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Electron energy filtering has been suggested as a promising way to improve the power factor and

enhance the ZT figure of merit of thermoelectric materials. In this work, we explore the effect that

reduced dimensionality has on the success of the energy-filtering mechanism for power factor

enhancement. We use the quantum mechanical non-equilibrium Green’s function method for electron

transport including electron-phonon scattering to explore 1D and 2D superlattice/nanocomposite

systems. We find that, given identical material parameters, 1D channels utilize energy filtering more

effectively than 2D as they: (i) allow one to achieve the maximal power factor for smaller well sizes/

smaller grains which are needed to maximize the phonon scattering, (ii) take better advantage of a

lower thermal conductivity in the barrier/boundary materials compared to the well/grain materials in

both: enhancing the Seebeck coefficient; and in producing a system which is robust against detrimen-

tal random deviations from the optimal barrier design. In certain cases, we find that the relative

advantage can be as high as a factor of 3. We determine that energy-filtering is most effective when

the average energy of carrier flow varies the most between the wells and the barriers along the chan-

nel, an event which occurs when the energy of the carrier flow in the host material is low, and when

the energy relaxation mean-free-path of carriers is short. Although the ultimate reason for these

aspects, which cause a 1D system to see greater relative improvement than a 2D, is the 1D system’s

van Hove singularity in the density-of-states, the insights obtained are general and inform energy-

filtering design beyond dimensional considerations. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4972192]

I. INTRODUCTION

The ability of a material to convert heat into electricity is

quantified by the dimensionless figure of merit ZT¼rS2T/j,

where r is the electrical conductivity, S is the Seebeck coeffi-

cient, and j is the thermal conductivity. Recently, large

improvements in the ZT of nanostructures were obtained

through drastic reduction in thermal conductivity.1–3

Similarly, efforts are underway to achieve power factor (PF)

rS2 improvements and increase the ZT even further, espe-

cially utilizing low-dimensional materials.4

One of the strategies to improve the power factor, which

has attracted significant attention, is energy-filtering in nano-

composites and superlattices (SLs).5–18 The primary motiva-

tion for using such systems is that they are able to scatter long

wavelength phonons on their many internal boundaries and

greatly reduce the thermal conductivity.19–23 However, due to

the difference in scattering mean-free-paths of phonons and

electrons, the expectation is that these boundaries/barriers will

harm the electrical conductivity less. Furthermore, they have

the potential to increase the Seebeck coefficient through the

mechanism of energy-filtering via two mechanisms:5,6,24 (i)

only carriers with high enough energies can overpass the bar-

riers, and (ii) when the barrier material has a lower thermal

conductivity than the host bulk material, its higher S is

weighted more in determining the overall S, without loss in

conductance. Thus, although the greatest benefit of such

systems is their reduced thermal conductivity, they can also

mitigate the power factor loss associated with the insertion of

such scattering centers and in some cases may even improve

it. Indeed, theoretical works by us and others indicate that

energy filtering by a single potential barrier, or multiple bar-

riers within an SL material system can provide power factor

improvements potentially up to 30% depending on what one

compares against.25–29

To-date, however, with the exceptions of Refs. 16 and

30, only improvements in the Seebeck coefficient, but not the

power factor, have been experimentally observed.7 In gen-

eral, power factor enhancement is only realizable if the con-

ductance is not overly reduced by the addition of these

barriers. Due to the interrelated nature of the Seebeck coeffi-

cient and conductivity, determining the ideal form of such

structure geometries and barriers is non-trivial. Simulations

have shown that the optimal design of a 1D SL geometry has

peculiar features, dictating stringent requirements on

“effective” potential barrier heights and fine-tuning of the

sizes of wells and barriers to correspond to the energy relaxa-

tion and tunneling probabilities of charge carriers.5,16,26,27 In

Ref. 28 we showed that a possible reason for the general

absence of power factor improvements could be unintended

random variations in the heights of the barriers, away from

the intended ideal which were shown to be especially detri-

mental to the power factor. On the other hand, reasonable

variations in barrier shape (deviations from perfect squarea)E-mail: thesberg@iue.tuwien.ac.at
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barriers—as long as they are sufficiently thick to prevent

tunnelling), as well as the well and barrier sizes and position,

do not cause a significant power factor degradation.28

The latter is important, because it suggests that studies

on simplified SL geometries (in which barriers and wells are

precisely placed), also provide insights into the nano-

composite structures (with “on-average” placement) at first

order. However, energy-filtering channels can be built in 1D

(superlattice nanowires), 2D (superlattices), or 3D (nano-

composites). Although there has long been arguments made

for a beneficial effect of lower-dimensionality on the

Seebeck coefficient in uniform structures,4 the effects of

dimensionality in these filtering nano-structured systems

with both spatially varying conduction bands and thermal

conductivity, in addition to random variations in barrier

shape, have not yet been discussed. In these energy-filtering

structures, carrier behavior is far from equilibrium, with the

average energy of the carrier flow rising and falling through-

out the material as the carriers pass over the potential

barriers and then relax towards equilibrium in the wells. It is

not yet clear if lower dimensionality also benefits the filter-

ing mechanism as well, and quantifying this is the central

focus of this paper.

Therefore, in the ideal energy-filtering system, other than

the appropriate optimized geometrical features and barrier

heights, we postulate the following criteria for an “effective”

energy-filtering strategy: (i) feature sizes (i.e., barrier separa-

tion) should be as small as possible, to best scatter the domi-

nant heat-carrying phonons and introduce larger heat

resistance; (ii) as a reduced thermal conductivity of the bar-

rier material is an attractive means to achieve easy power

factor enhancement, a system should receive the maximal

power factor enhancement with respect to this reduction, and

(iii) random and imperfect barrier heights should not have a

substantial effect on the power factor. We omit the consider-

ation of random barrier placement, shape, and width as previ-

ous work28 suggests in has only a small effect. Thus, the

question we wish to address is: Will a lower-dimensional

channel (1D), or a higher-dimensional channel (2D) utilize

energy-filtering more effectively? I.e., will the power factor

improve (or suffer less) once an SL is formed using a 1D chan-

nel or using a 2D channel, given the same set of material

parameters? The goal is not to investigate in absolute terms if

a 1D SL channel will provide higher power factors compared

to a 2D SL channel, but rather if the additional effort of nano-

structuring barriers pays off more in 1D or 2D.

Owing to the highly non-equilibrium flow in such struc-

tures, here we employ quantum transport simulations based

on the Non-Equilibrium Green’s Function (NEGF) method

to isolate the effect of reduced dimensionality on the energy-

filtering mechanism. We show that, for the same material

parameters, a 1D channel sees a greater power factor

enhancement (or less degradation) for all three criteria men-

tioned above: (i) for smaller SL periods; (ii) from having a

barrier material of lower thermal conductivity; and (iii) in

the face of random and imperfect barrier profiles that realisti-

cally occur in nano-composites. Although the physical rea-

sons for the advantage of 1D ultimately stem from the shape

of the 1D density-of-states, our conclusions provide

important design insights with respect to the optimal design

of the energy profile of the carrier flow along the SL or

nano-composite channel, regardless of dimensionality.

II. APPROACH

For the transport calculations, we use here the NEGF

approach, including the effect of electron scattering with acous-

tic and optical phonons.31,32 The system is treated within the

effective mass approximation with a uniform mass m*¼m0,

where m0 is the rest mass of an electron. The effect of

electron-phonon scattering is modeled by including a self-

energy on the diagonal elements of the Hamiltonian.33 For sim-

plicity, we choose the strength of the electron-phonon coupling

for both acoustic and optical phonons to be the same,

D0¼ 0.0016 eV2.31 The optical phonon energy we consider is

60 meV. Throughout this work, a Fermi-level of EF¼ 0.075 eV

was used, being a value which is 3kBT above the conduction

band, and thus metallic, but close enough to it to be a plausible

model of a highly degenerate semiconductor.

The parameters used do not refer to a specific material,

but are intended to have a broader applicability, as the pri-

mary goal is to isolate the effect of dimensionality alone.

Any qualitative conclusions drawn should be independent

of any specific degenerate semiconductor material and

instead only reflect dimensional effects as they relate to

energy-filtering. That said, however, we have chosen

parameters that somewhat reflect the transport features of

usual semiconductor materials. The strength of the phonon

scattering is chosen to be the same for acoustic and optical

phonons for simplicity, but this assumption is not dissimilar

from semiconductors like silicon, where their relative

strengths are of the same order. The amplitude of the

strength is chosen such that the mean-free-path for scatter-

ing is �20 nm, which is also a usual case for common semi-

conductors; and the optical phonon energy of 60 meV

chosen is actually the same as the prominent optical phonon

energy in Silicon. Thus, even qualitatively, we have chosen

our parameters to reflect the usual materials employed for

nanostructured TEs.

The power factor, GS2, was obtained from the expression

I ¼ GDV þ SGDT: (1)

For each value of the power factor, the calculation was run

twice, initially with a small potential difference and no tem-

perature difference (DT¼ 0), which yields the conductance

(G¼ I(DT¼0)/DV), then again with a small temperature differ-

ence and no potential difference (DV¼ 0), which yields the

Seebeck coefficient (S¼ I(DV¼0)/GDT). This method is vali-

dated in Ref. 25 and more details can be found in our previ-

ous work.29 For computational reasons, the “2D channel,”

we use here has a width of W¼ 12.5 nm. Figures 1(a) and

1(b) show the density-of-states (DOS) versus energy in the

1D and the 2D channels we simulate, indicating that the

DOS of the “2D channel” indeed possesses the almost con-

stant DOS of a true 2D system. Figure 1(c) also shows a cal-

culation of the thermoelectric power factor divided by width

(and the conductance divided by width and Seebeck in the

inset) as a function of the channels’ width, indicating
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saturation at widths wider than �5 nm. This saturation

reflects the fact that as width is increased, the energy of 1D

sub-bands lowers and their spacing in energy decreases.

Thus, the number of 1D sub-bands in the energy window of

interest increases (�12 can be seen in Figure 1(b)) such that

the total DOS changes from that of 1D, with the shape of the

inverse square root of energy, to a 2D constant DOS. The

lack of width dependence of the power factor (divided by

width) for large widths reflects the fact that the system has

reached 2D rather than quasi-1D behaviour.

III. RESULTS

A. Relative filtering benefits in 1D vs. 2D

To compare the effectiveness of filtering in 1D and 2D,

we perform the following: We consider a channel of constant

length L¼ 300 nm with its conduction band at EC¼ 0 eV,

and EF¼ 0.075 eV into the bands. We then place a single

barrier in the middle of the channel of width LB¼ 42 nm.

This width is chosen as it is larger than required for relaxa-

tion on the top of the barrier and can be evenly divided into

6 barriers of 7 nm width (for our next step). Thus, it allows

the comparison of two systems; one with a single barrier and

one with many, with an identical amount of the barrier mate-

rial. Thus, the effect of the barrier spacing, and thus the

effect of semi-relaxation alone, can be isolated by comparing

the two. In practice, such barriers can be formed by the alter-

nation of materials within a superlattice, nano-compositing,

by alloying the host material, electrostatically by doping var-

iation or selective gating of specific regions, etc. The former

are common techniques employed mainly to reduce the ther-

mal conductivity of the materials and through this improve

the ZT figure of merit. We then raise the single potential

barrier gradually to achieve energy filtering and at every

instance, we compute the thermoelectric coefficients: electri-

cal conductance G, Seebeck coefficient S, and power factor

GS2 for both 1D and 2D channels. These are plotted in

Fig. 2(a) for 1D and Fig. 2(b) for 2D channels versus the bar-

rier height VB. The insets show G and S. The dashed-dotted

lines indicate the PF of the reference channel with

VB¼ 0 eV. Two important observations can be made from

this comparison: (i) The relative maximum increase in the

PF in 1D is just slightly higher than 2D (22.5% vs. 21%),

but, more importantly, (ii) the PF is optimized at different

barrier heights for the 1D (�10 meV above EF, inset of Fig.

2(a)) and the 2D (�10 meV below the EF, inset of Fig. 2(b))

cases. The van-Hove singularity of the 1D bands lowers the

average energy of the current flow, which requires a higher

VB to reach the optimal PF (and introducing a �37%

increase in S in 1D versus �31% in 2D, but a �35% drop in

G in 1D versus 29% in 2D). In 2D, the current flow is natu-

rally higher in energy because of the more-or-less constant

DOS. Although the relative PF difference between 22.5%

and 21% seems small, this originates from filtering in a small

part of the channel only. In fact if we triple the barrier size

to LB¼ 126 nm (almost half of the entire channel), these

numbers change to 54% for 1D and 43% for 2D, which indi-

cates that the higher rise in energy flow provides 1D a clear

FIG. 1. (a) The density-of-states (DOS) versus energy in the 1D channel we

simulate. (b) The DOS in the 12.5 nm wide channel we simulate, which

resembles 2D, and referred to as the “2D channel” in the paper. (c) The ther-

moelectric power factor divided by width of the channel as the width

increases from W¼ 2.5 nm to W¼ 12.5 nm. The Fermi level is at

EF¼ 0.075 eV. Inset: The electrical conductance divided by width and the

Seebeck coefficient. All thermoelectric coefficients saturate after W� 5 nm

within a few percentage points, which justify our use of W¼ 12.5 nm as

“2D.”

FIG. 2. The TE power factor in (a) 1D, and (b) 2D of a channel of length

L¼ 300 nm, with a single barrier of length LB¼ 42 nm placed in the middle,

versus the barrier height VB. The Fermi level is at EF¼ 0.075 eV. The dotted

lines show the power factor of the empty channel (no barrier) for compari-

son. The insets show the electrical conductance and Seebeck coefficient ver-

sus VB. The top-right schematics indicate the VB which maximizes the

power factor in each channel. For 1D, VB�EFþ 10 meV, and for 2D,

VB�EF � 10 meV.

234302-3 Thesberg, Kosina, and Neophytou J. Appl. Phys. 120, 234302 (2016)



relative PF advantage in utilizing energy-filtering (of 11%

points with respect to the original channel PF).

After examining a single barrier, which under the opti-

mal VB provides some small relative advantages in 1D over

2D, we move to examine filtering in superlattices. For this,

we split the thick barrier into six smaller barriers and begin to

increase the separation between them (LW), creating wells.

This is shown schematically in Fig. 3 from a top view as well

as in the inset of Fig. 4(a) in cross-section. We then compute

the TE coefficients as LW increases from LW¼ 10 nm

to 50 nm, forming a superlattice whose “barrier material

amount” stays the same at 42 nm, and examine the impact on

the power factor as it is distributed in different ways in a

channel of fixed length. The barrier size of LB¼ 7 nm is thick

enough to prevent the quantum tunneling that degrades the

power factor severely.27,28 We calculate the PF for both the

1D and 2D channels and compare its relative improvement in

these SL geometries to the channel with a single thick barrier

in Fig. 2. The reason we do this is to isolate the effect of

relaxation in the wells from the effect of average energy

enhancement. In reality, the optimal VB for maximum PF in

these 1D and 2D SL geometries turned out to be VB¼EF

þ kBT and VB¼EF, respectively. Thus, in the rest of the

paper, we use these values that favor the many barrier cases

(rather than the single barrier case).

The simulation results for the relative change in the G,

S, and PF versus the well length LW are shown in Figs.

4(a)–4(c), respectively (we divide by the corresponding PF

of the single barrier geometry). The solid lines (squares)

show the results for the 1D channel whereas the dashed lines

(diamonds) for the 2D channel. It is important to clarify here

that what is shown in Fig. 4 is not a comparison of the

absolute value of thermoelectric parameters in a 1D channel

versus those in 2D. Such a comparison would not even be

meaningful in the present context as the conductance of a 2D

material scales with width and can thus be made arbitrarily

large. Rather what is shown is a comparison of a 1D channel

with a regular periodic array of potential barriers, to a 1D

channel with the same amount of foreign material placed in

the center of the channel (and the same for 2D). And thus, as

the comparison is between a multi-barrier energy-filtering

channel versus a single-barrier energy-filtering channel of

the same dimensionality, the resulting ratio is unitless and

can be compared between dimensions. The intent here is not

to address whether a 2D superlattice is superior to a 1D

superlattice, but rather whether the energy-filtering as a

design strategy is more effective in 2D versus 1D. In other

words, what this figure describes is as follows: “Given that

you already have a 2D or 1D system, what enhancement in

the power factor can you expect from the energy-filtering in

a SL geometry?”

The relative change in the electrical conductance

(Fig. 4(a)) shows that as the barriers are spread in the chan-

nel and more of the channel area is occupied by barriers, G
drops, as expected. On the other hand, the Seebeck coeffi-

cient in Fig. 4(b) follows the reverse trend and is increased

as the barriers are more spread in the channel because this

increases the energy-filtering over a larger length, again as

expected.

The relative power factor (PF) changes, however, in

Fig. 4(c) reveal some interesting features. A clear improve-

ment is observed as LW is increased, and the barriers are

spread in the channel forming the superlattice. In the 1D

case, however, for the same geometries (LW), the relative

improvements are more than in 2D (ratios up to �3� in

some instances), with the 2D only reaching the 1D improve-

ments at maximum LW. This is a clear indication that

energy-filtering is favored in 1D SLs for smaller well sizes

FIG. 3. Schematic diagrams of a superlattice channel with dark grey indicat-

ing a different barrier material. In (a) all of the material is concentrated in

the center, and the thermoelectric properties are examined in Fig. 2. In (b)

the same amount of barrier material is split into six smaller regions and

spread over the channel, creating a series of wells where the carrier semi-

relaxation can occur. The thermoelectric properties of this channel are

described in Fig. 4.

FIG. 4. The relative change in the thermoelectric coefficients between a

superlattice (SL) geometry composed of six barriers and the geometry where

the entire “barrier material” is centered in the middle as one wide barrier,

versus the potential well length. A schematic of the SL geometry is shown

in the inset of (c) which also indicates the meaning of LW as the spacing

between barriers. (a) is the change in the electrical conductance, (b) is the

change in the Seebeck coefficient, and (c) is the change in the power factor.

The solid lines (squares) are results for 1D channels, whereas the dashed

lines (diamonds) for 2D channels. The Fermi level is at EF¼ 0.075 eV in all

cases, and the VB is at the optimal PF conditions for the 1D SL

(VB¼EFþ kBT) and the 2D SL (VB¼EF).

234302-4 Thesberg, Kosina, and Neophytou J. Appl. Phys. 120, 234302 (2016)



(LW< 50 nm), compared to 2D SLs for which the benefits of

energy-filtering are maximized at much larger well sizes, for

the same set of material parameters. SLs with smaller well

regions would potentially favor thermoelectric materials, as

they also provide larger heat resistance and smaller thermal

conductivities. Looking at Figs. 4(a) and 4(b), it is clear that

the advantage of the 1D SL in utilizing energy-filtering,

resides in the fact that in 1D, the electrical conductance suf-

fers less than in 2D with the introduction and spread of the

barriers. The relative improvement of the Seebeck coefficient

is actually higher in 2D. Overall, however, the PF in 1D is

improved more, indicating that the changes that are intro-

duced in G dominate the behavior of the PF.

It is quite interesting to mention here that no matter if

we use a single barrier, or an SL geometry, the 1D channels

utilize the filtering mechanism more effectively. For exam-

ple, the relative PF advantage of 1D versus 2D in the case of

a single large barrier of LB¼ 126 nm was 53% – 42%¼ 11%

compared to the reference empty channel as mentioned

above. For the SL channel that extends a similar distance

(�half of the entire channel), i.e., the case of six barriers of

LW¼ 20 nm in Fig. 4(c), the relative PF improvement in 1D

is �26%, more than double compared to the 12% for 2D, a

difference of �14%. The relative advantage of 1D over 2D,

either in a single barrier structure, or a SL structure is, thus,

also of very similar value (11% higher and 14% higher).

IV. DISCUSSION

A. Variation in the energy of flow

In Figs. 5(a) and 5(b), we explain the behavior of G and

S by plotting the energy of the current flow along the chan-

nels’ length in 1D and 2D, respectively, for the channel with

six barriers. The blue lines indicate the average energy of

the current flow. Two things are clear: (i) in the wells there is

significantly more energy relaxation in 1D compared to 2D

(the energy relaxation length is extracted to be �8 nm in 1D

but �13.5 nm in 2D, which is expected as the 1D DOS

singularity provides more states for down-scattering), and

(ii) in the barriers, the average energy of the current flow

under optimal PF conditions is similar in 1D and 2D (slightly

higher in 1D by about �6 meV). This is clearly indicated in

Fig. 5(c), which combines the blue lines from Figs. 5(a) and

5(b). Thus, G suffers less in 1D (as shown in Fig. 4(a)) because

the average energy is lower in the wells, closer to well equilib-

rium, but S increases more in 2D (as shown in Fig. 4(b)) because

the energy of the current flow is higher in the wells (S is deter-

mined by the carrier energy as �hE-EFi, a point discussed in the

Appendix). Overall, however, the PF improvement is determined

by G, and it is higher in 1D. For comparison, the green line in

Fig. 5(c) shows the average energy of the current flow in the 1D

channel with the same EF and VB as for the optimal 2D channel

(i.e., VB¼EF). The flow is lower than in 2D, which is why

higher barriers are required in 1D to lift it up.

A more general observation at this point, is that filtering

is more effective in channels in which the energy of the cur-

rent flow is: (i) closer to the band edge, and (ii) has a shorter

energy relaxation length (as the 1D case). The introduction

of barriers has “more room” to raise the flow energy further

and improve the S, which manifests as a modest relative

increase in PF. Furthermore, within an SL geometry, the

sharper energy relaxation in the wells can compensate for

the loss in G due to the barriers by facilitating a more rapid

return to equilibrium. Superlattice channels in which the

current flow is further from the band edge and the energy

relaxation lengths are longer, have reduced possibilities in

utilizing filtering to improve the PF (as in the 2D case),

mainly because G suffers more compared to the benefits in

S. Note that the conclusions we reach can be generalized to

suggest that the benefits of filtering can be observed more in

materials in which the current flows closer to the conduction

band (as in 1D), rather than at higher energies (as in 2D and

presumably 3D). In practice, purely 1D channels can be very

difficult to achieve, but some of the light mass materials, i.e.,

III-Vs, InAs, InSb, BiTe, etc, could have nanowires built out

of them, in which transport is dominated by a single 1D band

even for channels with diameters up to several nano-

meters.34,35 The 1D versus 2D relative comparison clearly

shows the benefits of filtering in 1D is a result of a larger cur-

rent flow energy variation (38 meV in 1D versus 17 meV in

2D as indicated in Fig. 5(c)). However, this is just one study

case. The main argument can be extended to suggest that

filtering in 2D materials such as quantum wells can provide

relatively more benefits compared to filtering in 3D materi-

als, where the current flow happens at higher energies. Our

conclusions also suggests that materials with larger optical

phonon scattering energies which allow more carrier down-

scattering could also be more effective in energy-filtering

once nano-composites are built out of them. It is also impor-

tant to stress though, that the relative filtering benefits

FIG. 5. The current energy flow in a (a) 1D and (b) 2D SL of six barriers

(red lines) and LW¼ 50 nm. The Fermi level is at EF¼ 0.075 eV in all cases,

and the VB is at the optimal PF conditions for 1D (VB¼EFþ kBT) and 2D

(VB¼EF). The blue lines show the average energy of the current flow. (c)

The barriers and the average energy (blue lines form (a) and (b)) are super-

imposed in order to provide a direct comparison. Under the optimal PF con-

ditions, the 1D channel has a slightly higher current energy in the barrier

regions, and a lower current energy in the well regions compared to 2D,

which shows much less variation (38 meV in 1D versus 17 meV in 2D). The

green line shows the average current energy of the 1D channel with same

barrier as the 2D channel (VB¼EF), which indicates that for the same EF

and VB, the current energy in 1D is much lower compared to that in 2D.
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observed in these SLs originate from how the shape of the

1D density-of-states energy function dictates the energy of

the current flow, and not from how the sharp edge influences

the Seebeck coefficient, as what proposed by Hicks and

Dresselhaus but for uniform low-dimensional channels.4 As

a matter of fact, the main reason behind these relative bene-

fits is the fact that in the potential wells, away from the filter-

ing barrier regions, the lower energy of the current flow in

1D allows for improvement in the conductance, compensat-

ing through the reduction caused by the barriers.

B. Non-uniform thermal conductivity improves
1D filtering even more

Next, we explore another aspect of potential PF improve-

ments in an SL geometry, which originates from the fact that

S can be further increased when the local thermal conductiv-

ity, j, differs between the barrier and well regions. As dis-

cussed on various occasions, the overall S is determined by

integrating the local S(x), weighted by the inverse of the local

j(x) (or the temperature gradient, dT/dx) along the channel.

Thus, the regions of lower j have more weight in determining

the overall S.16,25,26 This is because the Seebeck voltage drops

more in regions of larger dT/dx, which are regions of lower j
(see the Appendix for a detailed derivation).

Figure 6 shows the relative improvement of the power

factor in the SL channel for different barrier heights with dif-

ferent thermal conductivities in the barrier (jB) and the well

(jW), versus the ratio of those thermal conductivities, jB/jW.

Again, as earlier in Fig. 4, the goal is to examine to what

extent does the variation of j in the channel pay off in 1D

versus 2D, and not to compare the absolute power factor val-

ues. The SL channel simulated is the one with six barriers

with wells of LW¼ 50 nm at EF¼ 0.075 eV, which had the

largest relative improvements in Fig. 4. We keep the thermal

conductivity of the barrier smaller than that of the well

region (i.e., jB/jW< 1) in order to weigh more the superior

S of the barriers. The results for 1D are shown by the solid

lines and for 2D by the dashed lines. Cases for different bar-

rier heights are shown: VB¼ 0.05 eV (blue lines),

VB¼ 0.075 eV (black lines—optimal case for 2D),

VB¼ 0.1 eV (red lines-optimal case for 1D), and

VB¼ 0.125 eV (green line—kBT above the optimal case for

1D). It is interesting to observe that even in this case, the 1D

channel utilizes the difference between jB and jW more

effectively, being able to provide �50% more PF improve-

ment for small jB/jW ratios. The inset of Fig. 6 shows the

same data but normalized to the jB/jW¼ 1 data point for

each VB case. It clearly demonstrates that irrespective of VB,

the 1D channel utilizes a smaller jB more effectively com-

pared to 2D (all solid lines are higher than the dashed).

The reason for this is that in 1D, the energy of the cur-

rent flow is lower in the wells compared to 2D (and slightly

higher in the barriers), and because of this, to begin with, in

1D S is mostly determined by the barriers, whereas in 2D,

the wells also contribute substantially. Thus, since a smaller

jB/jW ratio weights S in the barriers even more, the 1D

channel is benefited more. This is also observed in Fig. 4(b),

which shows that the improvement in S in 1D saturates ear-

lier (becomes independent of LW) compared to 2D. This is

precisely because as LW is increased and the current energy

relaxes lower in the 1D wells, those wells contribute less to

S. Another interesting observation from the inset of Fig. 6, is

that the higher the barrier, the larger the relative PF improve-

ment, even for barriers higher than the optimal ones (i.e., the

green-solid line is higher than the red-solid line).

C. Greater immunity in 1D to random variations

The fact that the 1D channels, with the larger variation

in the energy of the current flow along the transport direc-

tion, utilize filtering better by having their Seebeck coeffi-

cient determined mostly by the barriers, could lead to

another important advantage in the design of SLs or nano-

composite TEs. This is the relative immunity to unwanted

barrier height variations. In a previous work, we considered

the TE transport in SLs with uniform j along the SL, but

considered reasonable values of variation in the barrier

height, VB. We showed that the power factor was drastically

degraded, controlled mostly by the reduction in the conduc-

tance imposed by the highest barrier. Thus, we suggested

that if one considers such a system, which includes variations

in the barrier heights away from the optimal, then it is better

to have non-optimal lower barriers than anomalously high

ones, to avoid the excessive reduction in conductance.28

However, looking at Fig. 6, it can be seen that in both 1D

and 2D systems, when the effect of reduced jB is considered,

the negative effect of a higher VB is mitigated, as the

Seebeck coefficient will be additionally weighted by the

FIG. 6. The relative change in the thermoelectric power factor between a

superlattice which has a different thermal conductivity in the barriers (jB)

and wells (jW), compared to a superlattice with uniform thermal conductiv-

ity in all regions, versus the ratio of the thermal conductivities in the barriers

and wells. The SL geometry considered has six barriers and LW¼ 50 nm.

The solid lines are results for 1D channels, whereas the dashed lines for 2D

channels. The Fermi level is at EF¼ 0.075 eV in all cases. Four different VB

cases are considered: (i) VB¼ 0.05 eV (blue lines,� kBT lower than the 2D

optimal), (ii) VB¼ 0.075 eV (black lines, optimal PF conditions for 2D),

VB¼ 0.1 eV (red lines, optimal PF conditions for 1D), and VB¼ 0.125 eV

(green line, �kBT higher than the 1D optimal). Inset: The same data normal-

ized to the jB/jW¼ 1 value.
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lower jB and ultimately that improvement compensates for

the conductance loss (i.e., the green-solid line overpasses the

black-solid line as the ratio is reduced, approaching the red-

dashed line).

In Fig. 7, we performed such calculations, where we

allow a rather large 30% statistical variations in the barrier

heights, VB, of the SLs of Fig. 6 for both 1D and 2D chan-

nels. The inset of Fig. 7 shows a few overlapping schematics

of the barrier variations. In these cases, we simulate 20 dif-

ferent channels for 1D and 2D and compute the PF in each

case. Figure 7 shows the relative change in the thermoelec-

tric power factor between an SL which has a different ther-

mal conductivity in the barriers (jB) and wells (jW),

normalized to a superlattice with uniform thermal conductiv-

ity in all regions jB/jW¼ 1, plotted versus the ratio of the

thermal conductivities in the barriers and wells (as in Fig. 6).

The blue-dashed lines are results for 1D channels (with opti-

mal VB¼ 0.1 eV and no VB variations), whereas the red-

dashed lines for 2D channels (with optimal VB¼ 0.075 eV

and no VB variations). The solid lines indicate the power fac-

tor of these two channels upon 30% variation in the barrier

heights VB (blue-solid for 1D, and red-solid for 2D). First we

consider the right side of this figure in the case of uniform

thermal conductivity in the SL, jB/jW¼ 1. As expected, var-

iations in VB degrade the power factor, which remains lower

compared to the structures with an uniform ideal VB for any

jB/jW ratio. The 1D channel is hurt more at jB/jW¼ 1

(blue-solid line is below the red-solid line) because the opti-

mal barriers are higher to begin with anyway. As the ratio of

the thermal conductivity is reduced, however (moving to the

left of the graph), the 1D channel is able to compensate for

that larger loss at larger jB/jW ratios, and overpasses the 2D

channel as the variation in thermal conductivities benefits

1D more than 2D. At the very left of the graph, for low jB/

jW ratios, both the 1D and 2D structures restore �50% of

the degradation that the VB variation causes (the solid lines

approach at a large degree the dashed lines). The 1D how-

ever, sees this restoration at larger jB/jW rations compared

to the 2D channel, and the relative advantage is �4� higher.

V. CONCLUSIONS

In conclusion, we have investigated the effectiveness of

the energy-filtering mechanism in improving the thermoelec-

tric power factor in 1D versus 2D superlattices using quan-

tum transport simulations. Ultimately, the question we

addressed was the following: If one implements an energy-

filtering based TE material, does it pay off more to use a

low-D or a higher-D material? We showed that, when com-

pared to the same Fermi level and conduction band edge, 1D

materials benefit more from energy-filtering because the

presence of the van Hove singularity in their density-

of-states energy function provides an overall lower average

energy of the current flow, and shorter carrier relaxation

lengths, compared to 2D materials. Thus, the introduction of

the energy-filtering barriers has more “room” to raise the

energy flow and improve the Seebeck coefficient, whereas

the sharper energy relaxation in the wells allows for the con-

ductance to still remain high, offering overall larger relative

power factor improvements, compared to 2D materials. 1D

superlattices or nano-composites allow for filtering to be

more effective because: (i) for optimal conditions they

require shorter superlattice periods, or smaller average grain

size in nano-composites (which is also beneficial in reducing

the thermal conductivity); (ii) they utilize better the addi-

tional improvements in the Seebeck coefficient when the

thermal conductivity of the barriers is smaller compared to

that of the wells (which is a common case), and; (iii) for

these (usual case) materials where the thermal conductivity

of the barriers is smaller compared to that of the wells, 1D

provides a larger immunity to the detrimental variations in

the barrier heights, which could naturally appear. These are

all the features favorable for effective filtering, and provide

larger relative power factor gains in 1D than in 2D. In gen-

eral, we explained how this better utilization of the energy-

filtering mechanism can be thought to originate from the

larger variations of the average energy of the current flow as

it travels through barriers and wells in 1D compared to those

in 2D (by almost 2� larger).

As an example of how these insights could be applied to

specific material systems, the InGaAs/InGaAlAs, or InAs/

InGaAs (well-barrier) systems are good candidates. The

barriers in both cases have a lower thermal conductivity

compared to the wells, lower by a factor of or 5 (Ref. 36) in

some cases. In addition, the low-dimensional effects appear

in these channels at 10 s of nanometers,37 due to their light

effective mass, which makes it technologically feasible to

fabricate arrays of nanowires based on their superlattices.38

On the other hand, the SiGe/Si (well-barrier) system, in

FIG. 7. The relative change in the thermoelectric power factor between a

superlattice with randomly varying barrier heights, which has a different

thermal conductivity in the barriers (jB) and wells (jW), normalized to a

superlattice with uniform thermal conductivity in all regions jB/jW¼ 1, ver-

sus the ratio jB/jW. The SL geometry considered has six barriers and

LW¼ 50 nm. The blue-dashed lines are the results for 1D channels (with an

optimal VB¼ 0.1 eV), whereas the red-dashed lines for 2D channels (with

optimal VB¼ 0.075 eV). The Fermi level is at EF¼ 0.075 eV in all cases.

The solid lines with error bars indicate the power factor upon 30% variation

in the barrier heights VB (blue-solid for 1D, and red-solid for 2D). In other

words, barrier heights are drawn from a Gaussian distribution with a stan-

dard deviation which is 30% of the barrier height. 20 samples are used for

each data point. Inset: Overlapping a few schematics of the SL geometry

upon VB variations.
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which the thermal conductivity of the well is lower com-

pared to the barrier, and in which the low-dimensional

effects appear at length scales below 10 nm, making it tech-

nologically more challenging to reach, might have greater

difficulty in taking advantage of the effects we describe here.

In general, these observations could potentially provide

a helpful generic guidance in picking better energy-filtering

materials to create the nano-composites out of, regardless of

dimensionality.
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APPENDIX: EFFECT OF SPATIALLY VARY THERMAL
CONDUCTIVITY ON THE SEEBECK COEFFICIENT

These results were obtained by assuming the lattice tem-

perature (TL) that varies according to a simple thermal circuit

model, as was discussed in Ref. 4. In such a circuit of nB bar-

riers of width LB, where we assume that the temperature T,

computed as DT ¼
Ð L

0
ðdTL=dxÞdx, is simply composed of

regions of two different temperature drops per distance:

dTL=dxjjB
(in the barriers) and dTL=dxjjW

(in the wells). The

entire temperature drop across the channel is decomposed as

DT ¼ dTL

dx

���
jB

nLB þ
dTL

dx

���
jW

Lch � nLBð Þ: (A1)

At an interface between different materials, heat flux is con-

served, and we have

�jB

dTL

dx

���
B
¼ �jW

dTL

dx

���
W
: (A2)

From (A1) and (A2), one arrives at the expression

dTL

dx

���
W
¼ DT

L� nBLB 1� jW

jB

� � ; (A3)

and a similar expression for dTL

dx jB.

From knowledge of the total temperature difference and

the temperature gradients in the two regions, one can deter-

mine TL(x) across the whole channel. The difference in ther-

mal conductivities then affects the relative steepness of

TL(x) in the barrier region versus the wells. We then note

that the Seebeck coefficient can be represented as

S¼

ðL

0

S xð Þ dTL=dxð Þdx

DT
¼

ðL

0

hE xð Þ�EFi=qTL xð Þ
� �

dTL=dxð Þdx

DT
;

(A4)

where

hEðxÞi ¼
ð

E

EGðEÞ½fSðEÞ � fDðEÞ�dE
.

ð
E

GðEÞ½fSðEÞ � fDðEÞ�dE: (A5)

This is thus just the regular expression for the Seebeck

coefficient. Thus, by using the spatially and energy resolved

current information obtained from an NEGF simulation, it is

possible to calculate hEðxÞi and then S(x), and therefore the

Seebeck coefficient of the whole system, S, by summing up

every spatial point in the transport direction. This means of

determining the Seebeck through a summation of the average

energy is an alternate means from the “two-runs” method we

used in the bulk of this work and was found to be in strong

agreement.

Thus, we see that the action of a lower thermal conduc-

tivity is that it ultimately increases the contribution of the

barrier region where hEðxÞ � EFi is highest and thus

improves the overall Seebeck without having any first order

effect on the conductivity.
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