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Abstract 27 

Given concerns about the reproducibility of scientific findings, neuroimaging must define best 28 

practices for data analysis, results reporting, and algorithm and data sharing to promote 29 

transparency, reliability and collaboration. We describe insights from developing a set of 30 

recommendations on behalf of the Organization for Human Brain Mapping, and  identify barriers 31 

that impede these practices, including how the discipline must change to fully exploit the 32 

potential of the world’s neuroimaging data. 33 

[Start of body text] 34 

The advancement of science requires continuous examination of the principles and practices by 35 

which the research community operates. In recent years, this ongoing evaluative process has 36 

flagged concerns about the reproducibility of published research. From the early claim by John 37 



Ioannidis in 2005 that “most published research findings are false”1 to the recent work by the 38 

Open Science Collaboration, which attempted to replicate 100 psychology studies and 39 

succeeded in only 39 cases2, there is mounting evidence that scientific results are less reliable 40 

than widely assumed.  41 

 42 

Efforts promoting open science principles across fields (e.g.3) as a means of fostering 43 

transparency and reproducibility are valuable, but we also need efforts focusing specifically on 44 

human neuroimaging. To address this need the Organisation for Human Brain Mapping (OHBM) 45 

created the Committee on Best Practices in Data Analysis and Sharing (COBIDAS4, 46 

http://www.humanbrainmapping.org/cobidas). This group was charged with creating a report 47 

that would compile best practices for open science in neuroimaging and distill these principles 48 

into specific research practices. The report was developed in collaboration with the OHBM 49 

community, which provided feedback on a draft and ratification of the final version. 50 

 51 

In this commentary, we review the challenging issues that arose in the formation of the report, 52 

and identify initial success and the key remaining shortcomings in current practice. 53 

What is Reproducibility? 54 

Open science comprises a number of different goals and principles. The COBIDAS was 55 

specifically concerned with ‘Open Data’ and ‘Open Methodology’, both of which are  in service 56 

of ‘Open Reproducible Research.’ An immediate challenge was to obtain a working definition of 57 

reproducibility. We considered a hierarchy of reproducibility concepts ranging from 58 

measurement and analytical stability, to broader notions of generalisability (Table 1).  A very 59 

narrow notion of generalizability would be test-retest reliability on the same scanner, same 60 

subject, within 30 minutes, while a more extended notion would be using different scanners on 61 

the same subject with re-imaging occurring within 7 days.  Generalization over analyses 62 

corresponds to re-analysis of the same data using identical or similar tools. One variant of this is 63 

“computational reproducibility”5, where independent researchers re-analyse the data and 64 

compare their results.  We also considered versions of generalizability corresponding to 65 

traditional scientific notions of “replication”, such as whether a result is stable over different 66 

samples of subjects or populations of subjects. The most challenging, and arguably most 67 

important form of generalizability is whether a finding additionally holds under variation in the 68 

stimuli and experimental methods. Underlying all of these concerns about reproducibility is how 69 

theory-building requires reproducible empirical phenomena, and thus a theory will only be as 70 

accurate and generalizable as the data that are used to inspire and/or test it. 71 

 72 

Regardless of the precise scope of generalization, operationalising any of these versions of 73 

reproducibility requires explicit definitions of the outcome of interest, which in itself is a 74 

challenge. Previous efforts have found generally good measures of test-retest reliability of MRI 75 

for both voxel-wise and region of interest measures (e.g. 6-8), but this is the most narrow notion 76 

of reproducibility.  A large scale project to measure the generalisability of MRI findings across 77 

studies, akin to the Open Science Collaboration’s efforts in Psychology2, has not been 78 

undertaken in neuroimaging; however the one effort that set out to reproduce brain structure-79 



behavior correlations found only 1 of 17 findings were replicated9, though this work is limited by 80 

small replication sample sizes. More work is needed in this area to better quantify the 81 

generalisability of MRI findings. 82 

 83 

In short, quantifying “reproducibility” requires precisely defining the scope of variation being 84 

considered, the exact outcome that is being measured, and a metric of the stability of that 85 

outcome. The COBIDAS did not set out to estimate reproducibility, but was motivated to identify 86 

practices that can maximise analytical stability and generalizability of individual studies.  87 

[Table 1 about here] 88 

Prescribing best practice 89 

Neuroimaging is a broad field, encompassing a range of approaches across a growing number 90 

of modalities. We restricted the scope of the COBIDAS report to include the range of all human 91 

neuroimaging using Magnetic Resonance Imaging (MRI), though most of the principles 92 

discussed can be applied to other modalities. We established 7 domains of practice, from 93 

experimental design and acquisition, through results reporting and data sharing. We quickly 94 

realised that it is neither feasible nor desirable to prescribe exactly how any one type of 95 

experiment should be conducted. For example, when looking at task fMRI, the optimal 96 

experimental design to use will depend on whether one is just trying to detect the presence of 97 

an effect or rather estimate the shape of the hemodynamic response function.   98 

 99 

The one “practice” that can be universally commended is the transparent and complete 100 

reporting of all facets of a study, allowing a critical reader to evaluate the work and fully 101 

understand its strengths and limitations. This also facilitates subsequent research efforts by 102 

other investigators, who can exactly follow (or carefully manipulate) each aspect of a study. This 103 

includes conveying the “researcher degrees of freedom”, by reporting other analytical paths 104 

applied unsuccessfully on the present data before arriving at the published results. Although 105 

formidable, the reporting checklists provided in the COBIDAS MRI report reflects the breadth 106 

and depth of information needed to ensure another researcher could replicate the work.  107 

 108 

To further facilitate reproducibility, the COBIDAS report includes specific recommendations for 109 

statistical modelling, where specific (and common) bad practices have been identified10,11. We 110 

have also made concrete recommendations for data sharing, where practice is still evolving.  111 

 112 

From solicited community input, we were struck by the emphatic and diverse views on the types 113 

of data to share. Some strongly felt it was essential to share the rawest form of the data from 114 

the scanner (DICOM format), while others felt that preprocessed, ready-to-analyze data should 115 

be shared; still others emphasized the utility of sharing extensively processed data linked to 116 

published figures.  We evaluated the pros and cons of each form of data sharing; for example, 117 

while sharing preprocessed data can minimize the effort needed for reanalysis and speed 118 

advances based on new uses of the data, it may preclude alternate preprocessing options that 119 

facilitate new findings (e.g., more sophisticated image registration schemes, or changing the 120 



degree of spatial smoothing used).  In the end, we endorsed the sharing of data in as many 121 

forms as is feasible. 122 

 123 

Are we ready for open science in neuroimaging? 124 

Brain imaging research is complicated, not only at the level of the conducting a study, but also 125 

at the level of sharing its results and data. The importance of thorough reporting of results is 126 

uncontroversial, and practices are improving, and the sharing of data to facilitate replication is 127 

increasingly viewed as essential. However, data sharing poses new challenges. Here we 128 

consider a number of concerns that investigators have with data sharing that impede adoption 129 

of open practices. 130 

 131 

First, some individual researchers may assert ownership of their data and thus may not feel 132 

compelled to share. Counter to this is the drive for publically funded research to produce widely 133 

accessible data that can be reused and integrated into further research. Researchers may feel 134 

that sharing of data will result in a loss of competitive advantage, with other researchers 135 

swooping in to publish their planned studies based on the same data. The actual risk of this will 136 

depend on the data and hypotheses, but it should be weighed against the opportunity of new 137 

collaborations resulting from the sharing. These concerns can be alleviated by delaying the 138 

sharing or using a data-sharing repository with an embargo period. 139 

 140 

Another fear is that, upon sharing data, other researchers will discover errors in an analysis or 141 

previously undiscovered problems with the data. As scientists, we are supposed to be objective 142 

arbiters of evidence and theory, but we are not infallible and must be ready to accept criticism 143 

and revise our claims when errors are discovered. Even when no errors are found, a re-144 

analyses may support conclusions inconsistent with the original study. For controversial topics, 145 

there may also be adversarial reanalyses. We see no better way to advance understanding on a 146 

contested finding than to have as many researchers as possible puzzling over the data at hand. 147 

However, we need to develop a culture of constructive criticism that recognizes that errors are 148 

an inevitable part of scientific progress and protects individual researchers from inappropriately 149 

harsh consequences when honest mistakes are discovered.  150 

 151 

A very practical concern, especially for junior investigators, is what is perceived as an 152 

unjustifiable cost of data sharing. Current incentives do not justify spending large amounts of 153 

time preparing data for sharing, as institutional promotion panels or grant reviewers currently do 154 

not adequately reward such efforts. Counter to this is the greater potential impact of a work 155 

when it may be cited not just for its scientific findings, but also when its data is reused in other 156 

works. Data description papers can document and provide credit for high-quality data 157 

acquisition efforts for the open community. We assert that if data sharing and open science 158 

priorities in general are to take hold, academic institutions, journals, and granting agencies are 159 

crucial for improving the incentives for open practices and developing ways to give appropriate 160 

credit for efforts in data sharing. 161 

 162 



Finally there is the very real worry of failing to comply with human ethics provisions for 163 

protecting subject privacy. It can be argued that, once file headers are scrubbed of personally 164 

identifiable information and structural images have facial features obscured, that the data are 165 

completely anonymised and thus freely sharable. However individual ethics boards have varying 166 

views on this and it is best to write ethics consent documents explicitly with data sharing in 167 

mind. This topic would greatly benefit from leadership from national research organisations to 168 

seek consensus and then establish exactly what comprises anonymized brain imaging data. In 169 

particular, ethics boards often only try to minimize the risk to subjects when we are also obliged 170 

to maximize the benefit of our research to science and society, so as to honor the contribution of 171 

our subjects.12 The future value of shared data must be considered in ethical decision making. 172 

 173 

While studies lacking shared data and having opaque methodological detail are typical, some 174 

authors have embraced the challenges of sharing data and analysis methodology. Some recent 175 

examples that are particularly thorough and elegant include Waskom et al.13 and Whitaker et 176 

al.14, that published a complete array of analysis scripts for generating all figures and results in 177 

the paper (https://github.com/mwaskom/Waskom_JNeurosci_2014 and 178 

https://github.com/KirstieJane/NSPN_WhitakerVertes_PNAS2016, respectively), and Pernet et 179 

al.15 that likewise shared raw data and analysis scripts, as well as all results maps in electronic 180 

form. From an organisational perspective, some labs are simply making open science a policy.  181 

Most recently the Montreal Neurological Institute announced that their work would be open, with 182 

all results and data made freely available at the time of publication16. 183 

 184 

These few examples demonstrate that some researchers are embracing open science 185 

principles, but do the tools exist to make it practical on a widespread basis? 186 

Existing tools for open neuroimaging 187 

There is an emerging ecosystem of open science tools for neuroimaging research.  Before any 188 

data is collected, there are tools to assist in creating human ethics documents that maximise the 189 

ease of later data sharing, and for everything from experimental paradigm presentation, 190 

preprocessing to statistical modelling, neuroimaging benefits from numerous, free and well-191 

supported software tools (see Supplementary Table 1 for an incomplete list).  This constellation 192 

of tools could be seen as fuel for limitless researcher degrees-of-freedom, and indeed there is a 193 

need for the community to identify a set of ‘reference pipelines’ for common analyses. However, 194 

since each tool makes particular assumptions about neuroanatomical and neurophysiological 195 

processes, it is not possible to recommend the optimal analyses for every possible type of data 196 

and analysis objective. Only with user experience and reproducibility comparisons, will the field 197 

be able to identify what are the preferred analytical approaches.   198 

 199 

There is a particular embrace of data sharing in the resting-state fMRI community. Since 200 

resting-state analyses methods remain in flux, sharing of this data has particular value as it 201 

allows future improvements in methods to be assessed and benchmarked relative to previous 202 

analyses. For resting and task fMRI and structural MRI, there are a number of projects that have 203 

led the way in this area, including the sibling projects FCON1000 and INDI17, and the 204 



Alzheimer's Disease Neuroimaging Initiative (http://www.adni-info.org). These have become 205 

invaluable tools for methodologists to apply novel image processing algorithms, not to mention 206 

the primary scientific outputs from these projects.   207 

 208 

One promising new standard is the Brain Imaging Data Structure (BIDS)18, a simple system for 209 

organising MRI data after conversion to the NIFTI format. BIDS provides a common, consistent 210 

directory hierarchy and naming system for files, as well as supporting ‘side car’ files for key 211 

associated data (like stimulus timing information for task fMRI). With a fixed standard for 212 

representing data, this has supported the creation of a number of “BIDS Apps”, self-contained 213 

programs that can automatically process data arranged according to BIDS. Simple, widely used 214 

standards such as this have the potential to dramatically reduce the effort required to exchange 215 

and share data. 216 

 217 

New tools are set to dramatically advance computational reproducibility. A challenge to even 218 

something as simple as re-running the same data with the same code is the ever-changing 219 

versions of software and libraries that software depends on. The last five years has seen the 220 

growth of virtual machines and containers to share not just data but a complete environment for 221 

processing data. A virtual machine (VM) is an emulator of a computer, including its hardware, 222 

operating system and file system. It can be shared as a single file and when run, an entire 223 

computer system comes into existence based on a snapshot of the libraries and software 224 

interdependencies of one particular system. From within this VM, data can be run through a 225 

complete processing pipeline; with the original data of a study this will reproduce the results 226 

exactly, while new data can also be imported to evaluate the unique aspects of a pipeline.  A 227 

downside to VMs is their gross size, as they are as large as any operating system.  Containers 228 

are miniature VMs, lacking the full operating system but providing the specialised software and 229 

libraries required to execute a given task. The BIDS Apps mentioned above rely on such 230 

containers, encapsulating software packages large and small that alleviate installation of a 231 

myriad of software dependencies. 232 

 233 

Open science tools are gaining traction. For example, the CBRAIN web-based analysis service 234 

supports over 260 collaborators in 20 countries; the COINS service currently hosts data on over 235 

40,000 subjects for 643 studies; the LONI Pipeline has an average of 100,000 daily jobs from 236 

200 different analysis workflows; the Neurovault repository hosts 450 public collections; and the 237 

FCP/INDI is openly sharing over 15,000 resting fMRI and structural MRI datasets.   238 

Continuous improvement of research practices 239 

Despite a seeming wealth of tools, there remain specific areas in the field of neuroimaging that 240 

need to be embraced to increase reproducibility.  Aside from the importance of carefully 241 

reporting the study design, methods, and results mentioned above, we also identified priorities 242 

including archiving of statistical results, software engineering for reproducibility, and optimizing 243 

projects for generalizability. 244 

 245 



In genetics, the routine sharing of “summary data” (SNP-level statistical results) has facilitated 246 

meta-analyses and methodological developments. For example, LD-score regression is a tool 247 

that can estimate genetic correlation using just Z-score summary data, and has had dramatic 248 

impact in a short timespan due to the availability of such results19. In brain imaging, we have no 249 

tradition of sharing summary statistics (i.e. images of T- or Z-scores, or images of percent 250 

change effect and standard errors). As a result the quality of meta-analyses are currently limited 251 

by their reliance on reported tables of maximum location coordinates, for which there is a 252 

substantial loss of information relative to the original statistic images20. In the current age, the 253 

costs of sharing such images of summary statistics (~1MB compressed), either through generic 254 

or dedicated repositories (e.g., NeuroVault.org, or BALSA, http://balsa.wustl.edu), are relatively 255 

minimal. As such, COBIDAS recommends the deposition of unthresholded statistical images 256 

into archival resources for all studies. Widespread adoption of this practice will dramatically 257 

increase our capacity for more precise meta-analyses, and allow more critical assessment of  258 

study results through exploration of the complete 3D image.  259 

 260 

One foundation of computational reproducibility is modern software engineering practice. 261 

Whether a small set of scripts or a comprehensive end-to-end pipeline, neuroimaging data 262 

analysis depends on coding. Modern software engineering includes practices like version 263 

control and unit testing. Version control ensures that revisions of the code are identifiable and 264 

archived, and ideally is based on an open platform that allows wide inspection and input; unit 265 

tests verify the correctness of individual facets of the code, and can be set to automatically run 266 

each time the code is updated. This is not to say that every group should hire a programmer, 267 

but rather that every researcher writing scripts or code should obtain proficiency with basic 268 

software engineering skills and practices21 (see Software Carpentry for basics instruction for 269 

non-programmers, http://software-carpentry.org/). With routine research grounded in well-270 

written, less fragile code, it will be much easier to establish analysis pipelines that can both be 271 

reused within a lab and facilitate computational reproducibility verified by others. 272 

 273 

Study designs have traditionally been optimised to maximise statistical power to detect 274 

differences between groups. With a growing emphasis on prediction, whether (e.g.) identifying 275 

early risk for psychosis or progression of a neurodegenerative disease, studies should be 276 

optimised for building predictive models that will generalise to the population of interest in yet-277 

unseen data. Large multi-site studies that capture wide variation in human populations, as well 278 

as site-specific technical idiosyncrasies, are essential to build classifiers with good performance 279 

on new data. Whether obtained with prospectively optimized homogeneous acquisition and 280 

preprocessing strategies (e.g. Human Connectome Project and its successors22) or via larger 281 

but more heterogeneous, aggregate multisite approaches (e.g., FCON1000/INDI; ADNI, PING, 282 

and the upcoming ABCD Study) that have optimized image processing strategies determined 283 

retrospectively23, generalisability of predictive models will be a key design objective and 284 

performance indicator going forward. 285 



Beyond the investigator 286 

Many of the practices advocated here and in the full COBIDAS MRI report require individuals to 287 

change the way they conduct research. Almost every such change requires an investment of 288 

time and resources. While we argue these have implicit rewards (e.g. shared data will never be 289 

lost when the post doc moves on), the advance of open science will require leadership at the 290 

institutional level. To provide appropriate incentives, universities and research centers need to 291 

explicitly consider the value of sharing of data and code as an unique research output in 292 

promotion and review exercises. Journals should require that papers’ statistic images are 293 

archived, and promote papers with shared data, provide full analytical detail, and ideally share 294 

code or even executable containers or VMs. Foundations and granting agencies need to make 295 

data sharing a priority, recognizing and funding the explicit costs of data management required 296 

to make this happen. And finally professional organisations like OHBM should prioritize efforts in 297 

education to make open science practices accessible to all. 298 

 299 

With the coordinated efforts of individual researchers, academic institutions, journals, granting 300 

agencies, and professional organisations, we can accelerate the drive towards open science 301 

and maximise the reproducibility of neuroimaging findings going forward. 302 

 303 
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Levels of generalization

Generalization over measurements Population Sample Scanner Visit Data

Stimulus 

Population

Stimulus 

Sample Method Code

Experi-

menter

Data 

Analyst

ISO Repeatability

e.g. 30-minute intra-scanner reliability
• • • • D • • • • • •

ISO Intermediate Reproducibility

e.g. 7-day intra-scanner reliability
• • • D D • • • • • •

ISO Reproducibility

e.g. 7-day inter-scanner reliability
• • D D D • • • • • •

Generalization over analyses

Analysis Replicability • • • • • • • • • • •

Collegial Analysis Replicability • • • • • • • • • • D

Peng
5
 Reproducibility • • • • • • • • D D D

Generalization over materials and methods

Near Replicability (different subjects) • D • - - • • • • • •

Intermediate Replicability (different labs) • D D - - • • • • D D

Far Replicability (different experimental & 

analytical methods)
• D D - - • D D D D D

Hypothesis Generalisability (different subject 

populations & types of stimuli)
D D D - - D D D D D D

Table 1.  A partial taxonomy of reproducibility in neuroimaging.  For each type of reproducibility (row), the variable (column) that is held constant 

(•, bullet) or allowed to vary (D=different) is indicated; minus (-) indicates not applicable. Variations in the participant studied can be described in 

terms of the population they belong to (e.g. different patient groups or people from different cultures), or whether the same sample or a distinct 

sample of individuals is used. The MRI scanner used can be the same or not, and if the same participant sample is considered, the very same data 

can be used or new data can be acquired on the same or different days (visits) to the scanner.   Experimental variation has many forms including 

the particular experimental design, but here we only consider stimuli.  The type of stimulus used (stimulus population) may change, for example in 

a working memory experiment, letter stimuli might be replaced with shape stimuli; a more subtle change would be to use a different sample of 

stimuli of the same type, e.g. different particular shapes.  The analysis method may vary; for example, with structural MRI for prediction of patient 

disease status, a linear discriminant might be used instead of a nonlinear support vector machine. Analysis code more narrowly reflects the 

particular implementation of a given method. Personnel conducting the research is another important source of variation, whether this is the 

experimenter or data analyst. Finally, note that the International Standards Organisation (ISO) has precise definitions of reproducibility
24

 as 

indicated in the first three rows, but these capture only the minimal levels of generalizability. 

PersonnelAnalysisMRI AcquisitionParticipants Experiment



Supplementary Table 1.   An incomplete but illustrative list of free and well-supported tools for open science tools for 
neuroimaging.  This table highlights analysis tools that can be scripted, allowing replicable analyses, as well as pipeline 
environments that bind together different software for replicable analyses, across heterogeneous software tools.  The 
items under Data Sharing focus on tools to facilitate sharing and repositories that accept data.  As repositories can have 
varying cost structures depending on the scale of data to be shared, we did not attempt classify as “free” or not; likewise, 
repositories generally do not comprise software that need to be downloaded, and we likewise did not attempt to classify 
by open source nature of the project.  Results sharing tools either facilitate sharing or serve as repositories for shared 
results data.  The Reproducibility Tools are a loose collection of resources that facilitate research using open science 
methods. 
 



Resource Type Short Description Free Open Source Link
Open Brain Consent Consent Ethics template oriented for neuroimaging data sharing x x http://open-brain-consent.readthedocs.io
OpenSesame Paradigm software Graphical experiment builder x x http://osdoc.cogsci.nl
PsychoPy Paradigm software Psychophysics software in Python x x http://www.psychopy.org
Psychtoolbox Paradigm software Psychophysics Toolbox x x http://psychtoolbox.org/
aa Pipeline Automatic Analysis, Matlab-based workflow tool x (Matlab) x http://automaticanalysis.org
C-BRAIN Pipeline Web-based software for computationally intensive analyses x x http://cbrain.mcgill.ca
CCS Pipeline Connectome Computation System, a pipline primarily for resting data x x http://github.com/zuoxinian/CCS
C-PAC Pipeline Configurable Pipeline for the Analysis of Connectomes x x http://fcp-indi.github.io
DPARSF/DPABI Pipeline Data Processing & Analysis for Brain Imaging, inlcuding resting-state fMRI x x http://rfmri.org/dpabi
DTIPrep Pipeline Pipeline for diffusion weighted / diffusion tensor image data x x http://www.nitrc.org/projects/dtiprep/
HCP Pipeline Pipeline Human Connectome Project Pipeline x x http://github.com/Washington-University/Pipelines
LONI Pipeline Pipeline Cross-platform workflow tool for neuroimaging, genomics, bioinformatics NC http://pipeline.loni.usc.edu
LORIS Pipeline Web-based data and project management software for neuroimaging x x http://loris.ca
NIAK Pipeline Llibrary of modules and pipelines for fMRI processing in Matlab/Octave x x http://www.nitrc.org/projects/niak
NiDB Pipeline Neuroimaging database software that includes pipeline tools x x http://github.com/gbook/nidb
NiPype Pipeline Neuroimaging in Python Pipelines and Interfaces x x http://nipy.org/nipype
PANDA Pipeline Pipeline for Analyzing braiN Diffusion imAges x x http://www.nitrc.org/projects/panda
SimNIBS Pipeline Simulation of Non-invasive Brain Stimulation x x http://simnibs.de
AFNI Scriptable Analysis Neuroimaging analysis software for functional MRI x x http://afni.nimh.nih.gov/afni
CONN Scriptable Analysis Functional connectivity toolbox, Matlab-based pipeline tool x (Matlab) x http://www.nitrc.org/projects/conn
Connectir Scriptable Analysis Analysis software for Connectome-Wide Association Studies, based in R x x http://czarrar.github.io/connectir
DiPy Scriptable Analysis Diffusion analysis pipeline using Python x x http://nipy.org/dipy
Freesurfer Scriptable Analysis Neuroimaging analysis software for MRI, empahsis on surface-based analysis x x http://surfer.nmr.mgh.harvard.edu
FSL Scriptable Analysis Neuroimaging analysis software for MRI NC x http://www.fmrib.ox.ac.uk/fsl
MindBoggle Scriptable Analysis Automated labeling and shape analysis of brain images x x http://www.mindboggle.info
SPM Scriptable Analysis Neuroimaging analysis software based in Matlab, for MRI, M/EEG, PET. x (Matlab) x http://www.fil.ion.ucl.ac.uk/spm
Voxel Scriptable Analysis Mass-Univariate Voxelwise Analysis of Medical Imaging Data, based in R x x http://cran.r-project.org/web/packages/voxel
BIDS Data Sharing Standard for organising MRI data and associated supporting data http://bids.neuroimaging.io
COINS Data Sharing Web-based data management and analysis tool http://coins.mrn.org
FCP/INDI Data Sharing Repository for resting state fMRI data http://fcon_1000.projects.nitrc.org
Figshare Data Sharing Generic data sharing repository http://figshare.com
LONI IDA Data Sharing Image data archive, repository for primarily neuroimaging data http://ida.loni.usc.edu
LORIS Data Sharing Database for longitudinal imaging studies http://bigbrain.loris.ca
NDA Data Sharing NIMH Data Archive, repository for data from NIMH-funded studies http://data-archive.nimh.nih.gov
NITRC-IR Data Sharing Image repository for neuroimaging data http://www.nitrc.org/ir
OpenfMRI Data Sharing Repository for task fMRI data, inlcuding all image and task paradam data https://openfmri.org
PCP Data Sharing Preprocessed connectome project - pipelines for resting state data http://preprocessed-connectomes-project.org
XNAT-Central Data Sharing Repository for raw MRI data http://central.xnat.org
BALSA Results Sharing Sharing of surface-based statistical results x http://balsa.wustl.edu
NeuroVault Results Sharing Sharing tool for statistical maps x x http://neurovault.org
NIDM Results Sharing Standard for exporting statistical results independent of the analysis tool x x http://nidm.nidash.org
Docker Reproducibility tool Containerisation tool x x http://www.docker.com
GitHub Reproducibility tool Version and issue tracking for software projects x x http://github.org
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Resource Type Short Description Free Open Source Link
NeuroDebian Reproducibility tool Archive of research software packages for use on workstations & VMs x x http://neuro.debian.net

http://neuro.debian.net
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