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Abstract

Automated tumor segmentation in Hematoxylin & Eosin stained histology images is an essential step towards a computer-aided

diagnosis system. In this work we propose a novel tumor segmentation approach for a histology whole-slide image (WSI) by

exploring the degree of connectivity among nuclei using the novel idea of persistent homology profiles. Our approach is based on

3 steps: 1) selection of exemplar patches from the training dataset using convolutional neural networks (CNNs); 2) construction of

persistent homology profiles based on topological features; 3) classification using variant of k-nearest neighbors (k-NN). Extensive

experimental results favor our algorithm over a conventional CNN.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Colorectal cancer is the second most commonly diagnosed cancer in females and the third most in males, with an es-

timated 1.4 million cases and 693,000 deaths occurring in 20121. Identification of tumor-rich areas from histopathol-

ogy colon images is one of the primary tasks for a computer-aided diagnosis system. Automated tumor segmentation

methods are therefore highly desirable and have received much research effort during recent years.

Recently published techniques for tumor segmentation mostly rely on morphological appearance and local texture

features of tissue components2. However, the high variability of features in tumor regions and tissue samples pose the

risk of over-emphasizing the spatial properties of a particular dataset; these methods do not produce the desired results.

Some methods focus on nucleus segmentation or sub-cellular components of tissues3,4. However, cell segmentation is

non-trivial due to the atypical characteristics and heterogeneous appearance and, often, clumped structure of cancerous

cells, so these methods are also likely to fail. For these reasons, detection of tumor regions is a highly challenging

problem.
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In tumor regions nuclei have different atypical characteristics, with non-uniform chromatin texture and irregularity

in their shape and size. In tumor areas nuclei clump together, filling the inter-cellular regions, and the structure of

individual nuclei becomes more difficult to discern. In contrast, nuclei remain relatively distinct in normal regions

and maintain their structure and appearance (Fig 1). The arrangement of nuclear structures is a significant feature

for tumor classification. In this paper, we propose a new approach to tumor segmentation in WSIs by characterizing

the connectivity between cells, using persistent homology. Our approach works in the following ways : 1) a method

for constructing persistent homology profiles based on topological features; 2) an algorithm for selection of exemplar

patches from the training dataset based on highly activated nodes of a CNN; and 3) a variant of k-NN classifier.

Fig. 1: (a) Tumor patches, exhibiting non-uniformity in chromatin texture and atypical characteristics. (b) Non-tumor patches showing the homo-

geneous structure of normal nuclei.

2. Proposed Algorithm

Given a colorectal WSI, we first divide it into patches. The problem is to then classify each patch as tumor or

non-tumor. We approach this problem by exploring the connectivity between cells. We associate with each patch two

statistical distributions, which we call persistent homology profiles, computed using certain topological invariants, as

will be explained below. For simplicity, we will explain our method using a single persistent homology profile for

each patch. In that case, given two patches, we have the persistent homology profile for each, and the symmetrised

Kullback-Leibler divergence (KLD) between these two distributions gives a numerical estimate for how far the patches

are from each other. An input patch Q is classified by a k-NN classifier, based on KLD distances between the persistent

homology profiles of representative patches, denoted by P (Fig 2). We decide on our representative patches by training

a CNN, and then selecting, separately for the tumor class and the non-tumor class, patches whose activation during

the training is large. The essence of this approach is to use the subset of highly activated patches from convolutional

layers as exemplars, rather than using the set of all the patches in the training dataset.

2.1. Persistent Homology

2.1.1. Overview.
Persistent homology is a fairly recent concept, surveyed in5 and6. Let M denotes a graylevel image of size mxn,

where gray intensities are integer values between 0 and 255 and B be an m × n closed rectangle. For each value of

the threshold t, let B(t) ⊂ B be the union of pixels with intensity less than or equal to t. We want B(t) to be a closed

subspace of B, and so, with each pixel in B(t), we include its four corners and four sides. In effect, we binarize the

intensity values in M, replacing any value less than or equal to t by 0 and replacing other values by 1. The resulting

matrix M(t) gives us a black and white image. The notation is supposed to remind us that B(t) is the union of black

pixels. We have B(0) ⊆ B(1) ⊆ · · · ⊆ B(255) = B, so that B is a filtered space, persistent homology’s essential

ingredient. We will work with the zeroth Betti number β0 : [0, 255] ∩ Z → Z which maps a threshold value t to the
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Fig. 2: (A) CNN based exemplar patches selected from the training dataset. (B) Input patch for testing. (C) Algorithm for persistent homology

profiles. (D) Determine KLD between testing and exemplar patches and classify through k-NN.

number of components of B(t): this can be quickly computed from the matrix M. We are also interested in the first

Betti number β1 : [0, 255] ∩ Z → Z, giving the number of independent circuits in B(t), or, equivalently, since we

are working in the plane, the number of holes in B(t). To compute β1(t), we first find the white components, that is

the components of the complement W(t) = B \ B(t) of B(t). As t increases, new components appear in B(t) and old

components increase in size and amalgamate. Also, as t increases, and black pixels replace white pixels, black regions

may coalesce to surround new white holes, or white holes may split into several white holes or disappear completely.

Each of the two functions β0 and β1 sometimes increases and sometimes decreases as t varies (see Fig 3), depending

on the details of the image matrix M.

2.1.2. Persistent Homology Profiles (PHP)
A block diagram showing the computation of a persistent homology based profile is shown in Fig 2C. Histology

images stained on different occasions often vary considerably in color. To overcome this problem, we first carry out

stain normalization7 to obtain consistency. For each threshold t, we convert the normalized image into a binary image,

prior to computing persistent homology. In tumor regions, nuclei have atypical characteristics and lie relatively close

to each other. Hence, homology classes do not show rapid changes while merging and forming into new classes. By

contrast, normal regions have a high rate of change since cells are distinct and, when the threshold increases, the holes

between them are filled rapidly. The derived profiles for tumor and non-tumor patches are distinguishable in terms of

their qualitative characteristics (Fig 3).

2.2. Selection of Exemplars from CNN

The CNN used for extracting the exemplar patches for tumor and non-tumor regions is shown in Fig 4. The con-

volutional layers contain the set of learnt features with a combination of extremely high and extremely low frequency

information. We acquire the activation matrix after CL3 by performing ReLU and MP, which rectify the feature

maps by ensuring the learnt features are always positive. For the ith training patch, we obtain an activation matrix

α(i) ∈ RH×W×Z , where H,W, and Z denote the size of the matrix in each dimension. For the architecture used in this

work, H = 24, W = 24, and Z = 108. On the basis of the learnt features, we then calculate the mean activation value

of the zth learnt filter response according to (1). Let α(i)
hwz denotes the (h,w, z) element of α(i). The mean activation
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Fig. 3: Persistent homology profile for representative patches (a) β1 and (b) β1/β0, showing median values with their first and third quartile, for

tumor (red) and non-tumor (blue).

value of the zth filter response of α(i) is defined as

α(i)
z =

1

H ·W
∑

h,w

α(i)
h,w,z. (1)

For each filter response z of the filter responses, we define

M(z) = argmaxi{α(i)
z } (2)

where i runs over all patches in the training set. Then M(z) is a particularly important training patch, and we use it as

an exemplar. The top six exemplar patches are shown in Fig 5.

Fig. 4: Our CNN architecture has 6 layers: 3 convolutional layers, 2 fully connected layers (not shown), and 1 classification layer (not shown). An

input patch is of size 128× 128. The first convolutional layer (CL1) convolves the input with 36 learnt (7× 7)-filters. The resulting 36-feature maps

of size 122 × 122 are then passed through a rectified linear unit (ReLU) and max pooling (MP) is then carried out, with stride 2 in each direction.

The second convolutional layer (CL2) contains 72 learnt (6 × 6)-filters with ReLU and an MP layer of stride 2. The CL3 layer consists of 108

learnt (5 × 5)-filters with ReLU and an MP layer with stride 2. After CL3, we recorded the top activations from the activation matrix. The above

architecture is inspired by 8.

2.3. Patch Classification

After obtaining the homology profiles, we convert each into a discrete probability distributions, scaling the values

of the functions β0 and β1/β0 so that the area under each curve is one. We denote the tumor exemplar patches by

T = {T1, . . . ,TA}, and the non-tumor exemplar patches by N = {N1, . . . ,NB}. We then use the symmetric Kullback-

Leibler Divergence (KLD) to measure the distance between persistent homology profile of the input patch (Q) and
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(a) (b)

Fig. 5: The top 6 highly activated patches from the training dataset (a) tumor (b) non-tumor.

that of each exemplar patch (P). So, associated with each input patch Q, we have computed a list of distances to

the exemplar patches D(Q) = (dT1
, dT2
, . . . , dTA , dN1

, dN2
, . . . , dNB ). The k nearest neighbors of Q are determined by

choosing the k smallest distances in this list.

3. Experimental Results and Discussion

3.1. Dataset and Implementation Details

We collected 74 H&E stained WSIs of colorectal tumors. The tumor areas for this dataset were marked by an

expert pathologist. The dataset was divided into 50 WSIs for training and 24 WSIs for testing. We randomly selected

a total of 18944 (12824 training and 6120 testing) patches each of size 128× 128 pixels with equal number of patches

from both classes. The classification of tumor patches is fairly challenging due to the high degree of heterogeneity

in tumor regions. As can be seen in Fig 6, our algorithm correctly segments the tumor region lying inside or on

periphery of the hand marked tumor regions. Our expert pathologist marked the tumor regions only approximately,

and so the regions marked in yellow in the “ground truth” annotations by the expert were not originally included. We

chose 108 exemplar tumor patches and similarly 108 for non-tumor patches. For k-NN, we selected k=11 neighbors

for classification and the value of c(Q) was selected as c(Q) = 0.2 maxd∈D(Q){d}. Our algorithm was implemented in

Matlab using MatConvNet with Intel Xeon E5-2887W and GeForce GTX TitanX. Finally, the segmentation accuracy

was measured by the F1 score (F1 = 2 · Precision · Recall/(Precision + Recall)).

3.2. Results and Discussion

We compared our algorithm (PHP) with two state-of-the-art methods, including conventional CNN and HyMaP9.

For PHP, we used variant of k-NN as a classifier (as described in Section 2.3). For CNN we used the same architecture

as that described in Fig 4 with some modifications. After the convolution layers, we used two fully connected and

one classification layer with the numbers of hidden neurons 512, 512, and 2, respectively. For HyMaP we used

the original implementation9 based on a set of texture features and random projections with ensemble clustering.

One sees in Table 1 that PHP achieved significantly better classification accuracy than that of HyMaP9. PHP also

achieved a slightly better precision and F1 score than conventional CNN. PHP also provided a reasonable balance

between precision and recall, with the result that the number of false positives was roughly equal to the number of

false negatives. Our method is computationally less expensive than either of the two currently standard techniques.

Table 1: Comparing PHP with existing state-of-the-art.

Method Precision Recall F1 Score

PHP 0.9492 0.957 0.9531
conventional CNN 0.911 0.988 0.9524

HyMaP 9 0.794 0.9547 0.867
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Fig. 6: Here we show the result of applying persistent homology profiles (PHP) to tumor segmentation of two different WSIs: (Left) Input image.

(Center) Green: PHP agrees with the original expert tumor annotation. Blue: regions marked as non-tumor by PHP, but as tumor by expert

annotation. Yellow: regions marked as tumor by PHP, but as non-tumor by expert annotation. (Right) Zoom in showing that one of our supposedly

“false-positive” regions, marked by PHP as tumor and originally annotated as non-tumor, is in fact tumor.

4. Conclusions
In this work, we introduced a tumor segmentation approach for histology WSIs based on persistent homology

profiles. Here we explored the degree of connectivity between nuclei using and persistent homology. We found that

the tumor and non-tumor patches have distinguishable homology profiles. Experimental results using a challenging

dataset demonstrate the robustness and significance of persistent homology profiles, and PHP performed better on

our test dataset than standard existing methods including conventional CNN. The resulting algorithm is an order of

magnitude faster then the standard CNN.
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