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Abstract 

A new methodological framework for assessing agreement between cost-effectiveness 

endpoints generated using alternative sources of data on treatment costs and effects for trial-

based economic evaluations is proposed. The framework can be used to validate cost-

effectiveness endpoints generated from routine data sources when comparable data is available 

directly from trial case report forms or from another source. We illustrate application of the 

framework using data from a recent trial-based economic evaluation of the probiotic 

Bifidobacterium breve strain BBG administered to babies less than 31 weeks of gestation. Cost-

effectiveness endpoints are compared using two sources of information; trial case report forms 

and data extracted from the National Neonatal Research Database (NNRD), a clinical database 

created through collaborative efforts of UK neonatal services. Focussing on mean incremental 
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net benefits at £30,000 per episode of sepsis averted, the study revealed no evidence of 

disagreement between the data sources (two-sided p-values >0.4), low probability estimates of 

miscoverage (ranging from 0.039 to 0.060) and concordance correlation coefficients greater 

than 0.86. We conclude that the NNRD could potentially serve as a reliable source of data for 

future trial-based economic evaluations of neonatal interventions. We also discuss the potential 

implications of increasing opportunity to utilise routinely available data for the conduct of trial-

based economic evaluations.



3 
 

1. Introduction 

In trial-based economic evaluations, data on treatment costs and consequences (effects) are 

required for trial participants with the aim of estimating the relative cost-effectiveness of two 

or more interventions. It is common practice within this context for multiple sources of 

information to be obtained by analysts and used to inform the evaluation. For example, data on 

healthcare resource use and costs can normally be obtained from a variety of sources including 

trial case report forms, medical records, patient questionnaires and diaries (Petrou and Gray 

2011). With advent of the ‘big data’ revolution, large volumes of individual-level information 

are being collected prospectively from patients and stored in administrative datasets and 

electronic health record systems. These routinely collected datasets constitute a rich source of 

information for health research – they are increasingly being relied upon as sources of 

information for trial-based economic evaluations and health technology assessments. For 

example, data drawn from  the Hospital Episode Statistics (HES) in the UK have been obtained 

for use in the CAP trial to evaluate the clinical and cost-effectiveness of prostate specific 

antigen testing in men aged 50 to 69 years old (Turner, Metcalfe et al. 2014, Thorn, Turner et 

al. 2016). Furthermore, in a recently published editorial in the British Medical Journal on 

reforms of the UK Cancer Drug Fund, Grieve and colleagues (Grieve, Abrams et al. 2016) 

suggested “using timely randomised controlled trials within routinely collected data sources, 

to establish which drugs are relatively effective” and cost-effective. 

It is likely that use of routine data in trial-based economic evaluations will increase in the 

coming years in the UK context and beyond. This is largely driven by increased access to 

datasets and advances in computerised record linkage that enable datasets to be linked with 

each other (Raftery, Roderick et al. 2005)  and increasingly to trial participants at the individual 

patient-level. Linkage to trial participants is crucial in this context as the within-trial 

randomisation can be relied upon to generate unbiased estimates of treatment impacts based on 

information contained in the routine data sources. That being said, what is not known is whether 

or not routine data sources can provide reliable information across the broad array of data 

required for trial-based economic evaluations (Thorn, Turner et al. 2016). This is because the 

datasets have generally been compiled for non-research purposes, such as the need to evaluate 

health service performance or monitor care delivery, and hence may not adequately satisfy the 

rigours required of clinical trial research. Consequently, there are often concerns about data 

quality, including missing information, incomplete coding and miss-classification of variables 

– issues that have potential to render the data unsuitable for most clinical research. 
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For the reasons stated above, analysts working on trial-based economic evaluations have long 

recognised the need for validated data obtained from disparate sources for application within  

their evaluations (Byford, Leese et al. 2007). In this context, analysts have examined the 

disparate sources of information for evidence of difference (Thorn, Turner et al. 2016) or 

agreement (Mant, Murphy et al. 2000, Mistry, Buxton et al. 2005, Byford, Leese et al. 2007, 

Houweling, Bolton et al. 2014, Smith, McCrone et al. 2014) in individual parameter estimates. 

These studies have primarily focused on comparisons between multiple sources of information 

on individual-level healthcare resource use or costs. 

 

In this paper, we outline a new methodological framework for assessing agreement between 

the final cost-effectiveness endpoints generated using alternative sources of data on treatment 

costs and effects for trial-based economic evaluations. The proposed framework builds on the 

earlier work of Bland and Altman (Altman and Bland 1983, Bland and Altman 1986) and Lin 

(Lin 1989) on methods for assessing the reproducibility of clinical assays, measurements and 

tests.  The framework can be used to validate estimates of cost-effectiveness endpoints 

generated using routine data sources when comparable data on costs and effects for trial 

participants are available from a de novo data source, such as trial case report forms.  

 

Of the two most commonly reported endpoints in economic evaluations, namely the 

incremental cost-effectiveness ratio (ICER) and the incremental net-benefit statistic, we base 

our assessment of agreement on the latter. This is because of well-known issues surrounding 

the ICER (Stinnett and Mullahy 1998, Glick, Doshi et al. 2015) that makes it unsuitable as a 

statistic on which to base assessment of agreement. For example, the sampling distribution of 

the ICER is unknown and it can be problematic to estimate associated measures of uncertainty. 

Also, because the ICER is a ratio of incremental costs and incremental effects, two ICERs can 

be equal in magnitude but qualitatively different in meaning when they fall in different 

quadrants of the cost-effectiveness plane. The  incremental net benefit statistic, on the other 

hand, is unambiguous with relatively straightforward interpretation and its sampling 

distribution is known at the specified cost-effectiveness threshold (Stinnett and Mullahy 1998).  
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The remainder of the paper is structured as follows: Section 2 outlines the proposed 

methodological framework. In section 3, we illustrate an application using data from a recently 

conducted trial-based economic evaluation investigating the benefits of early administration of 

the probiotic Bifidobacterium breve strain BBG (B breve BBG) to prevent development of 

infection (sepsis) in babies less than 31 weeks of gestation. We present final concluding 

remarks in section 4, including the potential implications of increasing recourse to routinely 

collected data for the conduct of trial-based economic evaluations.  

 

2. Methods 

This section outlines our framework for assessing agreement between the mean incremental 

net (monetary) benefits estimated from two sets of data on treatment costs and effects for trial 

participants. Three commonly used statistics are adapted for this purpose: i) the mean 

difference; ii) the probability estimate of miscoverage; and iii) the concordance correlation 

coefficient (Lin 1989) between two estimates of the incremental net benefit. We define the 

probability estimate of miscoverage as the proportion of samples in simulated replication of 

trial data in which the confidence limits for the mean incremental net benefit from one data 

source, designated as test data, contain the mean incremental net benefit estimated from the 

second data source, designated as the referent or gold standard data source. We outline a 

strategy for estimating the miscoverage probability in section 2.2. We also show in section 2.3 

how the concordance correlation coefficient can be adapted for assessing agreement between 

two estimates of the mean incremental net benefit evaluated at a specified cost-effectiveness 

threshold.  A package to implement the routines described in the remainder of the paper in R 

(R Core Team 2015) is available from https://github.com/agaye/ceeComp. 

 

2.1 Difference between two estimates of the incremental net benefit 

Consider a trial in which paired data on treatment costs and effects, denoted as D1 and D2 are 

available for N trial participants randomised to one of two interventions, denoted as A and B. 

Our illustrative example in section 3 highlights two potential data sources, namely trial case 

report forms and data obtained from a national patient electronic system. Denote A as control 

intervention and let i  be an estimate of the mean incremental net benefit of intervention B 

relative to A from the ith dataset Di   1,2i   at a specified cost-effectiveness threshold  . 

https://github.com/agaye/ceeComp
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Then a simple measure of discrepancy between the two estimates of cost-effectiveness (in the 

form of the incremental net benefit of intervention B relative to A) generated from two data 

sources is   where 

                              2 1                                                                                                   (1)  

The variance of   (after dropping the s to simplify the notation) is given by  

                              
1 2 1 2

2 2 2

,2                                                                                          (2) 

where 
1

2

 , 
2

2

  represent variance of the incremental net benefit from datasets 1 and 2 

respectively.  Incremental net benefits generated this way are likely to be correlated as the two 

datasets contain information from the same patients, 
1 2,   quantifies the covariance between 

the two. The parameters , 1 , 2  and associated variance and covariance terms in equations 

(1) and (2) are unobserved, hence will be replaced in practice with their sample counterparts 

̂ , 1̂  and 2̂  respectively. We show in Appendices A and B that the variance and covariance 

terms on the right hand side of equation (2) can be written in terms of the variance of costs and 

effects and the covariance between the two within the respective arms of a trial with parallel 

group design (assuming no treatment switching or cross-over effects common in cancer trials). 

Under the large sample assumption, an approximate statistical test of the null hypothesis that 

there is no difference between incremental net benefits generated from the two data sources 

(i.e. 0  ) can be constructed by referring an estimate Ẑ  of the Z statistic to the standard 

normal distribution where Ẑ  is given by 

                              
ˆˆ
ˆ

Z





                                                                                                             (3) 

 

2.2 Probability of miscoverage 

This section introduces the probability estimate of miscoverage as a statistic for assessing 

agreement between two cost-effectiveness estimates. Miscoverage probabilities have 

previously been used in the health economics literature (Polsky, Glick et al. 1997) to compare 

the performance of different methods for estimating confidence intervals for the ICER.  

However, unlike Polsky et al., we base our assessment on the incremental net benefit rather 
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than the ICER for the reasons stated in the introduction. For any two data sources that are 

available for the economic evaluation, we first designate one data source as referent data and 

the other as test data. From the referent dataset, we calculate  ref,
ˆ , the sample estimate of the 

underlying population mean incremental net benefit ref, at cost-effectiveness threshold . 

Next, we sample with replacement several times to generate N bootstrap replicates of the test 

data.  For each replicate dataset, we calculate a bootstrap estimate of the incremental net benefit 

and the associated variance given by equation (4A) of Appendix A. Finally, we obtain the 

probability of miscoverage by counting the proportion of the S bootstrap replicates in which 

the (95%) confidence intervals for the incremental net benefit statistic does not contain the 

corresponding estimate from the referent dataset.   

 

2.3 Concordance correlation  

Lin (1989) introduced the concordance correlation coefficient, c  and used it to quantify 

agreement or reproducibility of a clinical assay, test or measuring instrument compared to the 

current measure or a gold standard.  In doing so, Lin (Lin 1989, Lin 1992, Lin 2000) defined 

perfect agreement between two measurements as a 45 degree line passing through the origin of 

the Cartesian (X, Y) plane so that deviations from this line indicate evidence of disagreement. 

The concordance correlation coefficient quantifies this deviation in terms of the precision and 

accuracy of the new measure compared to the gold standard. As a correlation coefficient, c  

satisfies the inequality  11  c  where 1c  indicates perfect agreement, 0c  no 

agreement and 1c  perfect inverse agreement. 

 

To adapt Lin’s method for our purpose, let      1 1 1 2 2 2, , , , ,j j j j j j j jD C E t D C E t   denote 

again our paired outcome information (comprising of treatment costs jtC  and effects jtE ) for 

the jth patient ( 1,2, ,j N ) in treatment group jt  from a bivariate population with mean 

incremental net monetary benefit  1 2,   and variance  
1 2

2 2,    at specified cost-

effectiveness threshold. Following Lin (1989), the degree of concordance between incremental 
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net-benefits generated from the two data sources can be quantified by the expected value of the 

squared difference on the incremental net benefit scale:  

 

                              
1 2 1 2

2 2 2 2

2 1 2 1 2E D D              
 

                                            (4) 

 

where the parameters in equation (4) are defined as in the previous equations. Lin (1989) 

showed that equation (4) can be written in terms of the Pearson correlation coefficient  which 

he suggested provided a measure of precision (i.e. “how far each observation deviates from the 

best fitted line”) and a bias correction factor bC  that measures accuracy (i.e. “how far the best 

fitted line deviates from the 45 degree line”): 

                            bc C    where 
 

1 2

1 2

2 2 2

2 1

2
bC

 

 

 

   


  
 

When used to assess agreement between pairs of measurements, an estimate ĉ  of c  is 

obtained by replacing the parameters in equation (4) with their sample estimates. Hence in our 

adaptation of Lin’s method, we define ĉ  in terms of the incremental net benefit generated 

from two data sources: 

                  

 
1 2

1 2

,

2
2 2

2 1

ˆ2
ˆ

ˆ ˆ ˆ ˆ
c

 

 




   


  

                                                                       (5) 

where 2̂  and 1̂  represent sample estimates of the incremental net benefit from the respective 

datasets, 
1

2ˆ
  and 

2

2ˆ
 represent sample estimates of the corresponding variances and

1 2,
ˆ
 

estimate of the covariance between the two. Again as shown in Appendices A and B, the 

parameters on the right hand side of equation (5) can be written in terms of the arm-specific 

estimates of the mean costs and effects given by equation (1A) and  associated variance and 

covariance terms given by equations (4A) and (11A), respectively. Finally, to estimate a 

confidence interval and carry out hypotheses tests, Lin (1989) suggested the Fisher Z 

transformation as a useful approximation to the standard normal distribution with mean 
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11

ln
2 1c

c

c

Z





 
  

 
 

and variance 

      
 
 

 

   

2 2 3 2 4 4
2

2 22 2 2 2 2

1 2 11

2 1 1 2 1
c

c c c c
Z

c c c
N

      


     

   
   

     

 

where 

 
1 2

1 2

1

2 2 2
 

 


 






, 1 2

1 2

, 

 




 
 ,  N is the trial sample size and c  is estimated by ˆ

c  in  

equation (5). Confidence intervals can be constructed again from the sample estimates 
c

Z ̂  

and 
ˆ

2

c
Z

  of 
c

Z  and 
2

c
Z

  before re-transforming back to the original scale. 

 

Statistical tests of the hypothesis that c  is greater than an arbitrarily defined threshold value, 

0c , can be constructed using the transformed parameters and one-sided p-values generated 

for a specified level of significance. Concordance correlation coefficient thresholds often cited 

in the literature as indicating acceptable levels of agreement include 4.00 c  (Byford, Leese 

et al. 2007) and 65.00 c   (Feng, Baumgartner et al. 2014) with coefficients greater than 0.8 

generally taken as good evidence of agreement  (McBride 2005, Feng, Baumgartner et al. 

2014). Rather than define an arbitrary threshold value, an alternative strategy suggested by Lin 

(1992) is to estimate 0c  through the expression xCbc  2

0   where x  represents a pre-

specified percentage loss in precision that is acceptable for the particular measure or clinical 

scenario under investigation and  is again the Pearson correlation coefficient. For example, 

0.05x  for a 5% acceptable loss in precision.  In our adaptation of this approach, if we 

designate one dataset as the referent data and another as the test dataset, then x  represents the 

percentage loss in precision in mean incremental net monetary benefit generated from the test 

data that can be considered acceptable compared with the corresponding estimate obtained 

using the referent dataset. Statistical tests of the hypothesis that 0cc    can then be 

constructed and one-sided p-values estimated.  
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3. Example application to the PiPS trial 

3.1 Example data 

The Probiotic in Preterm babies Study (PiPS) is a multi-centre, double blind, placebo-

controlled randomised trial of probiotic administration in infants born between 23+0 and 30+6 

weeks gestational age. The trial recruited 1300 infants within 48 hours of birth from 24 

hospitals within 60 miles of London over a 37 month period from July 2010 onwards. Infants 

were randomised to receive either the probiotic Bifidobacterium breve BBG-001 or a matching 

placebo. Details of the trial design and baseline characteristics of trial participants are published 

elsewhere (Costeloe, Wilks et al. 2014). The main trial analyses and findings  have also been 

published (Costeloe, Hardy et al. 2016). The main trial economic evaluation has not yet been 

published, so a summary of the methods used to conduct the evaluation is presented in 

Appendix C. For the purpose of illustrating the methodology described in this paper, we 

restrict ourselves to 1258 of the 1300 infants who had complete data on treatment costs and 

clinical outcomes of interest. Of these, 638 infants were in the placebo group and 620 in the 

probiotic group. Three clinical outcomes were considered in the trial: i) any episode of neonatal 

necrotising enterocolitis (NEC) Bell stage 2 or 3 (Bell, Ternberg et al. 1978); ii) any positive 

blood culture of an organism not recognised as a skin commensal on a sample drawn more than 

72 hours after birth and before 46 weeks postmenstrual age or discharge if sooner (hereafter 

referred to as sepsis for brevity); and iii) death before discharge from hospital. We restrict 

ourselves to the sepsis outcome for the purpose of illustrating the methodological framework 

described in this paper.  

Data on PiPS trial participants were available from two primary sources, the trial case report 

forms and the National Neonatal Research Database (NNRD) (The Neonatal Data Analysis 

Unit 2013). The PiPS trial case report forms captured a comprehensive profile of resource use 

by each infant, encompassing length of stay by intensity of care, surgeries, investigations, 

procedures, transfers and post mortem examinations until final hospital discharge or death 

(whichever was earliest). Resource inputs were primarily valued based on data collated from 

secondary national tariff sets (Curtis 2013). All costs were expressed in pounds sterling and 

reflected values for the financial year 2012-13. The trial case report forms also captured 

information on the clinical outcomes of interest. The NNRD has been created through the 

collaborative efforts of neonatal services across the UK to be a national resource. The NNRD 

contains a defined set of data items (the Neonatal Dataset) that have been extracted from the 

Badger.net neonatal electronic patient record of all admissions to National Health Service 
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(NHS) neonatal units. Badger.net is managed by Clevermed Ltd, an authorised NHS hosting 

company. The Neonatal Dataset is an approved NHS Information Standard (ISB1575) and 

contributing neonatal units are known as the UK Neonatal Collaborative. 

 

Our comparisons of cost-effectiveness outcomes were based on four datasets that we created 

using information from the two primary data sources: i) the trial case report forms as the sole 

source of information (hence forth referred to as PiPS dataset); ii) the NNRD as the source of 

information on resource inputs only with clinical outcomes extracted from the PiPS case report 

forms (herein referred to as the NNRD1 dataset); iii) the NNRD  as a source of resource use 

and clinical outcomes (herein referred to as the NNRD2 dataset); and iv) a combined dataset 

created by the selection of a preferred data source (by clinical experts) for each data input.  

 

3.2 Results 

Table 1 presents descriptive summaries of the cost-effectiveness estimates for the probiotic 

compared to placebo, obtained from each of the 4 datasets described above. Based on the data 

from the trial case report forms (PiPS dataset), the proportion of infants with sepsis and the 

mean total cost were 10.8% and £62,799 respectively in the probiotic group, compared with 

11.3% and £62,284 in the placebo group, generating a mean absolute incremental effect of 

0.50%, mean incremental costs of £515 and an ICER of £107,613 per episode of sepsis averted. 

As stated above, the trial case report forms also served as the primary source of clinical 

outcome information for the NNRD1 and the combined datasets, thus these two datasets 

differed from the PiPS dataset only in terms of healthcare utilisation data and hence treatment 

costs. For these (NNRD1 and the combined) datasets, the probiotic was associated with slightly 

lower total healthcare costs than placebo, generating a mean cost saving of £367 in the NNRD1 

dataset and £342 in the combined datasets. Thus, on average, the probiotic dominated placebo 

in health economic terms in these two datasets. Finally, the NNRD2 dataset indicated that the 

probiotic is less effective and less costly, on average, than placebo, generating a mean ICER 

of £111,348 per episode of sepsis averted for the probiotic compared with placebo.  Overall, 

although the PiPS and NNRD2 datasets generated mean ICERs that are very similar in 

magnitude, they have different interpretations because the mean ICER for the PiPS dataset 

occupies the north-east quadrant of the cost-effectiveness plane, suggesting that the probiotic 
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is more costly and more effective than placebo, whereas the mean ICER for the NND2 dataset 

occupies the south-west quadrant where the probiotic is less costly but also less effective 

(Figure 1). The mean ICERs from three of the four datasets fell in different quadrant of the 

cost-effectiveness plane, but a large proportion of the simulated ICERs from each dataset fell 

in all 4 quadrants reflecting the considerable uncertainty surrounding the mean ICERs. Figure 

1 illustrates the point made in the introduction that the ICER may not be an appropriate statistic 

for assessing agreement between estimates of cost-effectiveness generated from alternative 

data sources.   Cost-effectiveness acceptability curves based on 3 of the 4 datasets indicates the 

probiotic is the most cost-effective strategy for sepsis prevention in pre-term infants with 

probability of 0.6 but only at considerably high cost-effectiveness thresholds (upwards of 

£80,000 per sepsis avoided) whilst the probiotic is dominated by placebo in the NNRD2 dataset 

(Figure 2). Overall, the results suggests the probiotic is not cost-effective unless policy makers 

are willing to spend large amounts of money to prevent infants from developing sepsis.  

Table 2 presents the agreement statistics (mean difference, probability estimates of 

miscoverage and concordance correlation coefficients) between estimates of the mean 

incremental net benefit from combinations of the four alternative datasets using a cost-

effectiveness threshold of £30,000 per episode of sepsis avoided. At this threshold, the 

probability estimate of miscoverage was very small, ranging from 3.9% when the combined 

dataset acted as referent source and the NNRD1 acted as the test data to 6.0% when the PiPS 

dataset acted as referent and the NNRD2 as the test data. The corresponding p-values ranged 

from 0.387 for the comparison between the PiPS versus NNRD1 datasets to 0.634 for the 

comparison between the PiPS versus NNRD2 datasets. These results thus provide no evidence 

to suggest that the incremental net benefit estimated using one dataset is significantly different 

from the incremental net benefit estimated from the other datasets at a cost-effectiveness 

threshold of £30,000 per episode of sepsis avoided. 

 

Agreement between mean incremental net benefit statistics from alternative datasets as 

measured by the concordance correlation coefficient ranged from a correlation coefficient of 

0.882 (95% CI 0.870 to 0.893) for the comparison between the PiPS and the NNRD1 datasets 

to a coefficient of 1 indicating perfect correlation for the comparison between the combined 

and the NNRD1 datasets at the £30,000 per episode of sepsis avoided threshold. These 

correlation coefficients are well above the commonly cited threshold of 0.4 commonly taken 
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as indicating evidence of good agreement (Byford, Leese et al. 2007). The alternative strategy 

is to define a threshold based on percentage loss in precision that is acceptable for the clinical 

issue being investigated.  Estimates of  0c   based on a 5% loss in precision criterion ranged 

from 0.856 for the PiPS versus NNRD2 comparison to 0.975 for the combined versus NNRD1 

comparison. These values of 0c   were significantly lower than the lower confidence limit for 

c  (p<0.0001) in each pairwise comparison (Table 2), indicating stronger evidence of 

agreement between datasets.  

 

Estimates of the agreement statistics at cost-effectiveness thresholds between £0 and £500,000 

per episode of sepsis avoided were also generated and can be read off the plots in Figure 3. The 

p-values remained relatively constant across different values of   for pairwise comparisons 

between the PiPS, NNRD1, NNRD2 and the combined datasets. Although no attempt was 

made to correct for multiple testing at different thresholds, this can easily be achieved by for 

example, defining a statistical significance at the 1% level instead of the 5% level (Thorn, 

Turner et al. 2016). Overall, across cost-effectiveness thresholds ranging from £0 to £500,000 

per sepsis avoided and for all pairwise comparisons between datasets, differences between 

mean incremental net benefits were not statistically significant (p-values >= 0.4), the 

probability estimates of miscoverage fell within the interval (0.025 to 0.075)  and concordance 

correlation coefficient were  greater than 0.5. 

                                       

4. Discussion 

In this paper, we have shown how three commonly used metrics (namely difference in mean, 

miscoverage probability and the concordance correlation coefficient) can be adapted  and used 

to assess agreement between the final economic endpoints generated from alternative sources 

of data on costs and effects within the context of trial-based economic evaluations. Agreement 

statistics are obtained for a range of cost-effectiveness thresholds and plotted on simple graphs 

to ease comparability. Application of the method to data from the PiPS trial datasets revealed 

no evidence of disagreement, low probability levels of miscoverage, and high concordance 

correlation between estimates of incremental net monetary benefit generated using data from 

trial case report forms and data from the NNRD dataset. 
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Assessment of agreement in the health economics literature (Mant, Murphy et al. 2000, Mistry, 

Buxton et al. 2005, Byford, Leese et al. 2007) have thus far focused on comparisons between 

alternative sources of resource use and cost variables, primarily because healthcare utilisation 

data can and has often been collected from a multitude of sources such as patient self-reports, 

medical records, and trial case report forms. Data on clinical endpoints have, however, tended 

to come from a single source, often the trial case report forms. With recent advances in data 

management and information sciences, routine datasets are increasingly being compiled that 

have potential to provide patient-level resource utilisation and clinical outcomes data for trial-

based economic evaluations.  As these potentially rich sources of data become available for 

clinical research, methods for assessing the level of agreement between final cost-effectiveness 

outcomes (of interest in the trial-based economic evaluations) generated using alternate sources 

of data will be of interest to analysts working on health economic evaluations and health 

technology assessments. We have shown how such assessments can be carried out in practice 

using the PiPS trial data. Our preliminary analyses shows the NNRD database could potentially 

serve as a reliable source of data on treatment costs and effects for future trial-based economic 

evaluations of neonatal interventions. Application to other trial-based economic evaluations 

where the NNRD has been used as a source of data would allow the potential of this resource 

to be explored for trial-based economic evaluations.    

 

The methodology outlined in this paper is based on the incremental monetary net benefit 

statistic as the final economic endpoint of interest in the economic evaluations. This enabled 

the joint endpoints of clinical outcome and cost to be transformed to a univariate scale whilst 

accounting for the correlations between patient-level costs and effects between datasets. The 

transformation also allows for assessment of agreement to be conducted when costs and 

outcomes are measured on different scales (for example where cost is a continuous variable 

and the clinical outcome is binary as is the case in our illustrative example). Rather than 

transforming costs and health outcomes to the same scale, an alternative and potentially more 

attractive strategy would be to assess the agreement between observed resource use and clinical 

outcome variables when multiple sources of healthcare utilisation and clinical outcome data 

are available.  This is similar to assessment of agreement between measurements of a 

multivariate response such as blood pressure measurements with two pressure readings 

(diastolic and diastolic), and repeated measurements where outcomes are measured over time. 

Methods have been proposed in the literature extending the approach by Lin (1989) to  
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assessment of agreement of more complex data structures such as repeated measurement 

problems and multivariate response variables  measured on the continues scale  (Li and Chow 

2005, King, Chinchilli et al. 2007, Carrasco, King et al. 2009, Hiriote and Chinchilli 2011). 

These methods can, in principle, be adapted for assessment of agreement between two sources 

of data on treatment costs and effects. We have not however done so in our study because 

whilst healthcare costs are measured on the continuous scale, the clinical endpoint of interest 

in the PiPS trial example that serves to motivate our approach is a binary outcome (i.e. whether 

or not an infant avoids an episode of sepsis). It is not immediately obvious how to adapt these 

multivariate techniques for assessing agreement between outcomes measured on different 

scales. Further methodological work exploring the feasibility of assessing agreement involving 

multivariate mixed outcomes where the outcomes measured are of different data types and 

measured on different scales would present a useful advancement of the methodology 

presented here.   

 

Our methodological framework assumes that the cost-effectiveness threshold is not kinked 

despite evidence from O’Brien et al (O'Brien, Gertsen et al. 2002) that a kinked threshold better 

reflects asymmetrical individual preferences found in empirical studies of consumer’s 

willingness to pay for health changes, which would in turn justify different decision rules in 

the north-east and south-west quadrants of the cost-effectiveness plane (Dowie 2004). Further 

research is required to assess how the methodological framework presented here might be 

extended in the presence of a kinked cost-effectiveness threshold. 

 

Finally, how might the approach outlined above be used in practice?  Our goal in this paper is 

to develop a methodology for assessing the level of agreement between the final economic 

endpoints of interest in trial-based economic evaluations. The method should not be applied 

directly to economic evaluations based on observational data or alongside other non-

randomised study designs as the results of such analyses could be biased by the lack of 

randomisation. This can propagate into biased estimates of agreement. Further work is required 

to develop methods that allows the level of agreement between cost-effectiveness outcomes to 

be assessed whilst appropriately accounting for potential imbalances in the distribution of 

confounding factors between the treatments being compared in the economic evaluation.    
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Appendix A: Variance of the incremental net (monetary) benefit  

To derive the variance of the difference between two incremental net monetary benefits, we first derive the 

variance of the net benefit in terms of variances and covariances between costs and effects within trial arms. 

Let 
AC , 

AE  , 
AC ,

AE  and 
A AC E represent population level estimates of the mean costs, mean effects, standard 

error of costs, standard error of effects and covariance between costs and effects in intervention arm A (taken 

as control). We have
BC , 

BE  , 
BC ,

BE  and 
B BC E  as the corresponding quantities in intervention arm B 

respectively. By definition of the incremental net benefit at a specified cost-effectiveness threshold,  , we 

have 

             B A B AE C E E C C                                                                                                          (1A)                                                                                                                                                                                           

Taken variances of both sides of equation (1A), we have  

          

       

       

2

2

var var var 2 cov ,

var var 2 cov ,B A B A B A B A

E C E C

E E C C E E C C

  

 

      

        
                                      (2A) 

The variance terms on the right hand side of equation (2A) are given by   2 2var
B AB A E EE E      and

  2 2var
B AB A C CC C      , and the covariance term by  

        

           

   

cov , cov , cov , cov , cov ,

cov , cov ,

A A B B

B A B A B B B A A B A A

B B A A

E C E C

E E C C E C E C E C E C

E C E C

 

       

 

 

                    (3A)      

The two middle terms on the right hand side of the first line of equation (3A) are zero because treatment arms 

in trials with a parallel-group design (i.e. no treatment switching or cross-over effects) are independent. 

Substituting the expressions for the variance and covariance terms derived in equation (3A) into equation (2A) 

gives the variance of the incremental net benefit in terms of the arm-specific variances and covariances 

between costs and effects: 

       2 2 2 2 2

C Cvar 2
B A B A A A B BE E C C E E                                                                                        (4A) 
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Appendix B: Covariance between two incremental net (monetary) benefits 

The variance of the difference between two incremental net benefits is derived by taking variances of both 

sides of the expression 2 1      given by equation (1):  

       1 2 1 2var var var 2cov ,                                                                                              (5A) 

The variance terms on the right hand side of equation (5A) are given by equation (4A) for the ith dataset 

(i=1,2), so all we need is an expression for the covariance term  1 2cov ,   . Now from the definition of the 

incremental net benefit (1A), we have 

     

       

1 2 1 1 2 2

1 2 1 2 2 1 1 2

Cov , cov ,

cov , cov , cov , cov ,

E C E C

E E E C E C C C

    

   

        

           
                           (6A) 

The first term on the right hand side of equation (6A) is  
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                              (7A) 

The remaining terms on the right hand side of equation (6A) can be derived in a similar manner: 
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  (8A)     

   
2 1 2 12 1Cov ,

A A B BE C E CE C                                                                                                                (9A) 

 
2 1 2 12 1Cov ,

A A B BC C C CC C                                                                                                                       (10A)                  

Substituting the results of equations (7A) to (10A) into equation (6A) gives equation (11A) as the covariance 

between two incremental net (monetary) benefits evaluated at a cost-effectiveness threshold,  :  

         
1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1

2

1 2 C C C CCov ,
A A B B A A B B A A B B A A B BE E E E E E E E C C C C                                                                        

                                                                                (11A)  
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When carrying out the analysis in practice, all parameters in equations (1A) to (11A) are replaced with their 

sample counterparts ˆ
AC , ˆ

AE  , 
ˆCA

AN



,
ˆEA

AN



 and 
,ˆC EA A

AN



 in arm A  and  ˆ
BC , ˆ

AE  , 
ˆCB

BN



,
ˆEB

BN



 and 
,ˆC EB B

BN



 in arm 

B where  AN  and BN are numbers of patients in arms A and B respectively . 
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Appendix C: Methods of the PiPS trial economic evaluation 

 

Study population 

Probiotics in Preterm Infants Study (PIPS) trial 

Probiotics in Preterm Infants Study (PIPS) was a multi-centre blinded randomised placebo 

controlled trial designed to test the effectiveness of the probiotic Bifidobacterium breve BBG-

001 to reduce NEC, late-onset sepsis and death in preterm infants. Infants born between 23 

weeks and 0 days and 30 weeks and 6 days of gestation with written parental consent were 

eligible for recruitment.  

The National Neonatal Research Database (NNRD) 

The National Neonatal Research Database (NNRD) has been created through the collaborative 

efforts of neonatal services across the country to be a national resource. The NNRD contains a 

defined set of data items (the Neonatal Dataset) that have been extracted from the Badger.net 

neonatal electronic health record of all admissions to NHS neonatal units. Badger.net is 

managed by Clevermed Ltd, an authorised NHS hosting company. The Neonatal Dataset is an 

approved NHS Information Standard (ISB1575). Contributing neonatal units are known as the 

UK Neonatal Collaborative. Variables that allowed for the creation of comparable resource use 

Items (directly available or derivable) were extracted from the NNRD 

Combined dataset 

An additional dataset was created by selecting a variable from either PIPS or NNRD that 

represented a resource use item more accurately. 

For the purposes of our study only those infants were analysed for whom there was data 

available from both the PIPS trial and the NNRD.  

 

Type of economic evaluation, study perspective and time horizon 

The economic evaluation took the form of a cost-effectiveness analysis in which we estimated 

the incremental costs (ΔC) and incremental effects (ΔE) attributable to probiotic (B breve 

BBG) in preterm infants, with reference to a placebo, and expressed each in terms of an 

incremental cost-effectiveness ratio (ICER; ΔC/ ΔE). Estimates of cost-effectiveness were 

made for the three primary clinical outcomes (any episode of NEC, any case of Sepsis, death 
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before discharge from hospital), and for one secondary outcomes which was a composite of 

the three primary outcomes. The economic evaluation was conducted from a health system 

perspective and consequently only direct costs to the NHS were included (National Institute 

for Health and Care Excellence 2013). The time horizon of the study was birth to discharge or 

death whichever was earlier. 

 

Measurement of resource use and costs 

Relevant resource items were integrated into the trial data collection instruments described 

previously. The neonatal and maternal data collection forms captured a comprehensive profile 

of resource use by each infant, encompassing length of stay by intensity of care, surgeries, 

investigations, procedures, transfers and post mortem examinations until final hospital 

discharge or death (whichever was earliest). Variables that allowed for comparison of selected 

resource use items in the PIPS data directly or through derivation were extracted from the 

NNRD. Resource inputs were valued based on data collated from secondary national tariff sets 

(Curtis 2013, Department of Health 2014). All costs were expressed in pounds sterling and 

reflected values for the financial year 2012-13.  

The total length of stay (total inpatient hospital days) was computed as the total number of 

hospital days until first discharge to home or death. Postnatal costs for the mothers were based 

on the method of delivery available in the data source and costs assigned using data from the 

NHS Reference Costs trusts schedule 2012/13 (Department of Health 2014).  Information was 

available on time spent in the neonatal unit by level of care (normal, transitional, special, high 

dependency or intensive), by varying level of detail from both data sources.  The cost of 

neonatal care was calculated for each infant by multiplying the length of stay in normal care 

(where available), transitional care (where available), special care, high dependency care or 

intensive care by the per diem cost of the respective level of care using data from the NHS 

Reference Costs trusts schedule 2012/13(Department of Health 2014). The costs of surgeries 

and procedures were calculated by assignment of surgical procedures to relevant Healthcare 

Resource Group (HRG) codes and application of unit costs from national tariffs(Department 

of Health 2014). Transfers were recorded whenever an infant was transported between 

specialist hospitals for neonatal critical care, and were valued using costs from the NHS 

Reference Costs trusts schedule 2010/11(Department of Health 2014). Post-mortem costs were 

based on data from secondary sources(Schroeder, Petrou et al. 2012). Non-routine 
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investigations excluded from these per diem costs were valued using a combination of primary 

and secondary costs. Where these costs were not available from national tariffs, clinicians were 

asked to identify the staff and material inputs required for these investigations. Staff time was 

valued using the Unit Costs of Health and Social Care tariffs(Curtis 2013). 

Cost-effectiveness analytical methods 

Neonatal characteristics and resource use items were summarised by trial arm (placebo or B. 

breve BBG). Differences between groups were analysed using t-tests for continuous variables 

and χ2 test for categorical variables. Mean (standard error (SE)) costs by cost category and 

mean (SE) total costs were estimated by trial arm and comparisons were carried out using 

Student t-tests.  

 

Cost effectiveness was expressed as incremental cost per (i) adverse perinatal outcome avoided. 

Nonparametric bootstrapping, involving 1,000 bias-corrected replications of each of the 

incremental cost effectiveness ratios, was used to calculate uncertainty around all cost-

effectiveness estimates(Thompson and Barber 2000). This was represented on four quadrant 

cost-effectiveness planes. Decision uncertainty was addressed by estimating net benefit 

statistics and constructing cost-effectiveness acceptability curves across cost-effectiveness 

threshold values of between £0 and £70,000 for the health outcomes of interest. A series of 

sub-group analyses repeated all analyses by selected sub-groups for the primary and secondary 

cost-effectiveness outcomes. All analyses were estimated using Stata version 12 (StataCorp. 

2011) and R version 2.01 (R Core Team 2015). 
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Tables 

 

Table 1: Cost-effectiveness results from the PiPS trial datasets 

Dataset1 Placebo arm  Probiotic arm  Cost-effectiveness 

 Costs (£) Outcome2  Costs (£) Outcome2  Incremental costs (95% 

confidence interval)3 

Incremental effects (95% 

confidence interval)4 

ICER 

PiPS 62284 (1876) 0.113 (0.013)  62799 (1817) 0.108 (0.013)  515 (-4603, 5633) 0.005 (-0.03, 0.039) 107613 

NNRD1 60927 (1805) 0.113 (0.013)  60560 (1571) 0.108 (0.013)  -367 (-5058, 4323) 0.005 (-0.03, 0.039) -76662 

NNRD2 60927 (1805) 0.058 (0.009)  60560 (1571) 0.061 (0.010)  -367 (-5058, 4323) -0.003 (-0.029, 0.023) 111348 

Combined  60796 (1799) 0.113 (0.013)  60454 (1566) 0.108 (0.013)  -342 (-5016, 4332) 0.005 (-0.03, 0.039) -71422 

1Datasets 

   PiPS dataset = trial case report forms as the sole source of information 

   NNRD1 dataset =  NNRD as the source of information on resource inputs only with clinical outcomes extracted from the PiPS case report forms 
   NNRD2  dataset = NNRD as a source of resource use and clinical outcomes 

   Combined dataset = Combined dataset created by the selection of a preferred data source (by clinical experts) for each data input. 
2Outcome = proportion of sepsis  
3Incremental costs (£) is defined as mean costs in probiotic arm minus mean costs in placebo arm 
4Incremental effects is proportion of sepsis avoided, hence effectiveness differential is reversed (i.e. mean effect in placebo arm minus mean effect in the probiotic arm) because the outcome is an adverse event. 
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Table 2: Statistics comparing the agreement between cost-effectiveness estimates from the PiPS trial datasets 

 

Comparison quadrant 

Agreement Statistics 

Difference in means  Probability of 

miscoverage‡ 

 Concordance correlation 

Dataset 1 Dataset 

2 

 Mean INB 

(Std. err) from 

dataset 1 

Mean INB 

(Std. err) from 

dataset 2 

MD (SE)  P-value†   
c  (95% CI) 0c a 

 

P-value†† 

  

PiPS NNRD1  -372 (2808) 511 (2596) 882 (1021) 0.387  0.060  0.882 (0.870, 0.893) 0.856 <0.001   

PiPS NNRD2  -372 (2808) 268 (2520) 640 (1129) 0.571  0.051  0.885 (0.874, 0.895) 0.858 <0.001   

NNRD1 NNRD2  511 (2596) 268 (2520) -243 (454) 0.593  0.041  0.980 (0.977, 0.982) 0.954 <0.001   

Combined PiPS  486 (2588) -372 (2808) -857 (1021) 0.401  0.049  0.884 (0.872, 0.895) 0.858 <0.001   

Combined NNRD1  486 (2588) 511 (2596) 25 (44) 0.565  0.046  1.000 (1.000,1.000) 0.974 <0.001   

Combined NNRD2  486 (2588) 268 (2520) -217 (457) 0.634  0.039  0.980 (0.978, 0.983) 0.955 <0.001   

INB = Incremental net benefit evaluated at willingness-to-pay threshold of £30,000 per adverse event averted. 
Std. err. = Standard error of the estimate 

MD = Difference between mean INB from dataset 1 and mean INB from dataset 2. 

c  (95% CI) = Concordance correlation coefficient (95% confidence intervals) between the incremental net benefits at threshold of £30,000 per adverse event averted. 

†Two-sided p-value at 5% significance level 

‡The first dataset in each pairwise comparison is designated as referent when estimating the probability of miscoverage.  

P-value†† = One-sided test of the hypothesis that 0cc    where 0c  is the least acceptable concordance correlation coefficient assuming 5% ( 0c
a). A p-value greater than 0.025 suggest significant evidence of 

disagreement at the at the 5% significance level. 
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Figures  

 

 

Figure 1: PIPS trial ICERs from the 4 datasets comparing probiotic versus placebo for prevention of sepsis in 

new born infants displayed on the cost-effectiveness plane. NNRD1 dataset acted as source of resource use 

information only. NNRD2 acted as source of both resource use and clinical outcome information. 
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Figure 2: Cost-effectiveness acceptability curves indicating probability at which the probiotic is cost-effective 

compared with placebo for a range of cost-effectiveness or willingness-to-pay thresholds.  
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Figure 3: Two-sided p-values, probability estimates of miscoverage and concordance correlation coefficients 

for comparing the agreement between cost-effectiveness estimates from the PiPS, NNRD and combined data 

sources. NNRD1 dataset acted as source of resource use information only. NNRD2 acted as source of both 

resource use and clinical outcome information. 


