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Accepted 2016 September 16. Received 2016 August 22.

ABSTRACT
We present an XMM-Newton X-ray observation of TRAPPIST-1, which is an ultra-
cool dwarf star recently discovered to host three transiting and temperate Earth-sized
planets. We find the star is a relatively strong and variable coronal X-ray source with
an X-ray luminosity similar to that of the quiet Sun, despite its much lower bolometric
luminosity. We find LX/Lbol = 2 − 4 × 10−4, with the total XUV emission in the range
LXUV/Lbol = 6 − 9 × 10−4, and XUV irradiation of the planets that is many times
stronger than experienced by the present-day Earth. Using a simple energy-limited
model we show that the relatively close-in Earth-sized planets, which span the clas-
sical habitable zone of the star, are subject to sufficient X-ray and EUV irradiation
to significantly alter their primary and any secondary atmospheres. Understanding
whether this high-energy irradiation makes the planets more or less habitable is a
complex question, but our measured fluxes will be an important input to the neces-
sary models of atmospheric evolution.

Key words: stars: individual: TRAPPIST-1 – stars: late-type – planets and satellites:
atmospheres – planets and satellites: terrestrial planets – planet-star interacctions –
X-rays: stars.

1 INTRODUCTION

Gillon et al. (2016) announced the discovery of a remark-
able system of three Earth-sized planets orbiting a nearby
ultracool dwarf star of spectral type M8, TRAPPIST-1. The
planets are transiting, providing precise radii, and because
the host star is small and cool the transits are deep and the
planets are temperate despite their relatively short orbital
periods.

The three planets are most likely all outside the classical
habitable zone, two closer-in and one beyond (although the
outer planet has an uncertain orbit that could place it in the
habitable zone). Nevertheless, the factors that influence hab-
itability are complex and uncertain and Gillon et al. (2016)
point out that habitable conditions might exist at the ter-
minators of the inner planets that are presumably tidally-
locked, while tidal heating of the outer planet might render
it habitable as well. Either way, the small size and low tem-
perature of the star, and the proximity of the system to
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Earth (12 pc), provide by far the best opportunity to date
to study the atmospheres of cool, Earth-sized exoplanets.

An important factor influencing the evolution of
planetary atmospheres and their habitability is the X-
ray (1–124 Å) and extreme-ultraviolet (EUV; 124–912 Å)
radiation emitted by their parent stars (together often
termed XUV radiation). Mass loss from exoplanetary
atmospheres is observed directly in ultraviolet transit
observations of hot gas giants and a warm Neptune (e.g.
Vidal-Madjar et al. 2003; Lecavelier des Etangs et al. 2012;
Ehrenreich et al. 2015) and this is thought to be the result
of XUV irradiation heating of the planetary exosphere
and driving hydrodynamic escape (Lammer et al. 2003;
Johnstone et al. 2015). The long term effects of XUV irra-
diation on the habitability of terrestrial planets are complex
and uncertain, and while some planets might be rendered
uninhabitable through atmospheric stripping, others may
become habitable through the removal of a massive primary
atmosphere of H/He (e.g. Owen & Mohanty 2016). Water
might be removed from some habitable zone planets by
photolysis and H evaporation (e.g. Bolmont et al. 2017),
perhaps leading to abiotic oxygen-dominated atmospheres
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(Wordsworth & Pierrehumbert 2014; Luger & Barnes
2015), while in other planets the evaporation might prevent
the atmosphere of an out-gassing planet from becoming
too dense. It has also been suggested that XUV irradiation
might expand a secondary atmosphere beyond the mag-
netosphere of the planet, where it becomes vulnerable to
erosion by the stellar wind (e.g. Lammer et al. 2011).

Ultracool dwarfs are known to exhibit stellar activity,
but the activity level seems to decrease steeply to later
spectral types, with LX/Lbol values dropping by at least
two orders of magnitude from saturated emission of 10−3

for mid-M stars (e.g. Pizzolato et al. 2003; Wright et al.
2011) to < 10−5 for mid-L dwarfs (e.g. Berger et al. 2010).
Williams et al. (2014) confirm the breakdown of saturated
X-ray emission for spectral types later than M6, but find
that a population of objects later than M7 with X-ray emis-
sion characteristic of mid-M stars is not excluded.

TRAPPIST-1 has been found to exhibit chromospheric
Hα emission at a level of LHα/Lbol = 2.5 − 4.0 × 10−5, which
is found to be typical for its M8 spectral type and weaker
than seen in mid-M stars (Gizis et al. 2000; Reiners & Basri
2010). TRAPPIST-1 also has a relative weak magnetic
field strength of ∼ 600 G (Reiners & Basri 2010), which is
lower than mid-M stars with the same short spin period
of 1.40 ± 0.05 d. It may therefore be expected to have X-
ray emission considerably weaker than mid-M stars, and in-
deed Bolmont et al. (2017) assumed LX/Lbol < 10−5 in a
recent study of water loss from the Earth-sized planets of
TRAPPIST-1.

In this letter we present an XMM-Newton observation
of TRAPPIST-1 that allows us to measure the X-ray lumi-
nosity of the star, estimate its EUV luminosity, and hence
consider the effects of XUV irradiation on the Earth-sized
exoplanets.

2 OBSERVATIONS

The host star of the TRAPPIST-1 system (=2MASS
J23062928–0502285) was observed with XMM-Newton for
30 ks on 17th December 2014 (ObsID: 0743900401; PI:
Stelzer) using the thin optical blocking filters. An X-
ray source is clearly detected at the proper-motion cor-
rected 2MASS position of the ultracool dwarf (Cutri et al.
2003; Costa et al. 2006). The source is soft, being visible
in pipeline processed EPIC-pn images in the 0.2-0.5 and
0.5-1.0 keV bands, but not in the higher energy bands.
The XMM-Newton pipeline source detection also identi-
fies a source at this position, with a offset of 3.1 arcsec
from the expected source position. This offset is consistent
with the known accuracy of the XMM-Newton astrometric
frame (Watson et al. 2009) and we find the offset drops to
1.27 arcsec when the XMM-Newton astrometry is rectified
against the USNO B1.0 catalogue.

We extracted X-ray lightcurves and spectra for
TRAPPIST-1 from the EPIC-pn camera using the pipeline
source detect position and a 20 arcsec radius aperture. The
EPIC-pn camera observed for 28.0 ks and had an effective
exposure time of 24.9 ks. For such a soft source only a small
proportion of the X-ray events are detected in the EPIC-
MOS cameras so we limited our analysis to the EPIC-pn.
The background counts were estimated using a source-free

circular region of radius 51.5 arcsec located at the same end
of the same CCD. We followed the standard data reduction
methods as described in data analysis threads provided with
the Science Analysis System1 (SAS version 14.0). The spec-
trum was binned to a minimum of 10 counts per bin, with
the additional requirement that the EPIC-pn spectral reso-
lution would not be oversampled by more than a factor of 3.
We fitted the spectrum using XSPEC2 (version 12.8). Our
fitted parameters were determined using the Cash statistic
(Cash 1979) and our quoted errors correspond to 68% con-
fidence intervals.

A number of background flares occurred during the ob-
servation (caused by soft protons from the Sun impacting the
detector), however we did not filter these time intervals when
creating the data products presented here (as suggested in
the SAS threads) because we wanted to inspect the entire
X-ray light curve and measure X-ray fluxes averaged across
the observation (see Sect. 3).

3 RESULTS

3.1 X-ray light curve

The XMM-Newton X-ray light curve of TRAPPIST-1 is
plotted in Fig. 1, showing that the star was brighter at the
beginning and the end of the observation. This variability is
statistically significant, with a χ2 of 85.6 for 27 degrees of
freedom when compared to the weighted mean of all the data
points. The 7.8 hr observation covers 23% of the 1.40 d spin
period of the star (Gillon et al. 2016) so it is likely that at
least some of this variability is due to rotational modulation.

For completeness we also plot the raw source and back-
ground time-series in Fig. 1 (middle panel), showing the ef-
fect of the Solar soft proton flares. While both TRAPPIST-1
and the background were bright at the beginning of the ob-
servation, we are satisfied that this is a coincidence. Tests
with light curves extracted from higher energies (where
TRAPPIST-1 is not detected) confirm that the background
subtraction is robust.

In the bottom panel of Fig. 1 we plot a measure of the
hardness of the X-ray spectrum of TRAPPIST-1 during the
beginning, middle and end of the observation. Hardness ra-
tios are a simple method with which to identify variations
in the X-ray spectrum, and in this case we have calculated
the ratio of the X-ray count rate in the 0.5–1.5 keV band to
the count rate in the 0.15–0.5 keV band. To the precision of
the current dataset, it can be seen that the hardness ratio
is consistent with the X-ray spectrum remaining constant
throughout the observation, despite the flux variations ap-
parent in the light curve. There is a hint that the hardness
may have increased during the brightening at the end of the
observation, and an increases in hardness would be expected
if this brightening were due to a stellar flare.

3.2 Spectral analysis

The XMM-Newton EPIC-pn spectrum of TRAPPIST-1 is
plotted in Fig. 2. The X-ray spectrum is very soft and shows

1 http://www.cosmos.esa.int/web/xmm-newton/sas
2 https://heasarc.gsfc.nasa.gov/xanadu/xspec/
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Figure 1. Top: the X-ray light curve of TRAPPIST-1 (0.15–
1.5 keV) with the XMM-Newton EPIC-pn camera (1000 s bins).
Middle: the raw source light curve of TRAPPIST-1 (green) and
the scaled background (red), showing the Solar proton flares (400 s
bins). Bottom: the hardness of TRAPPIST-1 calculated as the
ratio of X-ray counts in the 0.5–1.5 keV and 0.15–0.5 keV bands.

evidence of line emission between 0.5 and 1.0 keV. These
features are characteristic of coronal emission from late
type stars. We fitted the spectrum using the APEC model
for a collisionally-ionised optically-thin plasma (Smith et al.
2001), finding a poor fit with a single temperature model,
but a good fit with a two temperature model (χ2 of 11.9
with 17 degrees of freedom). The model and residuals to
this fit are plotted in the top and middle panels of Fig. 2
respectively. The fitted temperatures are kT = 0.15±0.02

0.01 and

0.83±0.16
0.10 keV. In reality, coronal X-ray emission is expected

to be the sum of emission from a wide and continuous range
of temperatures (e.g. Louden et al. 2017), but at low spec-
tral resolution and with modest signal-to-noise ratios a two
temperature model usually provides an adequate approxi-
mation (e.g. Pillitteri et al. 2014).

As expected for such a nearby X-ray source (12.1±0.4 pc;
Costa et al. 2006) we found that the interstellar X-ray ab-
sorption is too low to be constrained usefully by the X-ray
spectrum. Consequently we chose to fix the interstellar ab-
sorption in our models at a value of NH = 3.7 × 1018 cm−2

based on an assumed local interstellar neutral hydrogen den-
sity of 0.10 cm−3 (Redfield & Linsky 2000). We modeled the
absorption with the tbabs model in XSPEC (Wilms et al.
2000), and found that it had a negligible effect on our fitted
temperatures and X-ray fluxes.

Elemental abundances are also poorly constrained by
the X-ray spectrum and we left them fixed at Solar values
(Asplund et al. 2009).

Our fitted X-ray energy fluxes for TRAPPIST-1 are
presented in Table 1, together with X-ray luminosities cal-

Figure 2. The XMM-Newton EPIC-pn spectrum of TRAPPIST-
1 fitted with our two temperature APEC model (top). The middle
panel shows the normalised residuals to this fit, while the bottom
panel shows the residuals to our fit with the cemekl model.

culated from the known distance to the star (12.1 ± 0.4pc;
Costa et al. 2006). We have given values for a range of en-
ergy intervals in order to facilitate comparison with other
studies of the coronal X-ray emission of late type stars.

In order to calculate our X-ray fluxes in the commonly-
used ROSAT PSPC band (0.1–2.4 keV) it was necessary to
extrapolate our fitted model beyond the soft cut-off of our
EPIC-pn X-ray spectrum at 0.166 keV. This extrapolation
is sensitive to the number and distribution of temperature
components employed in the model, and it is possible that
our simple two temperature model under-predicts the X-
ray flux in the 0.1–2.4 keV band. In order to investigate the
uncertainty in this extrapolation we also fitted our spectrum
with the cemekl model in XSPEC, which calculates the X-
ray spectrum of an optical-thin plasma with a continuous
range of temperatures (up to a maximum value) and with
the emission measure distribution defined by a power law
(Schmitt et al. 1990; Singh et al. 1996). We used the version
of cemekl based on the same APEC model employed in our
two temperature fit. We find an almost equally good fit to
the spectrum with this model (χ2 of 15.7 with 19 degrees
of freedom) and the residuals are plotted in the lower panel
of Fig. 2. In this fit the emission measure rises steeply to
lower temperatures, with a power law index of −0.81 ± 0.15.
The maximum temperature is poorly constrained to kTmax >
1.23 keV and we left this parameter fixed to kTmax = 5 keV
while evaluating the X-ray fluxes.

The fluxes and corresponding luminosities for the ce-
mekl fit are also presented in Table 1, and it can be seen
that the fluxes of the two-temperature APEC model and
the cemekl model are consistent within the energy band cov-
ered by the EPIC-pn spectrum, but diverge as the model is
extrapolated down to 0.1 keV. This is as expected because
the two temperature model does not account for the emis-
sion from cooler plasma that may contribute significantly
below the EPIC-pn band, while the power law model for
the distribution of emission measures may be too steep be-
low the EPIC-pn band and over-predict the contribution

MNRAS 000, 1–6 (2016)
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from lower temperatures. In Sect. 4 we assume that the
true 0.1-2.4 keV X-ray luminosity falls between the best fit-
ting values from these model extremes, i.e. in the range
(3.8 − 7.9) × 1026 erg s−1.

4 DISCUSSION AND CONCLUSIONS

Our spectral analysis in Sect. 3.2 and X-ray luminosities
in Table 1 show that TRAPPIST-1 is a relatively strong
coronal X-ray source. It has the same 0.1–2.4 keV X-ray
luminosity as the quiet Sun (6 × 1026 erg s−1, Judge et al.
2003) despite its photospheric luminosity of only 0.000525 ±
0.000036 L" (Filippazzo et al. 2015).

The Lx/Lbol ratio of the star is in the range (2−4)×10−4,
which places it below the canonical value of 10−3 for satu-
rated X-ray emission of stars with spectral types G to mid-M
(e.g. Pizzolato et al. 2003; Wright et al. 2011). TRAPPIST-
1 is a reasonably rapidly rotating star, with a spin period of
1.40±0.05 d, and so it might be expected to exhibit saturated
X-ray emission for its spectral type. The relatively low flux
compared to the canonical saturated value might then re-
flect the known decrease in stellar activity to spectral types
later than M6 (e.g. Berger et al. 2010; Williams et al. 2014).
However, inspection of the distribution of Lx/Lbol values
for individual earlier-type saturated stars in Wright et al.
(2011) shows a considerable spread around the mean value
of 7 × 10−4, and many earlier type stars have Lx/Lbol in
the range (2 − 4) × 10−4 that we observe for TRAPPIST-1.
Consequently, the X-ray emission of TRAPPIST-1 can also
be considered to be consistent with the saturated emission
of earlier type M stars.

In order to consider the possible effects of X-ray and
EUV irradiation on the atmospheres and possible oceans
of the Earth-sized planets orbiting TRAPPIST-1 we es-
timate energy-limited mass loss rates (e.g. Lammer et al.
2003; Lecavelier Des Etangs 2007; Louden et al. 2017) as

Ṁ =
ηπFXUVα

2R3
P

GMpK
=
ηIXUVα

2RP

GMpK
(1)

where FXUV is the combined X-ray and EUV fluxes incident
on the planet, IXUV is the total X-ray and EUV irradiation
of the planet, G is the gravitational constant and Mp and
Rp are the mass and radius of the planet respectively. The
factor K accounts for the reduced energy required to escape
the Roche lobe of the planet (Erkaev et al. 2007). We set
the quantity α to unity, which is designed to take account
of the increased cross-sectional area of planets to EUV radi-
ation. This is an important correction for hot gaseous plan-
ets, but probably negligible for cooler terrestrial planets. η
is the energetic efficiency of mass loss, which has been con-
strained observationally to be at least 1% in hot gas giants
and warm Neptunes (e.g. Lecavelier des Etangs et al. 2012;
Ehrenreich et al. 2015) and is expected to be around 10–20%
for low mass planets (e.g. Owen & Alvarez 2016).

In order to calculate energy-limited escape rates we
need to estimate the EUV flux of the star, which is not
covered by the XMM-Newton bandpass. To do this we em-
ploy the scaling relation of Chadney et al. (2015), which
is an empirical relationship between the X-ray flux at the
surface of the star and the relative strength of the X-ray
and EUV emission. We cannot be sure that this relation

Table 1. Fitted X-ray fluxes and luminosities for TRAPPIST-1
in different energy bands. APEC refers to our two temperature
model. cemekl is our multi-temperature model where the emission
measure distribution is defined by a power law.

Energy range X-ray fluxa Luminosityb

(keV) APEC cemekl APEC cemekl

0.100 – 2.40 2.16±0.18
0.21 4.49±0.44

0.70 3.79±0.36
0.41 7.89±0.86

1.28
0.124 – 2.48 2.06±0.15

0.18 2.94±0.19
0.36 3.62±0.31

0.36 5.16±0.41
0.68

0.150 – 2.40 1.98±0.13
0.19 2.42±0.13

0.31 3.48±0.28
0.37 4.25±0.30

0.58
0.200 – 2.40 1.83±0.11

0.16 1.88±0.09
0.22 3.21±0.24

0.32 3.30±0.22
0.42

a × 10−14 erg s−1 cm−2

b × 1026 erg s−1

applies to such a late spectral type as TRAPPIST-1, but
we are encouraged that the Chadney et al. (2015) study in-
cludes a mid-M star, and that our measured surface X-ray
flux for TRAPPIST-1 (4.6 − 9.5 × 105 mW m−2) lies in the
middle of the range calibrated by the empirical relation.
Using this relation we find FEUV/FX = 1.78 for the sur-
face flux calculated from our APEC spectral fit (Table 1)
and FEUV/FX = 1.31 for our cemekl model. While our EUV
fluxes are estimated by a different method to that employed
by the MUSCLES Treasury Survey (where they are scaled
from the reconstructed Lyman-α fluxes), we note that the
two methods have been found to yield consistent estimates
for the M dwarf planet host GJ 436 (Ehrenreich et al. 2015;
Youngblood et al. 2016).

Summing X-ray and EUV fluxes we find LXUV/Lbol =
6 − 9 × 10−4, which is almost an order of magnitude higher
than any of the planet hosts in the MUSCLES Treasury Sur-
vey (France et al. 2016). In Table 2 we show how our fluxes
translate to irradiation of the individual planets (FX, FEUV
and IXUV), together with the energy-limited mass loss rates
for each planet (assuming an energetic efficiency of η = 0.1
and taking fluxes from the APEC model; the cemekl values
being simply a factor of 1.7 higher). It can be seen that the
high-energy irradiation of the planets is typically tens to over
a thousand times higher than experienced by the present-day
Earth, giving likely escape rates that would be highly sig-
nificant for Earth-like planets with atmospheric masses of
around 5 × 1021 g and ocean masses of around 1 × 1024 g.
On the timescale of a Gyr, all three planets could have have
been stripped of atmospheres and oceans. Even at the wider
possible separations, TRAPPIST-1d could be very substan-
tially eroded, including for instance the entire H component
of the UV photo-dissociated water content of the Earth.

On the other hand, energy-limited mass loss is rather
simplistic and can only provide an upper limit to mass loss
rates, neglecting as it does the radiation physics and hydro-
dynamics of the planetary atmosphere and its composition.
Owen & Mohanty (2016) for instance show that energy lim-
ited mass loss models can considerably over-estimate escape
rates. They also show that rather strong XUV irradiation is
actually required for a terrestrial planet to become habitable
if it is formed with a substantial H/He primary atmosphere.

Bolmont et al. (2017) have carried out an investiga-
tion of the likely rates of water loss from Earth-sized
exoplanets in the habitable zones of ultracool dwarfs,
and in TRAPPIST-1 in particular. They conclude that
TRAPPIST-1b and -1c are likely to be completely desic-

MNRAS 000, 1–6 (2016)
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Table 2. The X-ray and EUV irradiation of the individual Earth-sized planets in the TRAPPIST-1 system. The symbols Fx and FEUV
denote the energy fluxes at the planet, while IXUV is the total X-ray and EUV energy input to each planet. Mass loss rates were calculated
assuming energy-limited atmospheric escape with an efficiency of 10%. The figures here are based on our best-fitting APEC fluxes of
Table 1 and it should be noted that our cemekl fits suggest that all of these figures could be higher by a factor 1.7. Orbital separations
and planet radii are from Gillon et al. (2016).

Planet Separation Radius FX FEUV FX FEUV IXUV Estimated mass loss
name (AU) (REarth) (erg s−1 cm−2) (cf. Earthc) (×1020 erg s−1) (×107 g/s) (Earth oceansd/Gyr)

TRAPPIST-1b 0.01111 1.113 1092. 1950. 1280. 644. 48.1 118. 29.
TRAPPIST-1c 0.01522 1.049 582. 1039. 682. 343. 22.7 47.2 12.
TRAPPIST-1d 0.022a 1.168 278. 497. 326. 164. 13.5 29.6 7.2
TRAPPIST-1d 0.058b 1.168 40.1 71.6 47.0 23.7 1.94 3.85 0.93
TRAPPIST-1d 0.146a 1.168 6.3 11.3 7.4 3.7 0.31 0.59 0.14

a The minimum and maximum possible orbital separations for TRAPPIST-1d. b The most likely orbital separation for TRAPPIST-1d.
c The Earth typically receives 0.85 erg s−1 cm−2 in X-ray and 3.03 erg s−1 cm−2 in EUV in mid-Solar cycle (Ribas et al. 2005).

d Taken to be 1.3 × 1024 g.

cated by XUV irradiation, but that TRAPPIST-1d may
have held onto most of its initial water content. However,
these authors assume LXUV/Lbol < 10−5 for TRAPPIST-
1, which is at least fifty times smaller than the value we
measure here. On the face of it this seems to make a signifi-
cant water content on TRAPPIST-1d also unlikely, although
Bolmont et al. (2017) do list a number of mechanisms that
influence water loss and require further investigation. Water
might, for instance, survive in cold traps on the night sides or
at the poles of highly-irradiated tidally-locked planets (e.g.
Leconte et al. 2013; Menou 2013).

The TRAPPIST-1 system presents a fabulous oppor-
tunity to study the atmospheres of Earth-sized planets as
well as the complex and uncertain mechanisms controlling
planet habitability. Whatever the mechanisms at play, it is
clear that these planets are subject to X-ray and EUV irra-
diation that is many-times higher than experienced by the
present-day Earth and that is sufficient to significantly alter
their primary and any secondary atmospheres. The high-
energy fluxes presented here are vital inputs to atmospheric
studies of the TRAPPIST-1 planets.
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