φ. �

Theorem 6.2. (Well-posedness) Let λ ≥ 0. Suppose that the as-
sumptions of Theorem 5.1 hold.

(i) For any g ∈ B[a, b], the two-sided equation (1.1) is well-posed in the
generalized sense. The solution admits the stochastic representation

u(x) = uaE
[
e−λτ(a,b)(x)1{Xx(τ(a,b)(x))≤a}

]

+ ubE
[
e−λτ(a,b)(x)1{Xx(τ(a,b)(x))≥b}

]
+E

[∫ τ(a,b)(x)

0
e−λtg (Xx(t)) dt

]
,

(6.2)

where τ(a,b)(x) and Xx are as in Theorem 5.1.

(ii) If g ∈ C[a, b] satisfying that g(a) = λua, g(b) = λub and λR̂λg(x) =

g(x) for x ∈ {a, b}, then the solution (6.2) belongs to Dstop
[a,b]∗.

(iii) The solution to (1.1) depends continuously on the function g and
on the boundary conditions {ua, ub}.

P r o o f. (i) Theorem 4.1 implies that the operator (−L[a,b]∗ , D̂∗ ) gen-
erates a Feller process X̂ on [a, b] and also ensures that τ(a,b)(x) has a finite

expectation. Let us take any function φ ∈ C2[a, b] satisfying the condi-
tions from Definition 6.1. Then (by Theorem 5.1) the generalized solution
w to the RL type equation (−L[a,b], g − λφ − L[a,b]∗φ, λ, 0, 0) is given by
w = I − II, where

I := E

[∫ τ(a,b)(x)

0
e−λtg

(
X [a,b]

x (t)
)
dt

]
,

II := E

[∫ τ(a,b)(x)

0
e−λt(λ+ L[a,b]∗)φ

(
X [a,b]

x (t)
)
dt

]
.
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Thus, u = w + φ is (by definition) the generalized solution to (1.1). Using
the martingale

Y (r) := e−λrφ
(
X [a,b]∗

x (r)
)
+

∫ r

0
e−λs(λ+ L[a,b]∗)φ

(
X [a,b]∗

x (s)
)
ds

and the stopping time τ(a,b)(x), Doob’s stopping theorem yields

II = φ(x)−E
[
e−λτ(a,b)(x)φ

(
X [a,b]∗

x

(
τ(a,b)(x)

))]
which in turn implies

u(x) = E
[
e−λτ(a,b)(x)u

(
X [a,b]∗

x

(
τ(a,b)(x)

))]

+ E

[∫ τ(a,b)(x)

0
e−λtg

(
X [a,b]∗

x (t)
)
dt

]
, (6.3)

as φ
(
X

[a,b]∗
x

(
τ(a,b)(x)

))
= u

(
X

[a,b]∗
x

(
τ(a,b)(x)

))
by assumption. Finally,

since at the random time τ(a,b)(x) the process X
[a,b]∗
x takes either the value

a or the value b, the first term in the r.h.s of (6.3) can be written as

E
[
e−λτ(a,b)(x)u

(
X [a,b]∗

x

(
τ(a,b)(x)

))]
=uaE

[
e−λτ(a,b)(x)1{Xx(τ(a,b)(x))≤a}

]
+ ubE

[
e−λτ(a,b)(x)1{Xx(τ(a,b)(x))≥b}

]
,

where Xx is the underlying process (see (4.5)), which yields the result

(6.2). (ii) Take g ∈ C[a, b] such that λR̂λg(x) = g(x) for x ∈ {a, b}. Item
(i) above ensures that the solution is given by u = w + φ, where w is
a RL type solution and φ is a function satisfying the conditions given in
Definition 6.1. By Theorem 5.1, w belongs to Dkill

[a,b] whenever

g(a) = λua + (−L[a,b]∗φ)(a) and g(b) = λub + (−L[a,b]∗φ)(b).

But, by Theorem 4.2, (−L[a,b]∗φ)(a) = (−L[a,b]∗φ)(b) = 0 because φ ∈
Dstop

[a,b]∗. Further, assumption λR̂λg(x) = g(x) in {a, b} implies −L[a,b]∗u(x) =
0 for x ∈ {a, b}, which in turn implies −L[a,b]∗u = −Lstopu. Hence, Theo-

rem 4.2 guarantees that u ∈ Dstop
[a,b]∗ whenever g(a) = λua and g(b) = λub,

as required.
(iii) Follows from the representation (6.2) and from (5.3). �

Case −A vanishing or −A = γ(·) d
dx . For these cases, an additional

assumption is needed to guarantee the regularity in expectation of the
boundary points {a, b}.
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(H1) There exist a constant C > 0 and q ∈ (0, 1) such that∫ 0

−∞
min(|y|, ε)ν(a, y)dy > Cεq and

∫ ∞

0
min(y, ε)ν(b, y)dy > Cεq.

Theorem 6.3. Let λ ≥ 0. Assume that the function ν associated with
ν+ and ν− (defined via the equalities in (4.1)) satisfies assumptions (H0)
and (H1). Then, Theorem 5.1 and Theorem 6.2 also hold with α ≡ 0 and
with either γ ≡ 0 or γ ∈ C1

0 [a, b].

P r o o f. Since the reasoning is same as before, we omit the details. �

To finish this section, let us consider the following result related to
the exit time of Feller processes from bounded intervals and generalized
fractional equations of Caputo type. Let Xx be the process generated by
(4.5). Define Πa(x) and Πb(x) as the event that the process Xx leaves
the interval (a, b) through the lower boundary a, and through the upper
boundary b, respectively, i.e.

Πa(x) :=
{
Xx

(
τ(a,b)(x)

) ≤ a
}

and Πb(x) :=
{
Xx

(
τ(a,b)(x)

) ≥ b
}
.

Let HD(x, ·) be the potential measure for the process Xx (see, e.g. [6])
defined by

HD(x, dy) := E

[∫ ∞

0
1{Xx(t)∈dy}1{∀s≤t,Xx(s)∈D}dt

]
.

Corollary 6.1. Under the assumptions of Theorem 6.2, the gener-
alized solution to the two-sided equation (1.1) with λ = 0 rewrites as

u(x) = uaΠa(x) + ubΠb(x) +

∫ b

a
g(y)H(a,b)(x, dy). (6.4)

In particular, u(x) = E
[
τ(a,b)(x)

]
is the generalized solution to the two-

sided equation with g = −1 and ua = ub = 0. Further, u(x) = Πa(x) is
the generalized solution to the equation with g = 0, ua = 1 and ub = 0,
whereas u(x) = Πb(x) solves the equation with g = 0, ua = 0 and ub = 1.

7. Examples

Example 7.1. Consider the two-sided Caputo fractional equation

Dβ
−1+∗w(x) +Dβ

+1−∗w(x) = −λw(x) + g(x), x ∈ (−1, 1)

w(−1) = 0 = w(1). (7.1)

By Theorem 6.3, the boundary value problem (7.1) is well-posed in the
generalized sense for any g ∈ B[−1, 1] with solution
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w(x) = E

[∫ τ(−1,1)(x)

0
e−λtg

(
Xβ

x (t)
)
dt

]
, λ ≥ 0,

where Xβ
x is a symmetric stable process with exponent β ∈ (0, 1) and

τ(−1,1)(x) := inf
{
t ≥ 0 : Xβ

x (t) /∈ (−1, 1)
}
.

Further, if g = 1 and λ = 0, then the mean exit time E
[
τ(−1,1)(x)

]
is the

unique generalized solution to (7.1). Moreover, by Theorem 2.1 in [38], we
obtain the explicit solution

w(x) =
(1− x2)β/2

Γ(β + 1)
.

Example 7.2. Consider now the two-sided Caputo fractional equation:

Dβ
−1+∗h(x) +Dβ

+1−∗h(x) = 0, x ∈ (−1, 1) β ∈ (0, 1),

h(−1) = 0, h(1) = 1. (7.2)

Corollary 6.1 gives the unique generalized solution

h(x) = P
[
Xβ

x (τ(−1,1)(x)) ∈ [1,∞)
]
,

which is given explicitly by [38, Formula 3.2]

h(x) = 21−β Γ(β)

Γ(β/2)2

∫ x

−1
(1− y2)

β
2
−1dy. (7.3)

Furthermore, again by Corollary 6.1, the equation

Dβ
−1+∗v(x) +Dβ

+1−∗v(x) = 0, x ∈ (−1, 1), β ∈ (0, 1),

v(−1) = 1, v(1) = 0. (7.4)

has solution v(x) = 1− h(x).

Example 7.3. The two-sided Caputo fractional equation

Dβ
−1+∗u(x) +Dβ

1−∗u(x) = g(x) x ∈ (−1, 1), β ∈ (0, 1),

u(−1) = u−1, u(1) = u1, u−1, u1 ∈ R, (7.5)

has a unique generalized solution (Corollary 6.1) which rewrites

u(x) = (u1 − u−1)h(x) + u−1 +

∫ 1

−1
g(y)H

(−1,1)
β (x, y)dy,
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where h(x) is the function given in (7.3), and H
(−1,1)
β (x, y) (the density of

the potential measure of the process Xβ
x ) is given by [38]

H
(−1,1)
β (x, y) = 2−βπ−1/2

Γ(1/2)

(Γ(β/2))2

∫ z

0
(r + 1)−

1
2 r

β
2
−1|x− y|β−1dr,

with z = (1− x2)(1− y2)/(x − y)2.

Remark 7.1. Observe that all the explicit solutions w, v, h and u
above are smooth solutions since they belong to C[−1, 1] ∩ C1(−1, 1).

8. Proofs

Firstly, let us observe that for f ∈ C1[a, b], by setting g(x) = f ′(x) we
can rewrite

−L
(ν)
[a,b]∗f(x) = M

(ν)
∗ g(x) :=

∫ b−x

a−x

∫ x+y

x
g(z)dzν(x, y)dy+ (8.1)

+

∫ b

x
g(z)dz

∫ ∞

b−x
ν(x, y)dy +

∫ a

x
g(z)dz

∫ a−x

−∞
ν(x, y)dy.

8.1. Proof of Theorem 4.1.

P r o o f. (i) Let us approximate −L[a,b]∗ by a family of operators
(−Lh∗ )h∈(0,1] defined by

− Lh∗ := −L
(νh)
[a,b]∗ −A(γ,α), (8.2)

where νh(x, y) := Φh(x, y)ν(x, y) with Φh(x, y) being a smooth function on
[a, b]×R, which equals 1 on the set {|y| > h, x ∈ [a+h, b−h]} and vanishes

near the boundary; and the operator (−A(γ,α),DA) is the generator of a
diffusion on [a, b] with reflecting boundaries {a,b} (see, e.g. [4, Chapter V,
Section 6]) with a domain

DA :=
{
f ∈ C[a, b] : −A(γ,α)f ∈ C[a, b], f ′(a) = 0, f ′(b) = 0

}
.

Then, for each h ∈ (0, 1] the operator −Lh∗ decomposes as a diffusion

on [a, b] perturbed by the bounded operator −L
(νh)
[a,b]∗ on C[a, b], so that by

perturbation theory (see, e.g., [26, Theorem 1.9.2]) the operator (−Lh∗,DA)
generates a Feller semigroup T h

t on C[a, b]. This semigroup is the unique
(bounded) solution to the evolution equation

d

dt
ft(x) = −Lh∗ft(x), f0 = f ∈ DA. (8.3)

Moreover, due to the smoothness assumptions on γ, α and ν, the spaces
{f ∈ Cj[a, b] : f ′ ∈ C0[a, b]} for j ∈ {2, 3} are invariant cores of −Lh∗
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[26, Theorem 1.9.2,(iii)]. Hence, if f ∈ C3[a, b] with f ′ ∈ C0[a, b], then
T h
t f ∈ C3[a, b] and −Lh∗T h

t f ∈ C1[a, b].
Differentiating (8.3) with respect to x, rearranging terms and using

(8.1), yield the evolution equation for gt(x) = f ′
t(x) given by

d

dt
gt(x) = −Lh,(1)gt(x), (8.4)

where

−Lh,(1)g(x) : = −A(γ+α′,α)g(x) +
[
−L

(νh)
[a,b] −M

(∂xνh)∗ + γ′(x)
]
g(x). (8.5)

Since (by assumption) α′ vanishes on {a, b}, the operator −Lh,(1) decom-

poses as a diffusion −A(γ+α′,α) on [a, b] (with reflecting boundaries) per-
turbed by the bounded operator Kh on C[a, b] given by

Kh := −L
(νh)
[a,b] −M

(∂xνh)∗ + γ′(·).
Hence, −Lh,(1) generates a strongly continuous semigroup of contractions

on C[a, b], denoted by T
h,(1)
t . Due to the invariance of the space {f ∈

C3[a, b] : f ′ ∈ C0[a, b]}, it follows that d
dx(T

h
t f)(x) =

(
T
h,(1)
t f ′

)
(x) for

f in the latter space. Now, the perturbation series representation for the

semigroup T
h,(1)
t [26, Equality 1.78, p. 52]) implies

||T h,(1)
t f ′|| ≤ ||f ′||+

∞∑
m=1

(t ||Kh||)m
m!

||f ′||. (8.6)

Thus, as Kh is uniformly bounded in h due to the bounds from assumption
(H0), the derivative d

dx

(
T h
t f

)
(x) is uniformly bounded in h and t ≤ t0

whenever f ∈ C3[a, b] with f ′ ∈ C0[a, b].
Let us now write (see [20, Lemma 19.26, p. 385])

(T h1
t − T h2

t )f =

∫ t

0
T h2
t−s (−Lh1∗ + Lh2∗)T

h1
s f ds,

for 0 < h2 ≤ h1 < 1 and f ∈ C3[a, b] with f ′ ∈ C0[a, b]. Since T h1
t f is

differentiable (with derivative uniformly bounded in h given by T
h1,(1)
t f ′),

we can estimate (by mean value theorem)∣∣∣ (−Lh1∗ + Lh2∗)T
h1
s f(x)

∣∣∣ ≤
∫
h2≤|y|≤h1

∣∣∣T h1
s f(x+ y)− T h1

s f(x)
∣∣∣ν(x, y)dy

≤
∫
h2≤|y|≤h1

||T h1,(1)
s f ′|||y|ν(x, y)dy

= o(1)||T h1,(1)
s f ′|| = o(1)||f ||C1 , h1 → 0.
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The last equality holds due to the assumption (H0) (i.e, the uniform bound
of the first moment of ν and its tightness property). Therefore,

||
(
T h1
t − T h2

t

)
f || = o(1)t||f ||C1 . (8.7)

Thus, for each f ∈ C3[a, b] with f ′ ∈ C0[a, b], the family {T h
t f} converges

to a limiting family {Ttf} as h → 0. It follows then that the limiting
family forms a strongly continuous semigroup of contractions on C[a, b] (by
standard approximation arguments). Now write

Ttf − f

t
=

Ttf − T h
t f

t
+

T h
t f − f

t
.

Using the estimate (8.7), we conclude that {f ∈ C3[a, b] : f ′ ∈ C0[a, b]}
belongs to the domain of the generator, and that the generator is given by
−L[a,b]∗ as

lim
t↓0

Ttf − f

t
= lim

h↓0
lim
t↓0

Ttf − T h
t f

t
+

T h
t f − f

t
= −L[a,b]∗f.

Now, take f ∈ C2[a, b] and {fn} ⊂ {f ∈ C3[a, b] : f ′ ∈ C0[a, b]} such that
fn → f uniformly as n → ∞. Since the operator −L[a,b]∗ is closed [13,
Corollary 1.6] and −L[a,b]∗fn → g as n → ∞ for some g, it follows that g =

−L[a,b]∗f and f ∈ D̂∗. Therefore, the space {f ∈ C2[a, b] : f ′ ∈ C0[a, b]}
also belongs to the domain of the generator, as required.

(ii) Take the function fw(x) = (x − a)w for some sufficiently small
w ∈ (0, 1). We will prove that

(−L[a,b]∗fw
)
(x) < 0 for x ∈ (a, c) and

c ∈ (a, b) (see method of Lyapunov functions, e.g., [26, Proposition 6.3.2]).
Since(−L[a,b]∗fw

)
(x) = −L

(ν)
[a,b]∗fw(x)+wγ(x)(x−a)w−1+w(w−1)α(x)(x−a)w−2,

when γ(a) = 0 and α(a) > 0, then
(−L[a,b]∗fw

)
(x) < 0 as the first two

terms in the r.h.s of the previous equality are dominated by the last term
which tends to −∞ as x → a. The regularity for x = b is proved analogously
but with fw(x) = (b − x)w. Finally, Proposition 6.3.2 in [26] implies the
finite expectation of τ̂(a,b)(x). �

8.2. Proof of Theorem 4.2.

P r o o f. (i) Theorem 4.1 implies that (−L[a,b]∗, D̂∗) generates a Feller

process X̂x on [a, b] and ensures the regularity in expectation of the bound-

ary points {a, b}. Hence, the stopped processX
[a,b]∗
x := {X̂x(s∧τ(a,b)(x))}s≥0

is also a Feller process on [a, b] [26, Theorem 6.2.1, Chapter 6]. Let us de-

note by (−Lstop, D
stop
[a,b]∗) the generator of the stopped process with a domain
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denoted by Dstop
[a,b]∗. By definition of X

[a,b]∗
x the states {a, b} are absorbing,

which implies that (−Lstopf)(x) = 0 for x ∈ {a, b} and f ∈ Dstop
[a,b]∗.

Take now f ∈ D̂∗ such that −L[a,b]∗f(x) = 0 in {a, b}. Since the domain

of the generator is given by the image of its resolvent operator (say R̂λ),

given f ∈ D̂∗ there exists g ∈ C[a, b] such that f = R̂λg.
Using that f solves the resolvent equation

λR̂λg + L[a,b]∗f = g,

and that (by assumption) −L[a,b]∗f(x) = 0 for x ∈ {a, b}, we get

f(a) = R̂λg(a) = g(a)/λ and f(b) = R̂λg(b) = g(b)/λ. (8.8)

Moreover, Dynkin’s formula implies

R̂λg(x) = E

[∫ τ(a,b)(x)

0
e−λsg

(
X̂x(s)

)
ds

]
+E

[
e−λτ(a,b)(x)f

(
X̂x(τ(a,b)(x))

)]

for each x ∈ (a, b). Using that the paths of the process X̂x and X
[a,b]∗
x

coincide before the first exit time τ(a,b)(x), the previous expression becomes

R̂λg(x) = E

[∫ τ(a,b)(x)

0
e−λsg

(
X [a,b]∗

x (s)
)
ds

]

+ E
[
e−λτ(a,b)(x)f(a)1{τa<τb} + f(b)1{τb<τa}

]
,

where τa and τb denote the first exit time through the boundary point a and
b, respectively. Finally, plugging (8.8) into the second term of the r.h.s of

the last formula we get that f = R̂λg = R
[a,b]∗
λ g, where R

[a,b]∗
λ denotes the

resolvent operator of X [a,b]∗. Therefore, f ∈ Dstop
[a,b]∗ as there exits g ∈ C[a, b]

such that f = R
[a,b]∗
λ g, which in turn implies that −Lstopf = −L[a,b]∗f .

(ii) Follows the same arguments as before, so that we omit the details. �
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