

warwick.ac.uk/lib-publications

Original citation:
Englert, Matthias and Räcke, Harald (2017) Reordering buffers with logarithmic diameter
dependency for trees. In: 28rd ACM-SIAM Symposium on Discrete Algorithms, Barcelona,
Spain, 16-19 Jan 2017. Published in: SODA '17 Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms 1224-1234.
Permanent WRAP URL:
http://wrap.warwick.ac.uk/84475

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
First Published SODA '17 Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms published by the Society for Industrial and Applied Mathematics
(SIAM). Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may be
cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/74227419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/84475
mailto:wrap@warwick.ac.uk

Reordering Buffers with

Logarithmic Diameter Dependency for Trees

Matthias Englert∗ Harald Räcke†

Abstract

In the reordering buffer problem a sequence of items
located in a metric space arrive online, and have to be
processed by a single server moving within the metric
space. At any point in time, the first k still unprocessed
items from the sequence are available for processing and
the server has to select one of these items and process it
by visiting its location. The goal is to process all items
while minimizing the total distance the server moves.

Englert, Räcke, Westermann (STOC’07) gave a
deterministic O(D · log k)-competitive online algorithm
for weighted tree metrics with hop-diameter D. We
improve the analysis of this algorithm and significantly
improve the dependency on D. Specifically, we show
that the algorithm is in fact O(logD+log k)-competitive.
Our analysis is quite robust. Even when an optimal
algorithm, to which we compare the online algorithm, is
allowed to choose between the first h > k unprocessed
items, the online algorithm is still O(h·(logD+log h)/k)-
competitive. For h = (1 + ε) · k, with constant ε > 0,
this is optimal.

Our results also imply better competitive ratio
for general metric spaces, improving the randomized
O(log n · log2 k) result for n-point metric spaces from
STOC’07 to O(log n · log k).

1 Introduction

In the reordering buffer problem, a sequence of items
located in a metric space arrive online, and have to be
processed by a single server moving within the metric
space. There exists a request buffer that can hold up
to k requests and gives the server some flexibility in
choosing the next request to serve. More precisely, at
any point in time, the first k still unprocessed items
from the sequence are available for processing and the
server has to select one of these items and process it
by visiting its location. The goal is to process all items

∗Department of Computer Science and Centre for Discrete
Mathematics and its Applications (DIMAP), University of War-

wick. M.Englert@warwick.ac.uk.
†Department of Informatics, Technical University Munich.

raecke@in.tum.de

while minimizing the total distance that the server is
moving.

This model has been introduced by Räcke et al. [26]
for modeling the context switching cost that occurs
in applications in many different areas ranging from
production engineering through computer graphics to
information retrieval [6, 14, 21, 25]. In this paper we
focus on the online version of the problem in which the
server does not see future requests in the input stream
but has to make its decision online only depending on
past requests and on the items currently in the buffer.
The worst case ratio between the cost of the online
algorithm and the cost of an optimal offline algorithm is
called the competitive ratio.

Englert, Räcke, Westermann [16] gave a determinis-
tic O(D ·log k)-competitive online algorithm for weighted
tree metrics with hop-diameter D. In this paper we im-
prove the analysis of this algorithm and significantly
improve the dependency on D. We show that the al-
gorithm is in fact O(log k + logD)-competitive. Our
analysis is quite robust, and also extends to the case
when we compare the performance of the online algo-
rithm to the performance of an optimum algorithm with
larger buffer size h ≥ k. We prove a competitive ratio of
O(hk (log h+ logD)), i. e., the competitive ratio increases
gracefully as h increases.

Theorem 1.1. On tree metrics with hop-diameter D,
PAY, with a buffer of size k, is O(h

k (log h + logD))-
competitive against an optimal offline algorithm with a
buffer of size h.

For h = (1 + ε) · k, with constant ε > 0, our analysis
is optimal. Therefore, any further improvement for the
case h = k must involve a proof that does not share the
robustness property of the proof presented here. This
follows from two results: Firstly, Aboud [1] has shown
that on a uniform metric (a star) the gap between two
optimal algorithms (one with buffer-size k, the other
with buffer-size h = 4k) can be as large as Ω(log k). In
Appendix A, we give a slightly different proof, inspired
by the input sequence generation in [17], that shows that
the same bound can in fact be shown for any h that is
any constant factor larger than k. Hence, any online

1224 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

algorithm (deterministic or randomized) also must have
competitive ratio at least Ω(log k) when compared to
an optimal algorithm with a buffer that is larger by a
constant factor. Secondly, Bieńkowski et al. [13] gives
an instance on a line with D equidistant points, on
which the gap between two optimal algorithms (buffer
sizes h = (1 + ε) · k and k, respectively) is Ω(logD)
(as long as k ≥ logD). Again, any online algorithm
must therefore have competitive ratio Ω(logD) when
compared to an optimal algorithm with a buffer that is
larger by a constant factor.

We then show that for the special case of hierarchi-
cally well separated trees (HSTs) the competitive ratio
improves to O(h

k · log h), or simply O(log k) if h = k.
Note that this bound is independent of the diameter
of the tree. Combining this result with the results on
probabilistically approximating arbitrary metrics by tree
metrics [11, 12, 19], we obtain a randomized scheduling
strategy for general metric spaces that achieves a com-
petitive ratio of O(log k · log n) in expectation against
an oblivious adversary. Here n denotes the number of
distinct points in the metric space. This improves the
previous best result for general metric spaces [16] by
a Θ(log k)-factor. If the metric space is not known in
advance one can e.g. use Bartal [11] to construct a tree
embedding as the points in the metric space appear.
This gives an overall guarantee of O(log ∆ log n log k),
where ∆ denotes the aspect ratio of the metric space.

1.1 Further Work. Most previous work on the re-
ording buffer problem focuses on the online problem in
uniform star networks. Räcke et al. [26] introduced the
problem and developed a deterministic algorithm with
competitive ratio O(log2 k). This was first improved to
O(log k) [18], and later to O(log k/ log log k) [6], before
Adamaszek et al. [2] obtained a bound of O(

√
log k),

which is close to optimal due to a lower bound of
Ω(
√

log k/ log log k) shown in the same paper. Avigdor-
Elgrabli and Rabani [8] showed that randomization can
give an exponential improvement to the competitive ra-
tio by developing an algorithm with competitive ratio
O(log log k). This is optimal due to a corresponding
lower bound proved by Adamaszek et al. [2].

Khandekar and Pandit [24] analyze the reordering
buffer problem for D uniformly-spaced points on a
line with the motivation that this scenario models the
disc scheduling problem. They present a randomized
algorithm with a competitive ratio of O(log2D) in
expectation against an oblivious adversary. Gamzu and
Segev [20] improve this by presenting a deterministic
Θ(logD)-competitive strategy that also works if the
points are unevenly spaced. In addition, they give,
for the line metric, a lower bound of ≈ 2.154 on the

competitive ratio of any deterministic algorithm.
There has been a large amount of further work on

hardness and approximation of the offline problem as
well as other variants of the online problem for different
metrics. See, for example, [3], [4], [5], [7], [9], [10], [15],
[22], and [23].

2 The Algorithm

We study the algorithm PAY which was introduced in
[16]. Initially, the reordering buffer is filled with the
first k items from the input sequence. After that, PAY
alternates between a selection and a processing phase.

The selection phase identifies a set of items to be
visited by the server. It works as follows. Each item
stored in the buffer generates “payment” at a unit rate.
This payment can be placed on edges. An edge e is
fully paid, if the amount of payment pay(e) on the edge
is equal to the length `(e) of the edge. The payment
generated by an item in a time interval [t, t+dt) is placed
on the first edge on the path from the item to PAY’s
server that is not fully paid. This continuous process of
generating and placing payment is stopped once PAY’s
server is connected, through fully paid edges, to at least
one item. At this point, PAY’s server will be located in
a connected subgraph induced by fully paid edges.

In the processing, phase the items located in this
connected subgraph are processed. This is done as
follows. Let p denote the position of the PAY-server at
the beginning of the processing phase, and let p′ denote
a position in the connected subgraph that is furthest
from p. The PAY-server visits all items in the connected
subgraph and chooses p′ as its new location. In addition,
the payment on all edges in the subgraph (but not on
other edges) is cleared, i.e., pay(e) := 0 for these edges.
Finally, the now empty slots in the buffer are filled up
again by the next items in the input sequence. If the
buffer contains k items again, we go back to carry out
a new selection phase. Otherwise, the algorithms stops
(clearing the remaining items in the buffer in an optimal
way).

We only use the notion of continuous time for the
selection phase. That means that if the i-th selection
phase last from time t to time t′, then the (i + 1)-th
selection phase starts at time t′. That is, the processing
phase in between happens instantaneous and time does
not progress during it. We also note that while we
describe the selection phase as a continuous process, it
can be easily discretized and implemented efficiently.

3 Proof of Theorem 1.1

To compare PAY to an optimal offline algorithm, we fix
such an optimal offline algorithm OPT and we imagine

1225 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

running PAY and OPT in parallel on the same input.
PAY has a buffer that can store up to k and OPT has a
buffer that can store up to h ≥ k items.

More precisely, initially OPT’s and PAY’s buffer
contain the first h and k items of the input sequence,
respectively. Then PAY performs a selection phase
followed by a processing phase which processes, say, x
items. After that, OPT will also process x items and fill
up its buffer with the next x items in the input sequence.

We start with a basic observation. Let costi denote
the sum of lengths of edges in the connected subgraph
that contains PAY’s server in the i-th processing phase.

Observation 1. The total cost of PAY, i.e., the total
distance PAY’s server travels, is at most 2 ·

∑
i costi.

Ideally, we would like to perform the following
analysis: Fix an edge e = {u, v}. This edge splits the
tree into two subtrees Tu and Tv containing u and v
respectively. Imagine OPT’s server is located in Tv.
How often can e contribute to some costi, i.e., be part
of the connected subgraph, before OPT traverses e as
well? Bounding this would give a bound on

∑
i costi in

terms of the optimal cost and, due to the observation
above, also give us a bound on PAY’s overall cost.

Unfortunately, this approach fails for multiple rea-
sons. The first problem is the following: When a con-
nected subraph is processed, PAY’s server moves from
some initial position p to a new position p′. If, for each
processing phase, p and p′ are always both contained
in Tu but the connected subgraph always contains the
edge e, this tells us very little about when OPT needs
to visit Tu. (We do know that each time a new item is
processed in Tu and therefore after at most h+ k such
phases OPT will have h items located in Tu and none
in Tv forcing it to use edge e. But we are aiming for a
much better bound than O(h+ k).)

As we will see in our remaining analysis, the situation
is much better if the starting point p lies in Tv instead of
Tu. In other words, the edges in the connected subgraph
of some processing phase that are problematic are the
ones that lie on the path from the initial position p of
the PAY server to the position q of the OPT server.
Therefore, we introduce a new cost reduced-costi of the
i-th processing phase which is equal to costi minus the
total length of edges in the connected subgraph that lie
on the path from p to q. This way we will be able to
ignore the problematic edge costs, because the following
claim implies that it is sufficient to find a good bound
on
∑

i reduced-costi.

Claim 1.
∑

i costi ≤ 2 ·OPT + 3 ·
∑

i reduced-costi.

Proof. Suppose we are at the start of some processing
phase i. PAY’s server is at some location p which lies in

a connected subgraph induced by fully paid edges. As
before, for simplicity we will just call this the connected
subgraph from now on. After processing all items in
this connected subgraph, PAY’s server is located at a
point p′ which is furthest away from p in the connected
subgraph. Let q be the last vertex in the connected
subgraph on the path from p to OPT’s server. Note that
reduced-costi is equal to costi minus the length of the
path from p to q.

Let x be the point at which the paths from p to p′

and from p to q split. Let path-cost1i denote the length
of the path from p to x and let path-cost2i denote the
length of the path from x to q. We have reduced-costi =
costi − path-cost1i − path-cost2i and will now argue
that

∑
i path-cost

1
i ≤ 2 · OPT +

∑
i reduced-costi and

path-cost2i ≤ reduced-costi. Note that this implies the
claim since∑
i

costi =
∑
i

(reduced-costi + path-cost1i + path-cost2i)

≤
∑
i

reduced-costi + 2 ·OPT

+
∑
i

reduced-costi +
∑
i

reduced-costi .

We start with the easier second part. The length of
the path from x to q is at most as long as the length of the
path from x to p′, because otherwise p′ was not a furthest
point from p in the connected subgraph. Therefore, it
must also be the case that path-cost2i ≤ reduced-costi.

Now for the more involved first part. Consider any
edge e = {u, v} on the path from p to x. The removal of
this edge would result in two subtrees Tu and Tv that are
attached to vertex u and v, respectively. Now, w.l.o.g. p
is located in Tu. But then p′, q, and OPT’s server must
be located in Tv. Suppose the next processing phase
in which edge e is fully paid is some processing phase
j > i. Either OPT has moved its server over edge e
in between processing phase i and j, or, in processing
phase j, e cannot lie on the path from PAY’s to OPT’s
server. Note that in the latter case e will contribute to
reduced-costj .

It may happen that no next processing phase j exists
in which e is fully paid, because we have reached the end
of the input sequence. However, this can only happen
once for each edge and, furthermore, only for edges that
have to be traversed by OPT at least once (because
the input sequence must contain at least one item in
Tu and one in Tv). Therefore the total cost neglected
in this way is bounded by OPT. Altogether, we get∑

i path-cost
1
i ≤ OPT + OPT +

∑
i reduced-costi. �

If
∑

i reduced-costi ≤ OPT, the claim, combined
with Observation 1, already implies that PAY is 10-

1226 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

e

p′

p

q

x

u

v

OPT

Figure 1: White nodes are nodes at which items are located. The solid part of the edges indicates payment. The
double edges are fully paid and are part of the connected sub-graph. In this processing phase, the server would
start at p and end at p′. Edge e would not contribute to reduced-cost since it lies between p and the OPT-server.

competitive. Therefore, we assume
∑

i reduced-costi >
OPT from now on. In this case, the claim implies

(3.1)
∑
i

costi ≤ 5 ·
∑
i

reduced-costi .

In the following, we will work with a more wasteful
inequality instead.

(3.2)
∑
i

costi ≤ 10 ·
∑
i

reduced-costi .

While this is not necessary for our analysis for general
trees, it will be helpful in the analysis for hierarchically
well separated trees in Section 4.

Ideally we would now like to find an upper bound
on the number of times an edge e contributes to some
reduced-costi term in relation to the number of times
OPT traverses e. However, this cannot be done directly
either and requires a further type of amortization. To
this end, we introduce the concept of discount. In our
algorithm, each item generates payment and places it
on edges. In addition to this, we now let items also
generate discount which is placed on edges. The discount
generation is only used in the analysis and not in the
algorithm itself. It therefore can be based on the entire
input sequence and OPT’s actions.

Recall that each item in PAY’s buffer generates
payment dt on the first non-fully paid edge towards the
PAY server. Suppose item I is in the PAY buffer for
dI time units after having arrived at time aI . Further
suppose item I generates a total payment of p(I, e) on
edge e. We define α(I, e) := p(I, e)/dI . That is α(I, e)
indicates what fraction of the total payment generated
by I, is generated on edge e.

We now let each item stored either in OPT’s or
PAY’s buffer (but not in both) generate discount on
each edge e between the item’s location and the PAY-

server. In each time interval of length dt an item places

k · α(I, e) + 1/D

160h
· dt

discount on such an edge. Let IOPT
e (i) be the set of

items stored in OPT’s buffer that generate discount on
edge e during selection phase i and let IPAY

e (i) be the set
of items stored in PAY’s buffer that generate discount
on edge e during selection phase i.

Finally, we need one more type of discount. Let
q(I, e) be the payment generated by item I on edge e
after time aI + 159dI/160 (note that in total over all
edges this is only dI/160). Right before being processed
by PAY, item I allocates an extra discount of 4q(I, e) to
edge e.

Claim 2. The total amount of discount placed by all
items is at most 5% of the total payment

∑
I dI =∑

I

∑
e p(I, e) =

∑
i costi generated by all items.

Proof. The total discount generated by an item I during
a time interval dt is at most∑
e

k · α(I, e) + 1/D

160h
· dt =

∑
e

k · p(I, e)/dI + 1/D

160h
· dt

=
k

160h
+
∑
e

k

160hD
· dt ≤ k

80h
· dt .

There are at most h + k ≤ 2h items stored in OPT’s
or PAY’s buffer at any point in time. Combined, they
generate discount of at most k/40 · dt, while k items in
PAY’s buffer generate payment of k ·dt at the same time.

Finally, each item I places an additional amount
of extra discount 4

∑
e q(I, e) = 4(dI − 159dI/160) =

dI/40. But the same item also generates payment of∑
e p(I, e) = dI over its lifetime in PAY’s buffer. �

1227 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Note that due to Equation 3.2, we can also conclude
that the total discount placed by all items is at most∑

i reduced-costi/2.
Just like payment, discount is removed from edges in

the connected subgraph after the processing phase. We
now further limit the number of edges that we consider
to contribute cost to processing phase i. Specifically,
consider the connected subgraph of processing phase i.
Let discounted-costi denote the total length of edges in
the connected subgraph which are neither

1. on the path between the initial position of the PAY-
server and the position of the OPT-server nor

2. carry a discount of `(e) or more at the beginning of
the processing phase.

Since the total discount placed on edges is at most∑
i reduced-costi/2, we can make the following obser-

vation.

Observation 2.∑
i

discounted-costi

≥
∑
i

reduced-costi −
1

2

∑
i

reduced-costi

=
1

2

∑
i

reduced-costi .

Fix an edge e = {u, v} and let Tu and Tv be the two
subtrees obtained by deleting e. Assume w.l.o.g. that
OPT’s server is in Tv. We want to analyze for how many
i, the edge e can contribute to discounted-costi before
OPT’s server traverses e to enter Tu. In the following
we will show that the number of times this can happen
is bounded by O(hk · (log h+ logD)), which will conclude
the proof of the theorem. Let

rateOPT
e (i) =

∑
I∈IOPT

e (i)

k · α(I, e) + 1/D

160h

be the rate of discount generation on e during selection
phase i (which is followed by processing phase i) by
items in OPT’s buffer. Note that if selection phase i
lasts for time T , items in OPT’s buffer will generate
a total discount of T · rateOPT

e (i) on e. Similarly let
ratePAY

e (i) =
∑

I∈IPAY
e (i) k · (α(I, e) + 1/D)/(160h) be

the rate of discount generation on e during selection
phase i by items in PAY’s buffer.

Lemma 3.1. Suppose the i-th processing phase is one
for which edge e = {u, v} contributes to discounted-costi
and let processing phase i′ < i be the last processing phase
before i in which edge e was contained in the connected

subgraph to be processed. If such an i′ does not exist, let
i′ be the first processing phase. If OPT does not traverse
edge e between processing phase i′ and processing phase
i+ 1, either

rateOPT
e (i+ 1) >

(
1 +

k

102400h

)
· rateOPT

e (i)

or

ratePAY
e (i+ 1) <

(
1− k

102400h

)
· ratePAY

e (i) .

Proof. As before, let Tv and Tu be the two subtrees
obtained by deleting edge e. When the i-th processing
phase starts, PAY and OPT must be contained in the
same subtree since e contributes to discounted-costi and
therefore cannot lie on the path between the PAY-server
and the OPT-server. Assume w.l.o.g. that both servers
are located in Tv. In fact, they must also be located in
Tv during all selection phases i′ + 1, . . . , i. For PAY this
follows from the fact that the last processing phase in
which e was contained in the connected subgraph was i′.
For OPT this follows from the explicit assumption that
OPT does not traverse edge e between processing phase
i′ and processing phase i+ 1.

Let P be the set of items that generated payment
on e in at least one of the selection phases i′ + 1, . . . , i.
We observe that all items in P are located in Tu since
the PAY server is located in Tv. Another important
observation is that all items in P will be processed
by PAY in processing phase i. These items generate
payment on e and e is in the connected subgraph of
processing phase i. Thus, these items are also part of
the connected subgraph of processing phase i. Now we
partition P = POPT ·∪ PPAY into the subset POPT ⊆ P
of items that are also stored in OPT’s buffer and the
subset PPAY ⊆ P of items that are exclusively stored in
PAY’s buffer at the beginning of processing phase i.

Each selection phase of the algorithm has a duration
that indicates how much payment each item in PAY’s
buffer generates during the phase. Let T be the total
combined duration of selection phases i′ + 1, . . . , i.

Let O ⊆ P be the subset of items I for which
dI > 160 · T , i.e., items that have been in the buffer for
a significantly longer duration than just these selection
phases. For any such item we have p(I, e) = q(I, e). This
is because I ∈ P only generates payment on e during
selection phases i′ + 1, . . . , i and these phases make up
at most 1/160-th of the total lifetime of the item I.

Claim 3. The following three inequalities hold.

1.
∑

I∈O p(I, e) < `(e)/4.

2. rateOPT
e (i) < `(e)/T .

1228 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

3. ratePAY
e (i) < `(e)/T .

Proof. All three statements follow from the fact that
edge e must have received less than `(e) discount.
Specifically:

1. If
∑

I∈O p(I, e) =
∑

I∈O q(I, e) ≥ `(e)/4, we get a
contradiction. All items in I ∈ O allocate extra
discount 4 · q(I, e) to edge e. Therefore the total
amount of discount on e would be at least `(e).
However, in that case e would not contribute to
discounted-costi as required by the lemma.

2. If rateOPT
e (i) ≥ `(e)/T , the items in IOPT

e (i)
generate at least `(e) discount on e during selection
phases i′+1, . . . , i. Therefore e would not contribute
to discounted-costi.

3. If ratePAY
e (i) ≥ `(e)/T , the items in IPAY

e (i)
generate at least `(e) discount on e during selection
phases i′+1, . . . , i. Therefore e would not contribute
to discounted-costi. �

Observe that `(e) =
∑

I∈P p(I, e) =
∑

I∈POPT p(I, e) +∑
I∈PPAY p(I, e). Now, we distinguish two cases depend-

ing on whether the items in PPAY or POPT give the
larger contribution.

• In the case that
∑

I∈POPT p(I, e) ≥ `(e)/2, we have∑
I∈POPT\O p(I, e) ≥ `(e)/4. We observe that∑
I∈POPT

α(I, e) ≥
∑

I∈POPT\O

α(I, e)

=
∑

I∈POPT\O

p(I, e)

dI

≥
∑

I∈POPT\O

p(I, e)

160T
≥ `(e)

640T
.

Because OPT does not visit subtree Tu and because
PAY processes all items in P ⊇ POPT, items in
POPT are exclusively stored in OPT’s buffer during
selection phase i + 1. Therefore, IOPT

e (i + 1) =
IOPT
e (i) ·∪ POPT. Hence

rateOPT
e (i+ 1) ≥ rateOPT

e (i) +
k

160h

∑
I∈POPT

α(I, e)

≥ rateOPT
e (i) +

k

160h
· `(e)

640T

> rateOPT
e (i) +

k

160h
· rateOPT

e (i)

640

= rateOPT
e (i) ·

(
1 +

k

102400h

)
.

• If
∑

I∈PPAY p(I, e) ≥ `(e)/2, then by arguments
symmetric to the ones in the first case it follows
that

ratePAY
e (i+ 1) < ratePAY

e (i) ·
(

1− k

102400h

)
.

This concludes the proof of the lemma. �

In addition to the previous lemma, we observe that
for any selection phase i, we have ratePAY

e (i + 1) ≤
ratePAY

e (i) and rateOPT
e (i+ 1) ≥ rateOPT

e (i) unless OPT
visits subtree Tu by traversing e after processing phase
i. This holds because the set of items in Tu that are
exclusively stored in PAY’s buffer cannot increase and
the set of items in Tu that are exclusively stored in
OPT’s buffer cannot decrease unless OPT visits Tu.

Lemma 3.1 tells us that as long as OPT does not
traverse edge e, rateOPT

e (i) increases by some factor or
ratePAY

e (i) decreases by some factor if e contributes to
discounted-costi. Combined with the following lower and
upper bounds on rateOPT

e (i) and ratePAY
e (i), this will

conclude the proof of the theorem.

Claim 4. For any edge e and selection phase i,

• rateOPT
e (i) and ratePAY

e (i) are upper bounded by
k/80 and

• rateOPT
e (i) and ratePAY

e (i) are either 0 or at least
k/(160hD).

Proof. The following equation gives the upper bound on
rateOPT

e (i).

rateOPT
e (i) =

∑
I∈IOPT

e (i)

k · α(I, e) + 1/D

160h

≤
∑

I∈IOPT
e (i)

k · 1 + 1/D

160h

≤ k · 1 + 1/D

160
≤ k

80
.

The upper bound on ratePAY
e (i) follows by the same

reasoning.
For the second statement observe that rateOPT

e (i) =
0 if IOPT

e (i) = ∅. However, if IOPT
e (i) 6= ∅, then

rateOPT
e (i) =

∑
I∈IOPT

e (i)

k · α(I, e) + 1/D

160h
≥ k

160hD
.

Again, the same reasoning provides the required bound
on ratePAY

e (i). �

Claim 5. Let istart, . . . , iend denote a sequence of con-
secutive phases during which OPT does not traverse

1229 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

edge e. Then there are at most O(h
k (log h + logD))

many i ∈ {istart, . . . , iend} for which e contributes to
discounted-costi.

Proof. Whenever e contributes, either rateOPT
e (i) in-

creases by a (1 + k
102400h)-factor or ratePAY

e (i) decreases

by a (1− k
102400h)-factor. Because of the upper and lower

bounds on the rates from Claim 4, this can happen at
most

log(k/80
k/(160hD))

log(1 + k
102400h)

= O
(h
k

(log h+ logD)
)

times for rateOPT
e (i), and at most

log(k/(160hD)
k/80)

log(1− k
102400h)

= O
(h
k

(log h+ logD)
)

times for ratePAY
e (i). �

From the above claim we get that
∑

i discounted-costi ≤
O(h

k (log h + logD)) · OPT. Combining this with Ob-
servation 2 and Equation 3.2 concludes the proof of
Theorem 1.1.

4 Hierarchically Well Separated Trees

Our improved analysis for trees also implies an improved
result for hierarchically well separated trees (HSTs). A
2-HST is a rooted tree such that

• all leaf vertices are on the same level, i.e., have the
same hop-distance from the root,

• all edges on the same level have the same length,
and

• the length of an edge connecting a level i vertex
to a level i+ 1 vertex is half the length of an edge
connecting a level i− 1 vertex to a level i vertex.

We further assume that items can only be located at leaf
vertices.

In [16], it is shown that PAY is O(D · log k)-
competitive for trees. For 2-HSTs this bound is then
improved to O(log2 k).1 In the same way, we can use our
result from the previous section to obtain an upper bound
of O(log k) on the competitive ratio of PAY for 2-HSTs
which improves the previous O(log2 k) bound. Given
the analysis of the previous section, this follows from
the same techniques and arguments that were used in

1There are other versions of HSTs but they all can be suitably
approximated by the 2-HSTs defined here. The restriction for

items to arrive at leaf vertices can be removed using the same
techniques. See [16] for more details.

[16]. For completeness, we include the arguments in the
following. Since we are proving asymptotic statements,
we assume throughout that k is sufficiently large.

Since the HST is a rooted tree, the connected
subgraph of a processing phase i contains a unique vertex
that is on the lowest level (i.e., closest to the root) among
all vertices contained in the connected subgraph. Let
this vertex be y. Again, let p denote the vertex at which
the PAY-server starts in processing phase i and let p′

denote the position where it stops. Remember that p
and p′ must both be leaves. Also observe that y lies
on the path between p and p′. The first modification
to the proof in the previous section is that we do not
allow edges on the path between p and y to contribute
to reduced-costi and discounted-costi anymore.

Specifically, consider the connected subgraph of
processing phase i. Let reduced-costHST

i denote the total
length of edges in the connected subgraph which are
neither

1. on the path between p and y nor

2. on the path between p and the position of the OPT-
server.

As before, let x denote the vertex at which the
paths from p to p′ and from p to the location of the
OPT-server split. If x lies on the path between y
and p′, then any edge between p and y was already
excluded from contributing to reduced-costi. So now
consider the case that x lies on the path between p
and y. Then reduced-costHST

i must be at least as large
as the total length of edges on the path between p
and y, since all edges on the equally long path from
y to p′ contribute to reduced-costHST

i . Therefore, overall
reduced-costHST

i ≥ reduced-costi − reduced-costHST
i and

hence

10 · reduced-costHST
i ≥ 5 · reduced-costi ≥ costi,

where the last inequality was given in Equation 3.1.
Thus, we get the corresponding inequality to Equation
3.2.

The second modification to the proof of Theorem 1.1
is a change of the rate at which items generate discount.
Previously, each item stored either in OPT’s or PAY’s
buffer (but not in both) generated discount on each edge
e between the item’s location and the PAY-server. In
each time interval of length dt an item placed

k · α(I, e) + 1/D

160h
· dt

discount on such an edge. We change the 1/D term in
this expression depending on whether e is one of the
longer or one of the shorter edges on which I might

1230 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

I PAY

e m
a
x

e
2

lo
g
h

lo
n
g

ed
ge

s 2
log

h
lon

g
ed

ges

Figure 2: The part of an HST that is the path between
an item I and the PAY-server. e is a short edge. emax

is the longest edge on the path that does not lie on the
path from the PAY-server to the root of the tree.

generate discount. Specifically, for a selection phase i
consider the edges on the path between the location of
the item and the PAY-server. We call the longest 4 log h
edges on this path long edges for selection phase i and
item I and the remaining edges short edges. In each
time interval of length dt during the selection phase, the
item now generates discount

k · α(I, e) + 1/(8 log h)

160h
· dt

on long edges e. Let emax be the longest edge on the
path. Then, in each time interval of length dt during
the selection phase, the item now generates discount(

k

160h
· α(I, e) + k · `(e)

`(emax)

)
· dt

on short edges e. However, rateOPT
e (i) and ratePAY

e (i)
are now defined as if all edges where long edges. That
is,

rateOPT
e (i) :=

∑
I∈IOPT

e (i)

k · α(I, e) + 1/(8 log h)

160h

and

ratePAY
e (i) :=

∑
I∈IPAY

e (i)

k · α(I, e) + 1/(8 log h)

160h
.

Now, we show that the claim that relates the total
discount to the total payment (Claim 2) still holds for
this new discount generation scheme.

Claim 6. The total amount of dicount placed by all
items is at most 5% of the total payment generated by
all items.

Proof. The total discount D(I) generated by an item I
during a time interval dt is at most

k

160h

∑
e∈Elong∪Eshort

α(I, e)dt+
∑

e∈Elong

k

160h
· 1

8 log h
dt

+
∑

e∈Eshort

k
`(e)

`(emax)
dt ,

where Elong and Eshort denote the set of long and short
edges, respectively, on its path to the PAY-server. We
can simplify this to

D(i) ≤ k

160h
dt+

∑
e∈Elong

k

160h
· 1

8 log h
dt

+ k

∑
e∈Eshort

`(e)

`(emax)
dt ≤ k

80h
dt .

The last step follows because |Elong| ≤ 4 log h and∑
e∈Eshort

`(e) ≤ 4 · `(emax)/h2 ≤ `(emax)/(320h), which
holds (for sufficiently large h) because the edges are
geometrically increasing which means that the longest
short edge must be a lot shorter than the longest long
edge emax.

Since, in every phase at most h + k ≤ 2h items
generate discount we obtain that the total discount
generated in this way (without extra discount) is only

2h
k

80h
T ≤ kT/40 ,

where T is the combined total time of all selection phases
of the online algorithm.

The generation of extra discount did not change.
Therefore the total extra discount generated over all
items is at most kT/40, as in the proof of Claim 2. Since
the algorithm generates a total payment of kT the claim
follows. �

It now may happen that the actual discount gener-
ation rate is lower than what rateOPT

e (i) or ratePAY
e (i)

indicate. This could potentially cause issues in Lemma
3.1 where we rely on this discount generation. Neverthe-
less, the following lemma shows that such problems do
not arise.

Lemma 4.1. Suppose that an edge e = {u, v} con-
tributes to discounted-costHST

i for the i-th processing
phase. Let processing phase i′ < i be the last process-
ing phase before i in which edge e was contained in the
connected subgraph to be processed. If such an i′ does

1231 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

not exist, let i′ be the first processing phase. Further
assume that OPT does not traverse edge e between pro-
cessing phase i′ and processing phase i + 1. Then for
every j ∈ [i′ + 1, i], the true discount generation rate
on e in selection phase j by items exclusively stored in
OPT’s and PAY’s buffer is not less than rateOPT

e (j) and
ratePAY

e (j), respectively.

Proof. We first observe that e cannot lie on the path
from the PAY-server to the root of the tree during
any selection phase in [i′ + 1, i]. Otherwise, e would
not contribute to discounted-costHST

i according to our
definition. Secondly, the OPT-server and the PAY-server
must be on the same side of e during every selection
phase in [i′+1, i]. This is because, due to the assumptions
in the lemma, they cannot traverse e during this interval
and if they were located on different sides, e would not
contribute to discounted-costHST

i . Further we note that
any item generating discount on e during some selection
phase in [i′ + 1, i], must either be exclusively stored in
OPT’s buffer or exclusively stored in PAY’s buffer during
each selection phase in [i′ + 1, i]. This is because e must
lie on the path from that item to the PAY-server (and
therefore also on the path to the OPT-server) in such a
selection phase. However, because neither server crosses
e between processing phase i′ and selection phase i, the
item must in fact be exclusively stored in the OPT or
PAY buffer for the entire duration of this interval.

Now assume for contradiction that the lemma is
not true. Then there must be an item I for which
e is a short edge during some selection phase j ∈
[i′ + 1, i] (see Figure 2 for an illustration). e may be a
short edge for multiple selection phases which involve
different maximum edges emax with respect to e. We
are interested in those selection phases for which this
maximum edge is the longest. We choose j to be the
first such selection phase in [i′ + 1, i].

Note that this implies that emax separates e and the
item I from the PAY-server in selection phase j, because
e cannot lie on the path from the PAY-server to the root
of the tree. Furthermore, in the preceding processing
phase, emax was part of the connected subgraph because
otherwise emax also would be a long edge for I in selection
phase j − 1, which contradicts our choice of j (note that
in this case j − 1 > i′ as the PAY-server cannot traverse
edge e without traversing emax). We conclude that, at
the start of selection phase j, edge emax has no payment.

The edge emax separates the PAY-server from edge
e during selection phase j and this must remain true
until the first processing phase j′ ≥ j in which emax

is contained in the connected subgraph again. This
also implies that j′ ≤ i, because e is in the connected
subgraph of processing phase i.

At most k items can generate payment at any single

point in time. Therefore the total combined duration
of selection phases j, . . . , j′ must be at least `(emax)/k.
Item I generates discount on e in every selection phase
in [j, j′]. Therefore, during the same time, I generates
discount of at least `(emax)/k · k · `(e)/`(emax) ≥ `(e)
on edge e. Therefore, the discount on e in processing
phase i is also at least `(e) and e would not contribute to
discounted-costHST

i , which contradicts the assumptions
of the lemma. �

Finally, we observe that with the new discount
generation, Claim 4 improves as follows.

Claim 7. For any edge e and selection phase i,

• rateOPT
e (i) and ratePAY

e (i) are upper bounded by
k/80 and

• rateOPT
e (i) and ratePAY

e (i) are either 0 or at least
k/(1280h log h).

Using this improved claim in combination with the still
valid Lemma 3.1, improves the bound in Claim 5 from
O(h

k (log h + logD)) to O(h
k (log h + log log h)), which

concludes our analysis for HSTs.

5 Conclusions

We have shown a competitive ratio of O(hk (log h+logD))
on tree-metrics of hop-diameter D against an adversary
with buffer size h ≥ k. Our results are tight for
h = (1 + ε) · k. However, an important open question
is whether the results can be improved for h = k. On
one hand one might want to improve the dependency on
k from log k to, e.g.,

√
log k (as in the case for uniform

metrics). On the other hand, it would be interesting
to investigate whether the dependency on D can be
improved even further or removed altogether. Even for
the seemingly simple case of line-metrics (where D, in
principle, is unbounded) this seems difficult and to the
best of our knowledge the best upper bound that is
independent of D for this case is just the trivial O(k)
(if D is large). Another question is what bounds can
be achieved when h < k. This is a typical resource
augmentation setting. For example, how large does
k need to be, compared to h, to achieve a constant
competitive ratio?

References

[1] Amjad Aboud. Correlation clustering with penalties
and approximating the reordering buffer management
problem. Master’s thesis, Computer Science Depart-
ment, The Technion — Israel Institute of Technology,
2008.

[2] Anna Adamaszek, Artur Czumaj, Matthias Englert,
and Harald Räcke. Almost tight bounds for reordering

1232 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

buffer management. In Proceedings of the 43rd ACM
Symposium on Theory of Computing (STOC), pages
607–616, 2011.

[3] Anna Adamaszek, Marc P. Renault, Adi Rosén, and
Rob van Stee. Reordering buffer management with
advice. In Proceedings of the 11th Workshop on
Approximation and Online Algorithms (WAOA), pages
132–143, 2013.

[4] Yuichi Asahiro, Kenichi Kawahara, and Eiji Miyano.
NP-hardness of the sorting buffer problem on the
uniform metric. Discrete Applied Mathematics, 160(10-
11):1453–1464, 2012.

[5] Noa Avigdor-Elgrabli, Sungjin Im, Benjamin Moseley,
and Yuval Rabani. On the randomized competitive ratio
of reordering buffer management with non-uniform costs.
In Proceedings of the 42nd International Colloquium
on Automata, Languages and Programming (ICALP),
pages 78–90, 2015.

[6] Noa Avigdor-Elgrabli and Yuval Rabani. An improved
competitive algorithm for reordering buffer manage-
ment. In Proceedings of the 21st ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 13–21,
2010.

[7] Noa Avigdor-Elgrabli and Yuval Rabani. A constant
factor approximation algorithm for reordering buffer
management. In Proceedings of the 24th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 973–
984, 2013.

[8] Noa Avigdor-Elgrabli and Yuval Rabani. An optimal
randomized online algorithm algorithm for reorder-
ing buffer management. In Proceedings of the 54th
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 1–10, 2013.

[9] Yossi Azar, Matthias Englert, Iftah Gamzu, and Eytan
Kidron. Generalized reordering buffer management.
In Proceedings of the 31st Symposium on Theoretical
Aspects of Computer Science (STACS), pages 87–98,
2014.

[10] Siddharth Barman, Shuchi Chawla, and Seeun Umboh.
A bicriteria approximation for the reordering buffer
problem. In Proceedings of the 20th European Sympo-
sium on Algorithms (ESA), pages 157–168, 2012.

[11] Yair Bartal. Probabilistic approximations of metric
spaces and its algorithmic applications. In Proceed-
ings of the 37th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 184–193, 1996.

[12] Yair Bartal. On approximating arbitrary metrics by tree
metrics. In Proceedings of the 30th ACM Symposium
on Theory of Computing (STOC), pages 161–168, 1998.

[13] Marcin Bieńkowski, Martin Böhm, Lukasz Jeż, Pawe l
Laskoś-Grabowski, Jan Marcinkowski, Jǐŕı Sgall, Alek-
sandra Spyra, and Pavel Veselý. Logarithmic price
of buffer downscaling on line metrics. CoRR,
abs/1610.04915, 2016.

[14] Dan Blandford and Guy Blelloch. Index compression
through document reordering. In Proceedings of the
Data Compression Conference (DCC), pages 342–351,
2002.

[15] Ho-Leung Chan, Nicole Megow, René Sitters, and Rob
van Stee. A note on sorting buffers offline. Theor.
Comput. Sci., 423:11–18, 2012.

[16] Matthias Englert, Harald Räcke, and Matthias West-
ermann. Reordering buffers for general metric spaces.
Theory of Computing, 6(1):27–46, 2010.

[17] Matthias Englert, Heiko Röglin, and Matthias West-
ermann. Evaluation of online strategies for reordering
buffers. ACM Journal of Experimental Algorithmics,
14, 2009.

[18] Matthias Englert and Matthias Westermann. Reorder-
ing buffer management for non-uniform cost models.
In Proceedings of the 32nd International Colloquium
on Automata, Languages and Programming (ICALP),
pages 627–638, 2005.

[19] Jittat Fakcharoenphol, Satish B. Rao, and Kunal
Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and
System Sciences, 69(3):485–497, 2004.

[20] Iftah Gamzu and Danny Segev. Improved online
algorithms for the sorting buffer problem on line metrics.
ACM Trans. Algorithms, 6(1), 2009.

[21] Kai Gutenschwager, Sven Spiekermann, and Stefan
Voß. A sequential ordering problem in automotive paint
shops. International Journal of Production Research,
42(9):1865–1878, 2004.

[22] Sungjin Im and Benjamin Moseley. New approxima-
tions for reordering buffer management. In Proceedings
of the 25th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1093–1111, 2014.

[23] Sungjin Im and Benjamin Moseley. Weighted reordering
buffer improved via variants of knapsack covering
inequalities. In Proceedings of the 42nd International
Colloquium on Automata, Languages and Programming
(ICALP), pages 737–748, 2015.

[24] Rohit Khandekar and Vinayaka Pandit. Online and
offline algorithms for the sorting buffers problem on the
line metric. Journal of Discrete Algorithms, 2008.

[25] Jens Krokowski, Harald Räcke, Christian Sohler, and
Matthias Westermann. Reducing state changes with a
pipeline buffer. In Proceedings of the 9th International
Fall Workshop Vision, Modeling, and Visualization
(VMV), pages 217–224, 2004.

[26] Harald Räcke, Christian Sohler, and Matthias Wester-
mann. Online scheduling for sorting buffers. In Proceed-
ings of the 10th European Symposium on Algorithms
(ESA), pages 820–832, 2002.

A Appendix

In the following we show that, on the uniform metric,
an optimal offline algorithm with buffer size k may have
cost that is by an Ω(lnh) factor larger than the cost of an
optimal offline algorithm with buffer size h = k/(1− ε),
for any constant ε > 0.

The problem for the uniform metric, where two items
have either distance 0 or 1 from one another, is the same
as a tree of height one in which items arrive at the leaf

1233 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

nodes of the tree. Another, more common interpretation
is to view the items as being colored. Two items with the
same color have distance 0 and two items with different
colors have distance 1. In the following, we will use the
latter interpretation. An algorithm incurs a cost of 1
for every color change, that is, switching from removing
items of one color to removing items of another color
from the buffer.

We construct a sequence σ of items such that an
optimal offline algorithm with a buffer of size h can
process all colors in order of appearance with only one
color change per color, which is clearly optimal. An
optimal offline algorithm with buffer-size k < h will
require more color changes.

Our input sequence consists of phases j = 0, . . . , N ,
for some large N � h.

• In phase 0, 1 item of color c1 arrives, followed by
b h
i lnhc items of color ci+1 for each i ≥ 1.

• In phase j > 0, 1 item of color cj arrives. Then,
b h
i lnhc − b

h
(i+1) lnhc items of color cj+i+1 arrive for

each i ≥ 1.

This sequence has the property that by the end of
phase j, b h

i lnhc items of color cj+i+1, for i ≥ 1 have
arrived.

A buffer of size h′ = 1 +
∑

i≥1b
h

i lnhc is necessary
and sufficient to process this sequence with cost equal
to the number of colors N + 1 + bh/ lnhc = O(N). Such
an algorithm holds all items of colors strictly larger than
cj+1 in the buffer at the end of phase j (as well as one
item of color cj+1 which can be removed from the buffer
one step before the item of color cj+1 which arrives in
phase j + 1 is removed from the buffer). There are h′

such items. Note that h ≥ h′ ≥ h · (1 − 1+ln lnh
lnh), for

sufficiently large h.
An algorithm processing the sequence with a buffer

of size k < h′ will have at least h′ − k of these items
removed from the buffer before the end of phase j. Let
φj be the number of these items removed from the buffer
before the end of phase j. Summing over all phases, we
must have Φ :=

∑
φj ≥ N · (h′ − k).

Switching to a color cj+i+1 in phase j removes at
most b h

i lnhc items from the buffer and thus contributes

at most i · b h
i lnhc ≤

h
lnh to Φ. Over all phases and

colors, we therefore must make at least Φ · lnh
h such color

changes. For k ≤ (1− ε) · h this gives

N · (h′ − k) · lnh

h
≥
(
ε− 1 + ln lnh

lnh

)
· lnh ·N

= Θ(lnh) ·N

color changes. Combined with the fact that an optimal
algorithm with a buffer of size h can process the sequence
at cost O(N), this proves our claim.

1234 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/2

0/
17

 to
 1

37
.2

05
.2

02
.2

40
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Further Work.

	The Algorithm
	Proof of Theorem 1.1
	Hierarchically Well Separated Trees
	Conclusions
	Appendix

