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Minimal Conditions for Implications of

Gronwall–Bellman Type∗

Martin Herdegen† Sebastian Herrmann‡

September 27, 2016

Abstract

Gronwall–Bellman type inequalities entail the following implication: if a sufficiently inte-
grable function satisfies a certain homogeneous linear integral inequality, then it is nonpositive.
We present a minimal (necessary and sufficient) condition on the Borel measure underlying
the integrals for this implication to hold. The condition is also a necessary prerequisite for
any nontrivial bound on solutions to inhomogeneous linear integral inequalities of Gronwall–
Bellman type.
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1 Introduction

It is the purpose of this paper to characterise all Borel measures µ on R for which the following
implication holds:

y(t) ≤

∫

(−∞,t)

y dµ for µ-a.e. t ∈ R =⇒ y(t) ≤ 0 for µ-a.e. t ∈ R. (1.1)

Here, y is any Borel function on R with
∫

(−∞,t) |y| dµ < ∞ for each t ∈ R, so that the integrals in

(1.1) exist.
Does the implication (1.1) hold for all Borel measures? If µ is the restriction of the Lebesgue

measure to an interval of the form (c, d) for −∞ < c < d ≤ ∞, then the implication (1.1) holds and
is a special case of the famous Gronwall–Bellman lemma (see, e.g., [19, Lemma D.2]). However, if
µ(dt) = 1

t−c1(c,d)(t) dt, then the function y(t) = t− c satisfies the integral inequality in (1.1), but
y > 0 µ-a.e., so that (1.1) fails in this case.

It turns out that the decisive difference between these two examples is that in the former,
µ((c, t)) < ∞ for some t > c, while in the latter, µ((c, t)) = ∞ for every t > c. Indeed, our main
result Theorem 2.5 entails that the implication (1.1) holds if and only if the following condition
on the measure µ holds:

(M) For each a ∈ [−∞,∞), there is t > a such that µsf((a, t)) < ∞.

Here, µsf is the so-called semi-finite part of µ. (If µ is semi-finite as in the two examples above,
then µsf = µ; cf. Proposition 2.1.)
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In addition to this “global” result, we also provide a “local” version, which states that for fixed
a ∈ [−∞,∞), the “localised” implication

∃b > a :

[

y(t) ≤

∫

(a,t)

y dµ for µ-a.e. t ∈ (a, b) =⇒ y(t) ≤ 0 for µ-a.e. t ∈ (a, b)

]

(1.2)

is equivalent to the existence of t > a such that the semi-finite part of µ puts finite mass on (a, t).
A consequence of our main result is that condition (M) is also necessary for any nontrivial bound
on solutions to inhomogeneous linear integral inequalities; see the last paragraph of Section 2.

Bounds on solutions to integral or differential inequalities are an important tool for the analysis
of various integral or differential equations.1 The classic results of Gronwall [7], Reid [17], and
Bellman [2] have been extended in many different ways over the past century; we refer to [3] and
to the monograph [1] for an overview and an extensive list of references. While most of the extant
results stay within the realm of ordinary Riemann integration, also other integrals are considered
in the literature: Riemann–Stieltjes integrals [13, 5], modified Stieltjes integrals [18], abstract
Stieltjes integrals [9, 14], Lebesgue–Stieltjes integrals [15, 16, 4], and integrals on general measure
spaces. In particular, very general results on Gronwall–Bellmann type inequalities for general
measure spaces were obtained by Horváth [10, 11, 12] (see also Győri and Horváth [8]). However,
in the special case of the homogeneous linear integral inequality considered in (1.1), our condition
(M) is still weaker than the conditions imposed in [10, Theorem 3.1].

The remainder of the article is organised as follows. Section 2 states and discusses our main
results. Section 3 contains auxiliary results. The proofs of our main results are in Section 4.

2 Main results and ramifications

Before we can state our main results, we need to introduce the so-called semi-finite part of a
measure.

Semi-finite measures. Fix a measure space (X,Σ, µ). Recall that µ is called semi-finite if for
every E ∈ Σ with µ(E) = ∞, there is F ∈ Σ such that F ⊂ E and 0 < µ(F ) < ∞ [6, Definition
211F]. As in [6, Exercise 213X (c)], the semi-finite part of µ is the measure µsf : Σ → [0,∞] given
by

µsf(E) = sup{µ(E ∩ F ) : F ∈ Σ, µ(F ) < ∞}.

The following proposition collects basic facts about µsf . We omit the proofs (see [6, Lemma 213A
and Exercise 213X (c)]).

Proposition 2.1. Let (X,Σ, µ) be a measure space.

(a) µsf is a semi-finite measure on (X,Σ) and absolutely continuous with respect to µ.

(b) Any µ-integrable real-valued function f is µsf -integrable, with the same integral.

(b′) For any µsf-integrable real-valued function fsf , there exists a µ-integrable real-valued function
f such that f = fsf µsf-a.e.

(c) If µ is semi-finite, then µ = µsf and for every E ∈ Σ,

µ(E) = sup{µ(F ) : F ∈ Σ, F ⊂ E, µ(F ) < ∞}.

1For instance, using standard arguments (see, e.g., [1, Section I.3.1] for the classic case or [16, Section 4] for the
case of Lebesgue–Stieltjes integrals), our main result can be used to derive a uniqueness result for integral equations
with Borel measures satisfying condition (M).
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For any measurable real-valued function on X and any Borel set B ⊂ R, f ∈ B µ-a.e. implies
f ∈ B µsf -a.e. by Proposition 2.1 (a). If f is µ-integrable and if B contains 0, then also the
converse implication holds, as the following corollary shows.

Corollary 2.2. Let (X,Σ, µ) be a measure space, f a µ-integrable real-valued function, and B ⊂ R

a Borel set containing 0. Then f ∈ B µ-a.e. if and only if f ∈ B µsf -a.e.

Proof. Suppose that f ∈ B µsf -a.e. Then
∫

X |f |1{f∈Bc} dµsf = 0, and as |f |1{f∈Bc} is µ-integrable,
also

∫

X
|f |1{f∈Bc} dµ = 0 by Proposition 2.1 (b). Thus, |f |1{f∈Bc} = 0 µ-a.e., and as 0 6∈ Bc, we

conclude that f ∈ B µ-a.e. The converse implication follows from Proposition 2.1 (a).

Main results. From now on, we work on the real line R with the standard topology and its
Borel σ-algebra B(R). Our main result comes in a “local” and a “global” version. For a fixed
a ∈ [−∞,∞), the following “local” result characterises all Borel measures on R for which there
exists b ∈ (a,∞) such that any solution to the integral inequality (2.1) is nonpositive µ-a.e. on
(a, b).

Theorem 2.3 (Local version). Let µ be a Borel measure on R. Then for all a ∈ [−∞,∞), the
following are equivalent:

(Ma) There is t > a such that µsf((a, t)) < ∞.

(Ia) There is b ∈ (a,∞) such that for any real-valued Borel function y on R which is µ-integrable
over (a, b) and satisfies

y(t) ≤

∫

(a,t)

y dµ for µ-a.e. t ∈ (a, b), (2.1)

we have y ≤ 0 µ-a.e. on (a, b).

Remark 2.4. An inspection of the proof of Theorem 2.3 shows that if (Ma) holds for some finite
t > a, then (Ia) holds with b = t. However, if (Ia) holds for some b > a, then (Ma) need not hold
for t = b (but for some t ∈ (a, b]).

The “global” version of our main result characterises all Borel measures on R for which any
solution to the integral inequality (2.2) is nonpositive µ-a.e. on R.

Theorem 2.5 (Global version). Let µ be a Borel measure on R. The following are equivalent:

(M) For each a ∈ [−∞,∞), there is t > a such that µsf((a, t)) < ∞.

(I) For any real-valued Borel function y on R such that
∫

(−∞,t) |y| dµ < ∞ for all t ∈ R and

y(t) ≤

∫

(−∞,t)

y dµ for µ-a.e. t ∈ R, (2.2)

we have y ≤ 0 µ-a.e.

In this case, µsf is even σ-finite.

A couple of remarks are in order.

Remark 2.6. Statement (I) in Theorem 2.5 is equivalent to the following statement:

(I′) For any nonnegative Borel function y on R satisfying
∫

(−∞,t) y dµ < ∞ for all t ∈ R and

(2.2), we have y = 0 µ-a.e.

Indeed, the implication “(I) ⇒ (I′)” is trivial. For the converse, suppose that (I′) holds and let y be
as in (I). It follows from (2.2) that the positive part y+ = max(y, 0) fulfils y+(t) ≤

∫

(−∞,t)
y+ dµ

for µ-a.e. t ∈ R. Thus, by (I′), y+ = 0 µ-a.e., which in turn gives y ≤ 0 µ-a.e.
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Remark 2.7. Theorem 2.5 is formulated for integral inequalities on the whole real line. State-
ments for Borel subsets E ⊂ R can easily be obtained by applying Theorem 2.5 to the measure
µE defined by µE(A) = µ(A ∩ E), A ∈ B(R). A typical example is E = [a, b] for some a < b in
R. In this case, if µ[a,b] satisfies (M), then by Theorem 2.5, we have y ≤ 0 µ-a.e. on [a, b] for any
real-valued Borel function y satisfying

∫

[a,b] |y| dµ < ∞ and y(t) ≤
∫

[a,t) y dµ for µ-a.e. t ∈ [a, b].

Remark 2.8. We provide a couple of counter-examples that reject some potential weakenings of
the statements (M) or (I).

(a) If we replace “a ∈ [−∞,∞)” in (M) by “a ∈ R”, then the implication “(M) ⇒ (I)” breaks
down. For example, let µ be the (semi-finite) Lebesgue measure on R. Then µ((a, a+1)) < ∞
for each a ∈ R, but y(t) = t−2

1(−∞,−1](t) is positive on (−∞,−1] and solves (2.2):

∫

(−∞,t)

y dµ =

∫ t

−∞

s−2
1(−∞,−1](s) ds = −t−1

1(−∞,−1](t) + 1(−1,∞)(t)

≥ t−2
1(−∞,−1](t) = y(t), t ∈ R.

(b) If in (I), we only require that the negative part y− = max(−y, 0) of y is µ-integrable over
(−∞, t) for all t ∈ R, then the implication “(M) ⇒ (I)” breaks down. For example, suppose
that µ is the Lebesgue measure restricted to (0, 1). Then (M) holds, but y(t) = 1

t1(0,1)(t) is
positive on (0, 1) and solves (2.2) (the integral on the right-hand side is +∞ for any t > 0).

(c) If the inequality in (2.2) is replaced by an equality, then the implication “(I) ⇒ (M)” breaks
down. For example, suppose that µ is the counting measure for the positive rational numbers.
Assume that y is as in (I) but even solves the integral equation2

y(t) =

∫

(−∞,t)

y dµ, t ∈ R. (2.3)

We claim that then y = 0 on R. By (2.3) and since µ is supported on [0,∞), we have y = 0
on (−∞, 0]. Seeking a contradiction, suppose that y(t) 6= 0 for some t > 0. By Lemma 3.6,
y is monotone, so |y(u)| ≥ |y(t)| > 0 for all u ≥ t. But then

∫

(t,t+1)

|y| dµ ≥ |y(t)|µ((t, t + 1)) = ∞,

contradicting the integrability of y. Therefore, y = 0 is the only solution to (2.3). However,
the counting measure µ is semi-finite and µ((a, t)) = ∞ for all 0 ≤ a < t, so that (M) fails.

Nonexistence of bounds for solutions to inhomogeneous linear integral inequalities.

Gronwall–Bellman type inequalities (we refer to [1] for an overview) establish, under certain suffi-
cient conditions, upper bounds for solutions y to various inhomogeneous linear integral inequalities
such as

y(t) ≤ f(t) +

∫

(−∞,t)

y dµ for µ-a.e. t ∈ R. (2.4)

In other words, these results provide a real-valued function b (depending only on f and µ) such
that any solution to (2.4) satisfies y ≤ b µ-a.e.

One consequence of our main result is that if condition (M) fails, then no such bound can exist
(except in the trivial case that no solution to (2.4) exists). Indeed, in the case that (M) fails, there
is by Theorem 2.5 a real-valued solution ỹ to (2.2) which is positive with positive µ-measure. Let
y be a solution to (2.4). Then by linearity, for each n ∈ N, the function yn = y+nỹ also solves the
inhomogeneous linear integral inequality (2.4), but limn→∞ yn = ∞ on the set where ỹ is positive.

2If y solves (2.3) only for µ-a.e. t ∈ R, then we can pass to the function ỹ(t) =
∫
(−∞,t) y dµ, which satisfies ỹ = y

µ-a.e. and solves the integral equation everywhere. The same argument then gives ỹ = 0 on R and hence y = 0
µ-a.e.
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3 Auxiliary results

The proofs of Theorems 2.3 and 2.5 make use of several lemmas, which we state and prove in this
section. We begin with a simple sufficient criterion for σ-finiteness of a Borel measure on R. We
provide a full proof because we were unable to find a reference.

Lemma 3.1. Let µ be a Borel measure on R. Suppose that for every a ∈ R, there is ε > 0 such
that µ([a, a+ ε)) < ∞. Then µ is σ-finite.

Proof. Using that R can be covered by countably many sets of the form [K,∞), it suffices to show
that µ is σ-finite on [K,∞) for each K ∈ R. So fix K ∈ R and consider

t⋆ = sup{t ∈ [K,∞] : µ is σ-finite on [K, t)} ∈ [K,∞].

By assumption, µ is finite on [K,K + ε) for some ε > 0. Hence, t⋆ > K and there is a sequence
(tn)n∈N ⊂ [K, t⋆] increasing to t⋆ such that for each n ∈ N, µ is σ-finite on [K, tn). We can
thus choose, for each n ∈ N, a sequence (En

i )i∈N of Borel sets such that
⋃

i∈N
En

i = [K, tn) and
µ(En

i ) < ∞ for all i ∈ N. Noting that the countable collection (En
i )i,n∈N covers [K, t⋆), we

conclude that µ is σ-finite on [K, t⋆). Seeking a contradiction, suppose that t⋆ < ∞. Then by
assumption, there is ε > 0 such that µ is finite on [t⋆, t⋆+ε), so that µ is σ-finite even on [K, t⋆+ε).
This contradicts the definition of t⋆. Thus, t⋆ = ∞ and µ is σ-finite on [K,∞).

For further reference, we state a special case of the Gronwall–Bellman lemma for Borel measures
on R. It follows from [10, Theorem 3.1].

Lemma 3.2. Let µ be a Borel measure on R and fix −∞ ≤ a < b ≤ ∞. Suppose that µ((a, t)) < ∞
for each t ∈ (a, b). If y : (a, b) → R is µ-integrable over (a, t) for each t ∈ (a, b) and

y(t) ≤

∫

(a,t)

y dµ for µ-a.e. t ∈ (a, b), (3.1)

then y ≤ 0 µ-a.e. on (a, b). More precisely, for each t ∈ (a, b), y(t) ≤ 0 whenever the inequality
(3.1) holds.

Next, we construct a positive solution to the integral equation

y(t) =

∫

(a,t)

y dµ, t ∈ (a, b),

in the special case where µ has a “singularity” only at the left endpoint of some interval (a, b), i.e.,
µ((t, b)) = ∞ if and only if t = a. This is the crucial ingredient for the implication “(Ia) ⇒ (Ma)”
of Theorem 2.3 (which we prove by contraposition).

Lemma 3.3. Let µ be a Borel measure on R and −∞ ≤ a < b < ∞ such that for t ∈ [a, b),
µ((t, b)) = ∞ if and only if t = a. Then there is a positive Borel function y : (a, b) → (0, 1] such
that

y(t) =

∫

(a,t)

y dµ, t ∈ (a, b), and lim
t↑↑b

y(t) = 1.

In particular, y is nondecreasing, µ-integrable over (a, b), and satisfies limt↓↓a y(t) = 0.

Proof. We start by constructing a candidate function. It follows from [10, Theorem 3.1 (a)] that
there is a function y : (a, b) → R such that

∫

(t,b)
|y| dµ < ∞ for each t ∈ (a, b) and

y(t) =
1

1 + µ({t})
−

1

1 + µ({t})

∫

(t,b)

y dµ, t ∈ (a, b). (3.2)
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More precisely, in the notation of [10], we take X = (a, b), A the Borel σ-algebra on (a, b), µ
the restriction of “our” µ to (a, b), and S(x) = (x, b), x ∈ (a, b). Then the function S : X → A
satisfies condition (C) of [10, Section 2]. The functions f and g of [10, Theorem 3.1] are in our
case given by f(x) = −g(x) = 1/(1 + µ({x})), x ∈ (a, b). So |f(x)| = |g(x)| ≤ 1, x ∈ (a, b),
and 1 is µ-integrable over S(x) = (x, b) for each x ∈ (a, b) by assumption. Then f and g are
µ-integrable provided that they are Borel measurable.3 This is true if x 7→ µ({x}), x ∈ (a, b), is
Borel measurable. So let (tn)n∈N ⊂ (a, b) be a sequence decreasing to a. Then for any ε > 0,
the sets Aε

n = {x ∈ (tn, b) : µ({x}) > ε}, n ∈ N, are finite since µ((t, b)) < ∞ for t ∈ (a, b) by
assumption. It follows that Aε = {x ∈ (a, b) : µ({x}) > ε} =

⋃

n∈N
Aε

n is a countable set, and

hence it is Borel measurable. This implies that {x ∈ (a, b) : µ({x}) > 0} =
⋃

n∈N
A1/n is also

Borel measurable. We conclude that x 7→ µ({x}), x ∈ (a, b), is Borel measurable.
Multiplying (3.2) by (1 + µ({t})) and then subtracting y(t)µ({t}) on both sides yields

y(t) = 1−

∫

(t,b)

y dµ− y(t)µ({t}) = 1−

∫

[t,b)

y dµ, t ∈ (a, b). (3.3)

We now show that y has the asserted properties. First, letting t increase to b in (3.3) and using
dominated convergence gives y(b−) = limt↑↑b y(t) = 1.

Second, we show that y is positive. Seeking a contradiction, suppose that y(t) ≤ 0 for some
t ∈ (a, b). Then t⋆ := sup{t ∈ (a, b) : y(t) ≤ 0} ∈ (a, b) (note that y(b−) = 1 implies t⋆ < b). Let
(tn)n∈N ⊂ (a, t⋆] be a sequence increasing to t⋆ such that y(tn) ≤ 0 for all n ∈ N. We claim that
y(t⋆) ≤ 0. If tn = t⋆ for some n ∈ N, then there is nothing to show. So suppose that tn < t⋆ for
all n ∈ N. Then by (3.3), the dominated convergence theorem (recall the integrability of y), and
(3.2),

y(t⋆) = 1−

∫

[t⋆,b)

y dµ = 1− lim
n→∞

∫

(tn,b)

y dµ = lim
n→∞

(

1 + µ({tn})
)

y(tn) ≤ 0. (3.4)

Similarly, we have y(t⋆) ≥ 0 because

y(t⋆)
(

1 + µ({t⋆})
)

= 1−

∫

(t⋆,b)

y dµ = 1− lim
ε↓↓0

∫

[t⋆+ε,b)

y dµ = lim
ε↓↓0

y(t⋆ + ε) ≥ 0, (3.5)

where we use the definition of t⋆ in the last inequality. So y(t⋆) = 0 by (3.4)–(3.5). As this also
implies

∫

[t⋆,b)
y dµ = 1 by (3.3), we infer from (3.3) that

y(t) = 1−

∫

[t,b)

y dµ =

∫

[t⋆,b)

y dµ−

∫

[t,b)

y dµ =

∫

[t⋆,t)

y dµ =

∫

(t⋆,t)

y dµ, t ∈ (t⋆, b).

But µ((t⋆, b)) < ∞ by the assumption on µ (recall that t⋆ > a). Hence, the Gronwall–Bellman
lemma (Lemma 3.2) gives y ≤ 0 on (t⋆, b). This contradicts the fact that y(b−) = 1. We conclude
that y is positive.

Third, we prove the remaining properties. The positivity of y together with (3.3) shows that
y is nondecreasing and has range (0, 1]. Hence, the limit y(a+) = limt↓↓a y(t) exists in [0, 1]. Now
by (3.3),

1− y(t) =

∫

[t,b)

y dµ ≥ y(a+)µ([t, b)), t ∈ (a, b). (3.6)

Letting t ↓↓ a in (3.6) and using that µ((a, b)) = ∞, we conclude that y(a+) = 0.

Suppose that a Borel measure µ admits an a ∈ [−∞,∞) such that µ((a, t)) = ∞ for all t > a.
If µ is semi-finite, the following lemma constructs a Borel set E ⊂ (a,∞) such that the measure
µE defined by µE(A) = µ(A ∩ E), A ∈ B(R), satisfies the assumptions of Lemma 3.3 (for any
b > a).

3We thank the referee for pointing out and providing a proof for this measurability requirement.
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Lemma 3.4. Let µ be a semi-finite Borel measure on R. Suppose that there is a ∈ [−∞,∞) such
that µ((a, t)) = ∞ for all t > a. Then there is a Borel set E ⊂ (a,∞) such that the Borel measure
µE defined by µE(A) = µ(A ∩E), A ∈ B(R), has the following property:

For each b ∈ (a,∞) and t ∈ [a, b), µE((t, b)) = ∞ if and only if t = a.

Proof. We start by constructing a candidate for the set E. To this end, first choose a bi-infinite
increasing sequence (tn)n∈Z ⊂ (a,∞) such that limn→−∞ tn = a and limn→∞ tn = ∞, set Gn :=
(tn−1, tn] for n ∈ Z, and denote by I ⊂ Z the set of indices n for which µ(Gn) = ∞. By
Proposition 2.1 (c), there is, for each n ∈ I, a Borel set Fn ⊂ Gn such that 1 < µ(Fn) < ∞. For
n ∈ Z \ I, we set Fn = Gn. Note that with these definitions,

µ(Fn) < ∞, n ∈ Z. (3.7)

Finally, we set E =
⋃

n∈Z
Fn. (Note that E is a disjoint union and that E = (a,∞) if and only if

I is empty.)
Now we verify that E has the asserted properties. Fix b ∈ (a,∞). If t ∈ (a, b), then

µE((t, b)) = µ((t, b) ∩ E) =
∑

n∈Z

µ ((t, b) ∩ Fn)

is finite because of (3.7) and the fact that (t, b) ∩ Fn = ∅ for all but finitely many n ∈ Z. It
thus remains to show that µE((a, b)) = ∞. We distinguish two cases. First, suppose that the set
I− := {n ∈ I : n < 0} is finite. Then there is N ∈ Z such that µ(Gn) < ∞ for all n ≤ N , which
in turn gives E ∩ (a, tN ] = (a, tN ]. Making N smaller if necessary, we may assume that tN < b.
Then

µE((a, b)) ≥ µ((a, tN ] ∩ E) = µ((a, tN ]) = ∞,

where we use the assumption on µ in the last equality. Second, suppose that the set I− is infinite.
Then recalling that µ(Fn) > 1 for n ∈ I, we obtain

µE((a, b)) = µ((a, b) ∩ E) ≥
∑

n∈I−:
tn<b

µ (Fn) = ∞.

The implication “(Ia) ⇒ (Ma)” of Theorem 2.3 is proved by contraposition: Assuming that
(Ma) fails, we want to construct a nonnegative Borel function y which is µ-integrable over (a, b),
positive with positive µ-measure, and still satisfies the integral inequality (2.1). The next result
shows that in these properties of y, we may replace µ by its semi-finite part µsf .

Lemma 3.5. Let µ be a Borel measure on R and fix −∞ ≤ a < b ≤ ∞. Then the following are
equivalent:

(a) There is a nonnegative µ-integrable Borel function y : (a, b) → [0,∞) which is positive with
positive µ-measure and satisfies

y(t) ≤

∫

(a,t)

y dµ for µ-a.e. t ∈ (a, b). (3.8)

(b) There is a nonnegative µsf -integrable Borel function ysf : (a, b) → [0,∞) which is positive
with positive µsf -measure and satisfies

ysf(t) ≤

∫

(a,t)

ysf dµsf for µsf -a.e. t ∈ (a, b). (3.9)
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Proof. “(a) ⇒ (b)”: Let y be as in (a) and set ysf := y. Applying Proposition 2.1 (a) and (b) to
(3.8) shows that ysf satisfies (3.9). Moreover, {y > 0} is not a µ-nullset by assumption. Hence,
by Corollary 2.2, {y > 0} is also not a µsf -nullset. Therefore, ysf = y is positive with positive
µsf -measure. So (b) holds.

“(b) ⇒ (a)”: Let ysf be as in (b). As ysf is µsf -integrable over (a, b), there is by Proposi-
tion 2.1 (b′) a µ-integrable Borel function y : (a, b) → R with y = ysf µsf -a.e. on (a, b).

We now use y to construct a nonnegative Borel function y which coincides with ysf µsf -
a.e. on (a, b), is µ-integrable over (a, b), and satisfies the integral inequality y(t) ≤

∫

(a,t) y dµ

for each t ∈ (a, b). To this end, we truncate y as follows. Define the function y : (a, b) → [0,∞)
by

y(t) = min
(

max(y(t), 0),

∫

(a,t)

ysf dµsf

)

.

As y = ysf µsf -a.e. on (a, b) and 0 ≤ ysf ≤
∫

(a,·) ysf dµsf µsf -a.e. on (a, b) by (b), we find that y = ysf
µsf -a.e. on (a, b). Moreover, 0 ≤ y ≤ max(y, 0) by construction, so that y is µ-integrable over (a, b).
In addition, by construction of y, the fact that y = ysf µsf -a.e. on (a, b), and Proposition 2.1 (b),
the integral inequality for y obtains:

y(t) ≤

∫

(a,t)

ysf dµsf =

∫

(a,t)

y dµsf =

∫

(a,t)

y dµ, t ∈ (a, b).

Finally, as the set {y > 0} has positive µsf -measure, it also has positive µ-measure by absolute
continuity of µsf with respect to µ (Proposition 2.1 (a)).

The final result of this section is used only in the counter-example in Remark 2.8 (c) and not
in the proofs of the main results in the following Section 4. It provides a constant-sign property
for solutions to the homogeneous linear integral equation (3.10) for general Borel measures on R.

Lemma 3.6. Let µ be a Borel measure on R and fix −∞ ≤ a < b ≤ ∞. Suppose that y : (a, b) → R

is µ-integrable over (a, t) for each t ∈ (a, b) and solves the integral equation

y(t) =

∫

(a,t)

y dµ, t ∈ (a, b). (3.10)

Then y has constant sign (y ≥ 0 on (a, b) or y ≤ 0 on (a, b)) and is monotone (nondecreasing or
nonincreasing).

Note that the integral equation (3.10) may have nontrivial solutions. For example, if a = 0,
b = ∞, and µ(dt) = 1

t1(0,∞)(t) dt, then the identity function y(t) = t, t ∈ (0,∞), solves (3.10).

Proof. To prove that y has constant sign, it suffices to show that y has the following property: if
y(t) 6= 0 for some t ∈ (a, b), then for every t′ > t in (a, b), y(t′) is nonzero and has the same sign
as y(t). Fix t ∈ (a, b) such that y(t) 6= 0. As −y also solves (3.10), we may assume without loss of
generality that y(t) > 0. By (3.10),

y(u) =

∫

(a,u)

y dµ =

∫

(a,t)

y dµ+ y(t)µ({t}) +

∫

(t,u)

y dµ

= y(t)(1 + µ({t})) +

∫

(t,u)

y dµ, u ∈ (t, b).

(3.11)

Seeking a contradiction, suppose that there is t′ ∈ (t, b) such that y(t′) ≤ 0. Then

t⋆ := inf{t′ ∈ (t, b) : y(t′) ≤ 0} ∈ [t, b).
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We now distinguish two cases. First, suppose that t⋆ attains the infimum, i.e., y(t⋆) ≤ 0. Then
t⋆ > t (because y(t) > 0) and by definition of t⋆, y > 0 on [t, t⋆). Thus, using (3.11) for u = t⋆

yields

0 ≥ y(t⋆) = y(t)(1 + µ({t})) +

∫

(t,t⋆)

y dµ > 0,

which is absurd. Second, suppose that t⋆ does not attain the infimum, i.e., y(t⋆) > 0. Then there
is a sequence (tn)n∈N ⊂ (t⋆, b) decreasing to t⋆ such that y(tn) ≤ 0. Then by (3.11) for u = tn,

0 ≥ y(tn) = y(t)(1 + µ({t}) +

∫

(t,tn)

y dµ, n ∈ N.

Letting n → ∞, using dominated convergence, and noting that
⋂

n∈N
(t, tn) = (t, t⋆] because

tn > t⋆ for all n yields

0 ≥ y(t)(1 + µ({t})) +

∫

(t,t⋆]

y dµ > 0,

which is again a contradiction. We conclude that y(t′) > 0 for all t′ > t in (a, b).
The monotonicity of y now follows immediately from the constant-sign property and (3.10).

4 Proofs of the main results

We are now in a position to prove our main results. We begin with the “local” version.

Proof of Theorem 2.3. “(Ma) ⇒ (Ia)”: Suppose that µsf((a, t)) < ∞ for some t > a, set b = t, and
let y be as in (Ia). We proceed to show that y ≤ 0 µ-a.e. on (a, b). By (2.1) and Proposition 2.1 (b),

y(t) ≤

∫

(a,t)

y dµsf for µ-a.e. t ∈ (a, b). (4.1)

Because µsf is absolutely continuous with respect to µ (Proposition 2.1 (a)), (4.1) also holds
µsf -a.e. on (a, b). Thus, we may apply the Gronwall–Bellman lemma (Lemma 3.2) to y and µsf ,
which yields y ≤ 0 µsf -a.e. on (a, b). Combining this with (4.1) then gives y ≤ 0 µ-a.e. on (a, b)
(alternatively, one can also invoke Corollary 2.2 for this last step).

“(Ia) ⇒ (Ma)”: We prove the contrapositive. Suppose that µsf((a, t)) = ∞ for every t > a,
and fix any b ∈ (a,∞). By Lemma 3.5, it suffices to construct a nonnegative µsf -integrable Borel
function ysf on (a, b) which is positive with positive µsf -measure and satisfies

ysf(t) ≤

∫

(a,t)

ysf dµsf for µsf -a.e. t ∈ (a, b). (4.2)

By Lemma 3.4 (applied to µsf), there is a Borel set E ⊂ (a,∞) such that the Borel measure
µsf,E (defined as in Lemma 3.4) fulfils the assumption of Lemma 3.3 (with µ replaced by µsf,E).
By Lemma 3.3, there is then a Borel function ysf : (a, b) → (0, 1] such that

ysf(t) =

∫

(a,t)

ysf dµsf,E, t ∈ (a, b), and lim
t↑↑b

ysf(t) = 1. (4.3)

Now define ysf : R → [0, 1] by ysf = ysf1E on (a, b) and 0 elsewhere. We first show that ysf is
µsf -integrable on R. By (4.3) and the construction of µsf,E,

∫

R

ysf dµsf =

∫

(a,b)

ysf1E dµsf =

∫

(a,b)

ysf dµsf,E = 1.
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Moreover, ysf is positive with positive µsf -measure because ysf is positive on (a, b) and µsf has
positive (even infinite) mass on (a, b) ∩E (µsf,E has infinite mass on (a, b) by construction).

It remains to show (4.2). This follows from (4.3) and the construction of µsf,E and ysf :

ysf(t) ≤ ysf(t) =

∫

(a,t)

ysf dµsf,E =

∫

(a,t)

ysf1E dµsf =

∫

(a,t)

ysf dµsf , t ∈ (a, b).

We finally prove the “global” version of our main result.

Proof of Theorem 2.5. We first show that µsf is σ-finite if (M) holds. Since µsf is semi-finite, every
singleton has finite µsf -measure. This together with (M) implies that for every a ∈ R, there is
ε > 0 such that µsf([a, a+ ε)) < ∞. Thus, µsf is σ-finite by Lemma 3.1.

“(M) ⇒ (I)”: Suppose that for each a ∈ [−∞,∞), there is t > a such that µsf((a, t)) < ∞, and
let y be as in (I). We need to show that y ≤ 0 µ-a.e. It follows from Corollary 2.2 that it is enough
to show that y ≤ 0 µsf -a.e. Consider

t⋆ = sup{t ∈ [−∞,∞] : y ≤ 0 µsf -a.e. on (−∞, t)}.

We first show that t⋆ > −∞. By (M), there is b ∈ R such that µsf((−∞, b)) < ∞. Hence, by
Lemma 3.2 (for a = −∞) and (2.2), we have y ≤ 0 µsf -a.e. on (−∞, b), so that t⋆ ≥ b.

Next, we show that t⋆ = ∞. Seeking a contradiction, suppose that t⋆ < ∞ and let (tn)n∈N ⊂
(−∞, t⋆] be a sequence increasing to t⋆ such that y ≤ 0 µsf -a.e. on (−∞, tn) for all n ∈ N (this exists
because t⋆ > −∞). Then also y ≤ 0 µsf -a.e. on the countable union

⋃

n∈N
(−∞, tn) = (−∞, t⋆)

(i.e., t⋆ attains the supremum). Now by (M), there is b ∈ R such that µsf((t
⋆, b)) < ∞. Moreover,

by (2.2) and the fact that y ≤ 0 µsf -a.e. on (−∞, t⋆) we first find that y(t⋆) ≤ 0 if µsf has a point
mass at t⋆, and then, for t ∈ (t⋆, b),

y(t) ≤

∫

(−∞,t)

y dµsf ≤

∫

[t⋆,t)

y dµsf ≤

∫

(t⋆,t)

y dµsf .

We may thus apply the Gronwall–Bellman lemma (Lemma 3.2) and conclude that y ≤ 0 µsf -a.e. on
(t⋆, b). Because we also have y ≤ 0 µsf -a.e. on (−∞, t⋆) and y(t⋆) ≤ 0 if µsf has a point mass at
t⋆, we obtain that y ≤ 0 µsf -a.e. on (−∞, b). As b > t⋆, this contradicts the definition of t⋆. Thus
t⋆ = ∞, which means y ≤ 0 µsf -a.e.

“(I) ⇒ (M)”: We prove the contrapositive. Suppose that (M) fails. Then there is a ∈ [−∞,∞)
such that µsf((a, t)) = ∞ for all t > a. Choose any b > a. Then by Theorem 2.3, there is a
real-valued Borel function y on R which is µ-integrable over (a, b) and satisfies

y(t) ≤

∫

(a,t)

y dµ for µ-a.e. t ∈ (a, b) (4.4)

and µ({t ∈ (a, b) : y(t) > 0}) > 0. Replacing y by its positive part max(y, 0) if necessary, we
may assume that y is nonnegative (note in particular that (4.4) still holds for the positive part;
cf. Remark 2.6). Then the Borel function y′ := y1(a,b) is nonnegative on R and positive with
positive µ-measure and satisfies

∫

(−∞,t)
y′ dµ < ∞ for all t ∈ R. Thus, it remains to show that

y′(t) ≤
∫

(−∞,t) y
′ dµ for µ-a.e. t ∈ R. As y′ is nonnegative and vanishes off (a, b), this inequality

is trivially satisfied for t ∈ R \ (a, b). Moreover, using that y′ = y on (a, b) by construction and
(4.4), we obtain

y′(t) = y(t) ≤

∫

(a,t)

y dµ =

∫

(a,t)

y′ dµ =

∫

(−∞,t)

y′ dµ for µ-a.e. t ∈ (a, b).

We conclude that (I) fails.
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