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ABSTRACT: The theory of dense graph limits comes with a natural sampling process which yields
an inhomogeneous variant G(n, W) of the Erdős–Rényi random graph. Here we study the clique
number of these random graphs. We establish the concentration of the clique number of G(n, W) for
each fixed n, and give examples of graphons for which G(n, W) exhibits wild long-term behavior.
Our main result is an asymptotic formula which gives the almost sure clique number of these random
graphs. We obtain a similar result for the bipartite version of the problem. We also make an observation
that might be of independent interest: Every graphon avoiding a fixed graph is countably-partite. ©
2017 The Authors Random Structures & Algorithms Published by Wiley Periodicals, Inc. Random Struct. Alg.,
00, 000–000, 2017

Keywords: random graphs, graph limits, clique number

1. INTRODUCTION

The Erdős–Rényi random graph G(n, p) is a random graph with vertex set [n] =
{1, . . . , n}, where each edge is included independently with probability p. Since Gilbert, and
independently Erdős and Rényi introduced the model in 1959, this has been arguably the
most studied random discrete structure. Here, we recall facts about cliques in G(n, p); these
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2 DOLEŽAL, HLADKÝ, AND MÁTHÉ

were among the first properties studied in the model. The key question in the area concerns
the order of the largest clique. We write ω(G) for the order of the largest clique in a graph
G. Matula [21], and independently Grimmett and McDiarmid [11] have shown that when
p ∈ (0, 1) is fixed, and ε > 0 is arbitrary, we have

lim
n→∞ P

[
ω(G(n, p))

log n
= (1 ± ε)

2

log(1/p)

]
= 1 . (1)

Here, as well as in the rest of the paper, we use log for the natural logarithm. The actual result
is stronger in two directions: firstly, it extends also to sequences of probabilities pn → 0,
and secondly, Matula, Grimmett and McDiarmid proved an asymptotic concentration of
ω(G(n, p)) on two consecutive values for which they provided an explicit formula.

Our aim however was extending (1) in a different direction. That direction is motivated
by the theory of limits of dense graph sequences. Let us introduce the key concepts of the
theory; for a thorough treatise we refer to Lovász’s book [18]. The key object of that theory
are graphons. A graphon is a symmetric measurable function W : �2 → [0, 1], where �

is a probability space. In their foundational work, Lovász and Szegedy [19] proved that
each sequence of finite graphs contains a subsequence that converges — in the so-called
cut metric — to a graphon. This itself does not justify the graphons as limit objects; it still
could be that the space of graphons is unnecessarily big. In other words, one would like to
know that every graphon W is attained as a limit of finite graphs. To this end, Lovász and
Szegedy introduced the random graph model G(n, W). The set of vertices of G ∼ G(n, W)

is the set [n]. To sample G, first generate n independent elements x1, . . . , xn ∈ � according
to the law of �. Then, connect i and j by an edge with probability W(xi, xj) (independently
of other choices). Lovász and Szegedy proved that with probability one, the sequence of
samples from G(n, W) converges to W .

The strength of the theory of graph limits is that convergence in the cut metric implies
convergence of many key statistics of graphs (or graphons). These include frequencies of
appearances of small subgraphs, and normalized MAX-CUT-like properties. An important
direction of research is to understand which other parameters are continuous with respect
to the cut metric; those parameters can then be defined even on graphons. In Example 1.1
below we show that the clique number can be very discontinuous with respect to the cut
metric. Not all is lost even in such a situation. One can still study discontinuous parameters
of a graphon W via the sampling procedure G(n, W). The random sampling will suppress
pathological counterexamples such as those in Example 1.1, and thus allow us to associate
limit information even to these limit parameters.

Example 1.1. Let f : N → N be a function that tends to infinity very slowly.

• Let us consider a sequence of n-vertex graphs consisting of a clique of order �n/f (n)�
and n − �n/f (n)� isolated vertices. This sequence converges to the 0-graphon, the
smallest graphon in the graphon space. Yet, the clique numbers are unusually high,
almost of order �(n).

• Let us consider a sequence of n-vertex f (n)-partite Turán graphs. This sequence con-
verges to the 1-graphon, the largest graphon in the graphon space. Yet, the clique
numbers tend to infinity very slowly.

By the previous example, we see that

• there are sequences of finite graphs with clique numbers growing much faster than
logarithmic with a limit graphon W ≡ 0,

Random Structures and Algorithms DOI 10.1002/rsa



CLIQUES IN DENSE INHOMOGENEOUS RANDOM GRAPHS 3

• while there are other sequences of finite graphs with clique numbers growing much
slower than logarithmic with a limit graphon W ≡ 1.

So, suppose that we have suppressed these pathological examples by looking at “typical
graphs that are close to W” rather than “all graphs that are close to W”, and let us see
what value motivated by the clique number can be associated to W . To this end, suppose
that W : �2 → [0, 1] is such a graphon that W(x, y) ∈ [p1, p2] for every x, y ∈ �, where
0 < p1 � p2 < 1 are fixed. Then the edges of G(n, W) are stochastically between G(n, p1)

and G(n, p2). Thus, (1) tells us that the clique number ω(G(n, W)) asymptotically almost
surely satisfies

(1 − o(1))
2

log(1/p1)
� ω(G(n, W))

log n
� (1 + o(1))

2

log(1/p2)
. (2)

Thus, it is actually plausible to believe that

ω(G(n, W))

log n
(3)

converges in probability. In this paper, we study this and related questions.

1.1. Related Literature on Inhomogenous Random Graphs

Inhomogeneous random graphs allow one to express different intensities of bonds between
the corresponding parts of the base space. This is obviously useful in modeling phenomena
in biology, sociology, computer science, physics, and other settings. The price one has to
pay for this flexibility of these models is in extra difficulties in mathematical analysis of their
properties. This is one of the reasons why literature on G(n, W) is fairly scarce, compared
to G(n, p); another reason apparently being that the inhomogeneous model is much more
recent. Actually, in the inhomogeneous model, most work was done in the sparse regime,
which we shall introduce now. To get a counterpart to sparse random graphs G(n, pn),
pn → 0, one introduces rescaling G(n, pn · W). In this setting, W need not be bounded from
above anymore (even though the question of “how unbounded” W can be is rather subtle
and we neglect it here).

The most impressive example of work concerning sparse inhomogeneous random graphs
is [2] in which the existence and the size of the giant component in G(n, 1

n · W) was
determined. This work has initiated a big amount of further work on G(n, 1

n · W), such
as [26, 27], as well as on related percolation models [1].

The threshold for connectivity of inhomogeneous random graphs was investigated in [6].
The diameter of inhomogeneous random graphs was studied in [9].

A particular subclass of the random graph models G(n, W) are the so-called stochastic
block models introduced already in 1980’s in the field of mathematical sociology [13]. They
are used extensively in many areas of mathematics, computer science, and physics. In our
language, (the dense version of) stochastic block models correspond to the case when W is
a step-function with finitely many or countably many steps. The stochastic block model is
mathematically much more tractable. For example, the study of criticality in stochastic block
models in [14] seems to be much more tractable than in the case of general inhomogeneous
random graphs.

Random Structures and Algorithms DOI 10.1002/rsa



4 DOLEŽAL, HLADKÝ, AND MÁTHÉ

2. OUR CONTRIBUTION

In this section we present our main results. The notation in this section is standard. We refer
the reader to Section 3 for formal definitions.

We saw that for many natural graphons W , ω(G(n, W)) grows logarithmically. It is easy
to construct a graphon for which ω(G(n, W)) grows for example as log log n, or another
graphon for which ω(G(n, W)) grows for example as n0.99. More surprisingly, our next
proposition shows that we can have an oscillation between these two regimes even for one
graphon.

Proposition 2.1. For an arbitrary function f : N → R+ with limn→∞ f (n) = +∞ there
exists a graphon W and a sequence of integers 1 = �0 < k1 < �1 < k2 < �2 < . . . such
that asymptotically almost surely,

ω(G(ki, W)) < f (ki) , and (4)

ω(G(�i, W)) >
�i

f (�i)
. (5)

While Proposition 2.1 shows that the long-term behavior of ω(G(n, W)) can be quite
wild, for a fixed (but large) n, the distribution of ω(G(n, W)) is concentrated.

Theorem 2.2. For each graphon W and each n, we have that for each ε > 0,

lim
n→∞ P

[ ∣∣∣∣ ω(G(n, W))

E[ω(G(n, W))] − 1

∣∣∣∣ > ε

]
= 0 .

The proofs of Proposition 2.1 and Theorem 2.2 are given in Section 4. In the proof of
Theorem 2.2, we need to consider the case of graphons W for which E[ω(G(n, W))] is
bounded (as n → ∞) separately. Investigation of such graphons led to a result that is of
independent interest. Let us give the details. Clearly, for each graphon W , and each n ∈ N,
ω(G(n, W)) is stochastically dominated by ω(G(n+1, W)). As a consequence, the sequence
E[ω(G(1, W))], E[ω(G(2, W))], E[ω(G(3, W))], . . . is nondecreasing. We say that W has
a bounded clique number if limn→∞ E[ω(G(n, W))] < +∞. Note that one example of
graphons of bounded clique numbers are graphons W which have zero homomorphism
density of H (see (11) for the definition) for some finite graph H. A subclass of these are k-
partite graphons. These are graphons W : �2 → [0, 1] for which there exists a measurable
partition � = �1∪̇�2∪̇ . . . ∪̇�k such that for each i ∈ [k], W ��i×�i= 0 almost everywhere.
In the following example, we show that the structure of graphons with a bounded clique
number can be more complicated. We consider a sequence of triangle-free graphs G1, G2, . . .
whose chromatic numbers tend to infinity (it is a standard exercise that such graphs indeed
exist). Let W1, W2, . . . be their graphon representations. We now glue these graphons into
one graphon W . Clearly, ω(G(n, W)) � 2 with probability one, but W is not k-partite for
any k. Here, we show that the structure of graphons with a bounded clique number cannot
be much more complicated than in the example above. We call a graphon W : �2 → [0, 1]
countably-partite, if there exists a measurable partition � = �1∪̇�2∪̇ . . . such that for each
i ∈ N, W ��i×�i= 0 almost everywhere.

Theorem 2.3. Every graphon with a bounded clique number is countably-partite.

Random Structures and Algorithms DOI 10.1002/rsa



CLIQUES IN DENSE INHOMOGENEOUS RANDOM GRAPHS 5

The proof of Theorem 2.3 is given in Section 4.3.

Let us turn our attention to the main subject of the paper, that is, to the behavior of the
clique number in G(n, W) scaled as in (3). As a warm-up for studying (3), we first deal with
its bipartite counterpart. To this end, we shall work with bigraphons. Bigraphons, introduced
first in [20], arise as limits of balanced bipartite graphs. A bigraphon is a measurable
function U : �1 × �2 → [0, 1]. Here, �1 and �2 are probability spaces which represent
the two partition classes, and the value U(x, y) represents the edge intensity between the
parts corresponding to x and y. This suggests the sampling procedure for generating the
inhomogeneous random bipartite graph B(n, U): we sample uniformly and independently
at random points x1, . . . , xn from �1 and y1, . . . , yn from �2. In the bipartite graph B(n, U)

with colour classes {ai}n
i=1 and {bj}n

j=1, we connect ai with bj with probability U(xi, yj).
We define the natural bipartite counterpart to the clique number. Given a bipartite graph
G = (A, B; E), we define its biclique number as the largest � such that there exist sets
X ⊆ A, Y ⊆ B, |X| = |Y | = �, that induce a complete bipartite graph. We denote the
biclique number of G by ω2(G).

The main result concerning the biclique number is the following.

Theorem 2.4. Let U : �1 × �2 → [0, 1] be a bigraphon whose essential supremum
p = ess sup U is strictly between zero and one. Then we asymptotically almost surely have

ω2(B(n, U)) = (1 ± o(1)) · 2

log 1/p
· log n .

The proof of Theorem 2.4 is given in Section 5.

We turn to our main result which determines the quantity (3). Suppose that W is a graphon
with strictly positive essential infimum. Define

κ(W) = sup

{
2‖h‖2

1∫
(x,y)∈�2 h(x)h(y) log (1/W(x,y)) d(ν2)

: h is a nonnegative L1-function on �

}
.

(6)
Here, we set 0

0 = 0 and a
0 = +∞ for a ∈ R \ {0}.

We can now state our main result.

Theorem 2.5. Suppose that W is a graphon whose essential infimum is strictly positive.
Then

• if κ(W) < +∞ then a.a.s. ω(G(n, W)) = (1 + o(1)) · κ(W) · log n, and
• if κ(W) = +∞ then a.a.s. ω(G(n, W)) � log n.

Theorem 2.5 is consistent with (1). Indeed, suppose that W ≡ p ∈ (0, 1) is a
constant graphon. Then for any h in (6) (which is not constant zero), we have that

2‖h‖2
1∫

(x,y)∈�2 h(x)h(y) log(1/W(x,y))d(ν2)
= 2

log 1/p . We provide heuristics for Theorem 2.5 for more compli-

cated graphons in Section 6. Unfortunately, we were unable to turn these relatively natural
heuristics into a rigorous proof. The actual proof of Theorem 2.5 is given in Section 8,
building on tools from Section 7.

Random Structures and Algorithms DOI 10.1002/rsa



6 DOLEŽAL, HLADKÝ, AND MÁTHÉ

There are several alternative ways of expressing κ(W). For example, when we
heuristically derive Theorem 2.5, we make use of the following identity.

Fact 2.6. We have

κ(W) = sup
{‖f ‖1 : f is a nonnegative L1-function on �, 	(f , W) � 0

}
, (7)

where

	(f , W) =
∫

x∈�

f (x)d(ν)︸ ︷︷ ︸
(∗)

+ 1

2

∫
(x,y)∈�2

f (x)f (y) log W(x, y)d(ν2)︸ ︷︷ ︸
(∗∗)

. (8)

Other expressions of κ(W) are given in Proposition 3.8.

Remark 2.7. While we formulate all the problems in terms of cliques, we could have
worked with the complementary notion of independent sets instead. Indeed, investigating
one of these notions with respect to G(n, W) is equivalent to investigating the other with
respect to G(n, 1 − W).

Using this observation, we get from Theorem 2.5 the following corollary for the size of
the maximum independent set α(G(n, W)).

Corollary 2.8. Suppose that W is a graphon whose essential supremum is strictly less
than 1. Then

• if κ(1 − W) < +∞ then a.a.s. α(G(n, W)) = (1 + o(1)) · κ(1 − W) · log n, and
• if κ(1 − W) = +∞ then a.a.s. α(G(n, W)) � log n.

In our language, (the dense version of) stochastic block models correspond to the case
when W is a step-function with finitely many or countably many steps. There exists a
conceptually simpler proof of Theorem 2.5 when restricted to stochastic block models.
This simplification occurs both on the real-analytic side (i.e., general measurable functions
versus step-functions) and on the combinatorial side. See our remark in Section 6.3.

3. PRELIMINARIES

3.1. Notation

For n ∈ N, we write [n] = {1, . . . , n}, and [n]0 = {0, 1, . . . , n}. As always, we denote by(n
k

)
the binomial coefficient n!

k!(n−k)! . For the multinomial coefficients of higher orders, we

employ the notation
( n

k1|k2|...|kl

) = n!
k1!k2!...kl !(n−∑ ki)! (here we suppose k1 + k2 + . . . + kl � n).

We omit rounding symbols where it does not affect correctness of the calculations.
We shall always assume that � is a standard Borel probability space without atoms. We

always write ν for the probability measure associated with �.
We shall sometimes make use of tools from real analysis which are available only for

R and R
d . The Lebesgue measure will be denoted by λ. It should be always clear from the

Random Structures and Algorithms DOI 10.1002/rsa



CLIQUES IN DENSE INHOMOGENEOUS RANDOM GRAPHS 7

context whether we mean the one-dimensional Lebesgue measure on R, two dimensional
Lebesgue measure on R

2 or any higher dimensional Lebesgue measure.
We write ‖ · ‖1 to denote the L1-norm of functions (or vectors in a finite-dimensional

space). Non-negative vectors, and non-negative L1-functions1 are called histograms (see our
explanation at the end of Section 6.1). For a histogram f , we write Box(f ) for all histograms
g for which g � f (pointwise). We say that a histogram is non-trivial if it is not almost
everywhere zero.

We recall the notions of essential supremum and essential infimum. Suppose that � is a
space equipped with a measure ν. For a measurable function f : X → R we define ess sup f
as the least number a such that ν({x ∈ � : f (x) > a}) = 0. The quantity ess inf f is defined
analogously.

3.2. Random Graphs H(n, W )

There is a natural intermediate step when obtaining the random graph G(n, W) from a
graphon W which is often denoted by H(n, W). To obtain H(n, W) we sample n random
independent points x1, . . . , xn from the probability space underlying W . The random graph
has the vertex set [n]. The edge-set is an edge-set of a complete graph equipped with
edge-weights. The weight of the edge ij is W(xi, xj). Self-loops are not included.

3.3. Graphons

The above crash course in graph limits almost suffices for the purposes of this paper, and
we need only a handful of additional standard definitions. See [18] for further references.

All (non-discrete) probability spaces in this paper are standard Borel probability spaces
without atoms. Recall that the Isomorphism Theorem (see e.g. [15, Theorem 17.41]) tells
us that there is a measure-preserving isomorphism between each two such spaces (i.e. a
bijection between the spaces such that this function and its inverse are measurable and
preserve measures). In particular, suppose that W : �2 → [0, 1] is a graphon defined on
a probability space �, and let X be another probability space. Let us fix an isomorphism
ψ : X → � between X and �. By a representation of W on X we mean the graphon
W ′ : X2 → [0, 1], (x, y) �→ W(ψ(x), ψ(y)). Of course, the representation depends on the
actual choice of the isomorphism ψ . Note however that the distribution of G(n, W ′) does
not depend on the choice of ψ as it is the same as the distribution of G(n, W). Note also
that from the Isomorphism Theorem above we get the following fact.

Fact 3.1. Each graphon can be represented on the open unit interval (0, 1).

We shall need to “zoom in” on a certain part of a graphon. The next definition is used to
this end.

Definition 3.2. Suppose that W : �2 → [0, 1] is a graphon on a probability space � with
a measure ν. By a subgraphon of W obtained by restricting to a set A ⊆ � of positive
measure we mean a function U : A2 → [0, 1] which is simply the restriction W �A×A.
When working with this notion, we need to turn A to a probability space. That is, we view

1The vector-/function-space will be clear from the context

Random Structures and Algorithms DOI 10.1002/rsa



8 DOLEŽAL, HLADKÝ, AND MÁTHÉ

U as a graphon on the probability space A endowed with measure νA(B) := ν(B)

ν(A)
for every

measurable set B ⊆ A.

Observe that in the above setting for every B ⊆ A of positive measure we have

1

ν(B)2

∫
(x,y)∈B×B

log(1/W(x,y))d(ν2) = 1

νA(B)2

∫
(x,y)∈B×B

log(1/W(x,y))d(ν2
A) . (9)

Note that a lower bound on ω(G(n, W �A×A)) provides readily a lower bound on
ω(G(n, W)). More precisely, suppose that we can show that asymptotically almost surely,
ω(G(n, W �A×A)) � c log n. Consider now sampling the random graph G(n, W). By
the Law of Large Numbers, out of the n sampled points x1, . . . , xn ∈ �, there will be
(ν(A) − o(1))n > 1

2ν(A)n many of them contained in A. In other words, there is a cou-
pling of G = G(n, W) and G′ = G( 1

2ν(A)n, W �A×A) such that with high probability, G′ is
contained in G as a subgraph. We conclude that

ω(G(n, W))
a.a.s.

� ω
(
G( 1

2ν(A)n, W �A×A)
) a.a.s.

� c log
(

1
2ν(A)n

) = (c − o(1)) log n . (10)

The homomorphism density of a graph H = ({v1, . . . , v�}, E) in a graphon W is defined
by

t(H, W) =
∫

(x1,...,x�)∈��

∏
i<j:vivj∈E

W(xi, xj) d(ν�) . (11)

Suppose that � is an atomless standard Borel probability space. Let W1, W2 : �2 → [0, 1]
be two graphons. We then define the cut-norm distance of W1 and W2 by

d�(W1, W2) = sup
S,T

∣∣∣∣
∫

(x,y)∈S×T
(W1(x, y) − W2(x, y)) d(ν2)

∣∣∣∣ ,
where S and T range over all measurable subsets of �. Strictly speaking, d� is only a
pseudometric since two graphons differing on a set of measure zero have zero distance.
Based on the cut-norm distance we can define the key notion of cut distance by

δ�(W1, W2) = inf
ϕ

d�(Wϕ

1 , W2) , (12)

where ϕ : � → � ranges through all measure preserving automorphisms of �, and Wϕ

1

stands for a graphon defined by Wϕ

1 (x, y) = W1(ϕ(x), ϕ(y)). Then δ� is also a pseudometric.
Suppose that H = ({v1, . . . , v�}, E) is a graph (which is allowed to have self-loops), and let

� be an arbitrary atomless standard Borel probability space. By a graphon representation
WH of H we mean the following construction. We consider an arbitrary partition � =
A1∪̇A2∪̇ . . . ∪̇A� into sets of measure 1

�
each. We then define the graphon WH as 1 or 0

on each square Ai × Aj, depending on whether vivj forms an edge or not. Note that WH is
not unique since it depends on the choice of the sets A1, . . . , A�. However, all the possible
graphons WH are at zero distance in the δ�-pseudometric. So, when writing WH we refer to
any representative of the above class. With this in mind, we can also define the cut distance of
H and any graphon W : �2 → [0, 1], denoted by δ�(H, W), as δ�(WH , W). Also, all of this
extends in a straightforward way to weighted graphs with a weight function w : E → [0, 1].

Random Structures and Algorithms DOI 10.1002/rsa



CLIQUES IN DENSE INHOMOGENEOUS RANDOM GRAPHS 9

Remark 3.3. Suppose that H is a finite graph and I is the unit interval (open or closed).
Then in the above construction we can take the sets Ai ⊆ I to be intervals.

The key property of the sampling procedures described earlier (both G(n, W) and
H(n, W)) is that the samples are typically very close to the original graphon W in the
cut distance. Let us state this fact (for the sampling procedure H(n, W)), proven first in [4],
formally.

Lemma 3.4 ([18, Lemma 10.16]). Let W be an arbitrary graphon. Then for each k ∈ N

with probability at least 1 − exp(− k
2 log k ), we have δ�

(
H(k, W), W

)
� 20√

log k
.

In some situations, we shall consider a wider class of kernels, the so-called L∞-graphons.
These are just symmetric L∞-functions W : �2 → R+. That is, we do not require
L∞-graphons to be bounded by 1 but rather by an arbitrary constant. The random graph
H(n, W) makes sense even for L∞-graphons.2 By simple rescaling, we get the following
from Lemma 3.4.

Corollary 3.5. Let W an arbitrary L∞-graphon. Then for each k ∈ N with probability at
least 1 − exp(− k

2 log k ), we have δ�
(
H(k, W), W

)
� 20‖W‖∞√

log k
.

Let us note that the proof of Lemma 3.4 is quite involved.

3.4. Lebesgue Points and Approximate Continuity

Let f : (0, 1)2 → R be an integrable function. Recall that (x, y) ∈ (0, 1)2 is a called a
Lebesgue point of f if we have

lim
r→0+

1

λ(Mr(x, y)))

∫
(s,t)∈Mr

|f (s, t) − f (x, y)|d(λ2) = 0, (13)

where Mr(x, y) = [x − r, x + r] × [y − r, y + r]. Recall that (x, y) ∈ R
2 is a point of density

of a set A ⊆ R
2 if

lim
r→0+

λ(Mr(x, y) \ A)

λ(Mr(x, y)))
= 0. (14)

Recall also that a function f : (0, 1)2 → R is said to be approximately continuous at
(x, y) ∈ (0, 1)2 if for every ε > 0, the point (x, y) is a point of density of the set
{(s, t) ∈ (0, 1)2 : |f (s, t) − f (x, y)| < ε}.

We will use the following classical result (see e.g. [23, Theorem 7.7]).

Theorem 3.6. Let f : (0, 1)2 → R be an integrable function. Then almost every point of
(0, 1)2 is a Lebesgue point of f . In particular, we have

lim
r→0+

1

λ(Mr(x, y)))

∫
(s,t)∈Mr

f (s, t)d(λ2) = f (x, y)

for almost every (x, y) ∈ (0, 1)2.

2But G(n, W) does not make sense.
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An easy consequence of the previous theorem is also the following classical result.

Theorem 3.7. Let f : (0, 1)2 → R be a measurable function. Then f is approximately
continuous at almost every point of (0, 1)2.

3.5. Alternative Formulas for κ(W )

First, let us prove Fact 2.6 which gives our first identity for κ(W).

Proof of Fact 2.6. If there exists a nonzero histogram h such that
∫

(u,v)∈�2 h(u)h(v)
log W(u, v)d(ν2) = 0 then clearly both suprema in (6) and (7) are +∞.

Let h be an arbitrary histogram in (6) and suppose that
∫

(u,v)∈�2 h(u)h(v) log (1/W(u,v))

d(ν2) > 0. We take

f = 2‖h‖1 · h∫
(u,v)∈�2 h(u)h(v) log (1/W(u,v)) d(ν2)

.

This way, the function f is a histogram on �, and ‖f ‖1 equals to the term in the supremum
in (6). So, to justify that the right-hand side of (7) is at least as big as that of (6), we only
need to show that 	(f , W) � 0. Indeed,

	(f , W) = 2‖h‖1∫
(u,v)∈�2 h(u)h(v) log(1/W(u,v))d(ν2)

·
∫

x∈�

h(x)d(ν)

+ 1

2
·
(

2‖h‖1∫
(u,v)∈�2 h(u)h(v) log(1/W(u,v))d(ν2)

)2

·
∫

(x,y)∈�2
h(x)h(y) log W(x, y)d(ν2)

= 0 .

On the other hand, let f be an arbitrary histogram appearing in (7) such that∫
(u,v)∈�2

f (u)f (v) log (1/W(u,v)) d(ν2) > 0 .

For c ∈ R, let us denote by cf the c-multiple of the function f . Then the map c �→ 	(cf , W)

is clearly a quadratic function with the limit −∞ at +∞. And since 	(f , W) � 0, there is
c0 � 1 such that 	(c0f , W) = 0. Now if we define h = c0f then the corresponding term
in (6) equals to ‖h‖1 = c0‖f ‖1 � ‖f ‖1.

In Fact 2.6 we gave an alternative formula for κ(W). In Proposition 3.8 we give two
further expressions. These expressions require the graphon W to be changed on a nullset.
Note that we have the liberty of making such a change as the distribution of the model
G(n, W) remains unaltered.

Proposition 3.8. Suppose that W : (0, 1)2 → [0, 1] is an arbitrary graphon. Then W can
be changed on a nullset in such a way that the following holds:

We have

exp

(
− 2

κ(W)

)
= lim

r→∞ Pr where Pr = sup
F⊆(0,1),|F|=r

( ∏
x,y∈F,x<y

W(x, y)

)2/(|F|2−|F|)
and

(15)
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2

κ(W)
= inf

A

1

λ(A)2

∫
(x,y)∈A2

log (1/W(x,y)) d(λ2) , (16)

where the infimum ranges over all measurable sets A ⊆ (0, 1) of positive measure.
Moreover,

κ(W) = sup
a∈R+ ,A⊆�

{aλ(A) : 	(a · 1A, W) � 0} . (17)

More precisely, for each ε > 0 and each set A from (16) satisfying (1 + ε) 2
κ(W)

�
1

λ(A)2

∫
(x,y)∈A2 log(1/W(x,y))d(λ2) we have that for the number a = (1 − ε) κ(W)

λ(A)
that 	(a ·

1A, W) � 0.

Remark. We can rewrite (16) as 2
κ(W)

= infh
1

‖h‖2
1

∫
(x,y)∈�2 log (1/W(x,y)) h(x)h(y)d(λ2),

where h ranges over all indicator functions on (0, 1). Our proof of Proposition 3.8 could be
easily modified to show that in the infimum, we can range over all histograms h instead. Since
the Radon–Nikodym theorem gives us a one-to-one correspondence between non-negative
L1-functions and absolutely continuous measures, we get that

2

κ(W)
= inf

π

∫
(x,y)∈(0,1)2

(log 1/W(x,y)) d(π 2) ,

where the infimum ranges over all probability measures π on (0, 1) that are absolutely
continuous with respect to the Lebesgue measure. While we shall not need this identity
we remark that it can be used to derive a heuristic — slightly different from that given in
Section 6 — for Theorem 2.5.

Proof of Proposition 3.8. Let us replace the value of W at every point (x, y) ∈ (0, 1)2

that is not a point of approximate continuity by c. This is a change of measure zero by
Theorem 3.7.

Let us deal with the first part of the statement postponing (17) to later.

Claim 3.8.1. For each r ∈ {2, 3, . . .} we have log Pr � − 2
κ(W)

.

Proof of Claim 3.8.1. Let h be an arbitrary function appearing in (6) (not constant zero).
Fix r ∈ {2, 3, . . .}, and let F ⊆ (0, 1) be a random set consisting of r independent points
sampled from (0, 1) according to the density function d = h/‖h‖1. Then by linearity of
expectation we have

EF

[
2

r(r−1)

∑
x,y∈F,x<y

log W(x, y)

]
= Ex,y∼d

[
log W(x, y)

]
= 1

‖h‖2
1

∫
(x,y)∈�2

h(x)h(y) log W(x, y) d(λ2) .

This shows that there exists a deterministic r-element set F for which

2

r(r − 1)

∑
x,y∈F,x<y

log W(x, y) � 1

‖h‖2
1

∫
(x,y)∈(0,1)2

h(x)h(y) log W(x, y)d(λ2) .

This concludes the proof of Claim 3.8.1.
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Let us denote the right-hand side of (16) as −P.

Claim 3.8.2. For each r ∈ {2, 3, . . .}, we have that P � r−1
r log Pr + log c

r .

Proof of Claim 3.8.2. Suppose that r ∈ {2, 3, . . .} is given, and let F = {x1 < x2 <

. . . < xr} be an arbitrary set of points in (0, 1) as in (15). Let ε ∈ (0, c/2) be arbitrary. Let
C = log c − log(c − ε). Firstly, note that the concavity of the logarithm gives that

log(a − ε) � log a − C (18)

for each a ∈ [c, ∞). Secondly, note that C ↘ 0 as ε ↘ 0.
Let us take δ > 0 such that for each i ∈ [r], we have that the sets Si = [xi − δ, xi + δ]

are pairwise disjoint, and such that the measure of each of the sets Dij = {(x, y) ∈ Si × Sj :
W(xi, xj) − ε > W(x, y)} is at most ε(2δ)2. The latter property can be achieved since each
point (xi, xj) is either a Lebesgue point of W , or it is a point attaining the infimum of W . Let
A =⋃r

i=1 Si. Then,

1

λ(A)2

∫
(x,y)∈A2

log W(x, y)d(λ2)

= 1

(2δr)2

∑
i

∑
j

⎛
⎜⎝ ∫

(x,y)∈(Si×Sj)\Dij

log W(x, y) d(λ2) +
∫

(x,y)∈Dij

log W(x, y) d(λ2)

⎞
⎟⎠

� 1

(2δr)2

∑
i

∑
j

⎛
⎜⎝ ∫

(x,y)∈(Si×Sj)\Dij

log(W(xi, xj) − ε) d(λ2) +
∫

(x,y)∈Dij

log c d(λ2)

⎞
⎟⎠ .

Now, let us use (18) for the first term and the fact that λ(Dij) � ε(2δ)2 for the second term.
Thus,

1

λ(A)2

∫
(x,y)∈A2

log W(x, y)d(λ2)

� 1

r2

∑
i

∑
j

log W(xi, xj) − C + ε log c

� r − 1

r
· 2

r(r − 1)

∑
i,j:i<j

log W(xi, xj) + 1

r2

∑
i

log W(xi, xi) − C + ε log c

� r − 1

r
· 2

r(r − 1)

∑
i,j:i<j

log W(xi, xj) − C + (ε + 1
r ) log c .

Letting ε ↘ 0 (which means that also C ↘ 0), we get the claim.

By Claim 3.8.1, we have lim inf r→∞ log Pr � − 2
κ(W)

. By Claim 3.8.2, we have P �
lim supr→∞ log Pr . Further, it is obvious that − 2

κ(W)
� P: Indeed, the supremum in (6)

ranges over all histograms, of which indicators of measurable sets are just a particular case.
The combination of the three above inequalities proves the fact.
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So, it remains to deal with (17). Positive multiples of indicator functions are histograms,
so (7) tells us that κ(W) � supa∈R+ ,A⊆� {aλ(A) : 	(a · 1A, W) � 0}. It remains to deal
with the opposite inequality. We shall prove this in the “more precisely” form. Let ε > 0
be arbitrary and take A such that (1 + ε) 2

κ(W)
� 1

λ(A)2

∫
(x,y)∈A2 log(1/W(x,y))d(λ2). Set a =

(1 − ε) κ(W)

λ(A)
. We claim that the pair (a, A) is admissible for the supremum in (17). Indeed,

	(a · 1A, W)
(8)= aλ(A) − 1

2 a2

∫
(x,y)∈A2

− log W(x, y)d(λ2)

= (1 − ε)κ(W)

(
1 − 1

2 (1 − ε)κ(W)
1

λ(A)2

∫
(x,y)∈A2

log(1/W(x,y))d(λ2)

)

� (1 − ε)κ(W)

(
1 − 1

2 (1 − ε)κ(W)(1 + ε)
2

κ(W)

)
= ε2(1 − ε)κ(W) > 0 .

Since a · λ(A) = (1 − ε)κ(W), and since ε > 0 was arbitrary, this finishes the proof.

3.6. Exhaustion Principle

We recall the principle of exhaustion (see e.g. [8, Lemma 11.12] for a more general
statement).

Lemma 3.9. Let C be a collection of measurable subsets of (0, 1) with positive Lebesgue
measure. Suppose that for every A ⊆ (0, 1) with positive Lebesgue measure, there is C ∈ C
such that C ⊆ A. Then there is an at most countable subcollection B of C of pairwise disjoint
sets such that

∑
B∈B

λ(B) = 1.

4. CONCENTRATION AND OSCILLATION: PROOFS OF PROPOSITION 2.1
AND THEOREM 2.2

4.1. Proof of Proposition 2.1

We shall need the following well-known crude bound on the minimum difference between
uniformly random points.

Fact 4.1. Suppose that the numbers x1, . . . , xn are uniformly sampled from the interval
(0, 1). Then asymptotically almost surely, mini �=j |xi − xj| > n−3.

Consider a sequence of positive numbers 1 = a1 > a2 > a3 > . . . > 0, with
limn→∞ an = 0, to be determined later. Define a graphon W : (0, 1)2 → [0, 1] as

W(x, y) =
{

0 if a2i−1 � |x − y| > a2i,
1 if a2i � |x − y| > a2i+1.

Let us show how to achieve (4). Suppose that numbers a1, . . . , a2i−1 were already set. Fix
an arbitrary number n large enough such that n−3 < a2i−1 and f (n) > 1 + 1/a2i−1. Then,
set a2i := n−3. We claim that with high probability, there is no set of f (n) vertices in
G(n, W) forming a clique. Indeed, consider the representation of the vertices of G(n, W)

in the interval [0, 1]. By Fact 4.1 we can assume that the mutual distances between these

Random Structures and Algorithms DOI 10.1002/rsa



14 DOLEŽAL, HLADKÝ, AND MÁTHÉ

points are more than a2i. Consider an arbitrary set S ⊆ (0, 1) of these points of size f (n). By
the pigeonhole principle there are two points x, y ∈ S with |x − y| � 1/(f (n) − 1) < a2i−1.
On the other hand, |x − y| > a2i. We conclude that W(x, y) = 0, and thus S does not induce
a clique.

Next, let us show how to achieve (5). Suppose that numbers a1, . . . , a2i were already
set. Fix a large number n. In particular, suppose that n−3 < a2i and f (n) > 2

a2i
, and let

a2i+1 := n−3. Now, consider the process of generating vertices in G(n, W). By the Law of
Large Numbers, out of n vertices, with high probability, at least 1

2 a2in vertices fall in the
interval ( 1

2 − a2i
2 , 1

2 + a2i
2 ). By Fact 4.1, with high probability, the differences of pairs of

these points are bigger than a2i+1. In particular, the said set of vertices forms a clique of
order at least 1

2 a2in > n
f (n)

, as needed for (5).

Remark 4.2. It may seem that by replacing the values 0 and 1 by some constants 0 < p1 <

p2 < 1 in the construction in the proof of Proposition 2.1 we get an oscillation between
c1 log n and c2 log n. Theorem 2.5 tells us however that this is not the case: the clique number
normalized by log n will converge in probability.

4.2. Proof of Theorem 2.2

The proof of Theorem 2.2 was suggested to us by Lutz Warnke.

First, we handle the case when E[ω(G(n, W))] is bounded.

Lemma 4.3. Let W be a graphon, and L = limn→∞ E[ω(G(n, W))]. Then L = sup{k ∈
N : t(Kk , W) > 0}. In addition, if L is finite then limn→∞ P[ω(G(n, W)) = L] = 1.

Proof. The statement follows from the following claim. Suppose that W is a graphon.
Then for each � ∈ N we have

lim
n→∞ P[ω(G(n, W)) � �] ∈ {0, 1} .

Indeed, suppose that for some � and n we have that P[ω(G(n, W)) � �] = δ > 0.
Then, for each k, we have that P[ω(G(kn, W)) � �] � 1 − (1 − δ)k . Consequently,
limn→∞ P[ω(G(n, W)) � �] = 1.

Suppose that W is represented on a probability space �. By Lemma 4.3, we can assume
that E[ω(G(n, W))] → ∞.

To prove the concentration, we shall use Talagrand’s inequality. For this, we need to
represent G(n, W) on a suitable product space J . It turns out that the right product space
corresponds to “vertex-exposure” technique known in the theory of random graphs. Let
J := ∏n

i=1 Ji, where Ji = � × [0, 1]i−1. This indeed is a “vertex-exposure model” of
G(n, W). To see this, consider an arbitrary element x ∈ J . We can write

x = (x1, ( ); x2, (p1,2); x3,

(
p1,3

p2,3

)
; . . . ; xn,

⎛
⎜⎜⎝

p1,n

p2,n

· · ·
pn−1,n

⎞
⎟⎟⎠) ,

where xi ∈ �, and pi,j ∈ [0, 1]. In the instance of G(n, W) corresponding to x, vertices i and
j are connected if and only if W(xi, xj) � pi,j. It is straightforward to check that this gives
the right distribution on G(n, W).
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Consider the clique number, this time on the domain J . That is, we have a function
� : J → R, where �(x) is the clique number of the graph corresponding to x. Then � is a
(discrete) 1-Lipschitz function. That is if x, y ∈ J are such that they differ in one coordinate,
then |�(x) − �(y)| � 1.3 Further, � satisfies the so-called small certificates condition.
This means that whenever �(x) � �, there exists a set C of at most � many coordinates
such that �(y) � � for each y ∈ J which agrees with x on each coordinate from C. (In
other words, the values of x on coordinates from C alone certify that �(x) � �.) Indeed,
it is enough just to reveal the values at the indices of one maximum clique. Talagrand’s
inequality (see [22, Remark 2 following Talagrand’s Inequality II, p. 81])4 then states that

there exists an absolute constant β > 0 such that for tn = (E[ω(G(n, W))]) 3
4 , we have (for

every large enough n) that

P
[|ω(G(n, W)) − E[ω(G(n, W))]| > tn

]
� 2 exp

(
− βt2

n

E[ω(G(n, W))]
)

= 2 exp
(
−β
√

E[ω(G(n, W))]
)

.

The conclusion immediately follows by letting n go to infinity.

4.3. Graphons With a Bounded Clique Number

Lemma 4.3 provides some information about graphons with a bounded clique number. In
this section, we prove Theorem 2.3 which gives a much more explicit description.

Proof of Theorem 2.3. Let W : �2 → [0, 1] be a graphon with a bounded clique number.
By Lemma 4.3 we know that L = sup{k ∈ N : t(Kk , W) > 0} is a finite (natural) number.
First of all, we will show that there is a set B ⊆ � of positive measure such that W �B×B= 0
almost everywhere. We may assume that L � 2 (the case L = 1 is trivial). For every
(L − 1)-tuple x = (x1, . . . , xL−1) ∈ �L−1, let us denote Qx = {y ∈ � :

∏L−1
i=1 W(xi, y) > 0}.

It follows from the equality t(KL+1, W) = 0 that for every (up to a set of measure zero)
x ∈ �L−1 such that

∏
i<j W(xi, xj) > 0, we have W �Qx×Qx= 0 almost everywhere. But

since t(KL, W) > 0, the set of all x ∈ �L−1 such that
∏

i<j W(xi, xj) > 0 and ν(Qx) > 0,
has positive measure. So it suffices to set B = Qx for a suitable x ∈ �L−1.

Next, observe that for every A ⊆ � of positive measure, there is B ⊆ A of posi-
tive measure such that W �B×B= 0 almost everywhere. This follows by the previous
considerations applied on the subgraphon W ∗ = W �A×A (for which we still have that
sup{k ∈ N : t(Kk , W ∗) > 0} < +∞).

Finally, let W ′ : (0, 1)2 → [0, 1] be a representation of the graphon W on (0, 1). Then
the statement follows by an application of Lemma 3.9.

3One could consider a stronger notion of 1-Lipschitzness, namely, to require that changing x on an E-coordinate
by ε would change the value of our function by at most ε. This clearly is not true for �. However, the weaker
version is sufficient for our purposes.
4Actually, as was communicated to us by Lutz Warnke and Mike Molloy, there is a typo in [22]. The effect of this
typo, however, is only the value of the constant β below. Since we do not make β explicit, this typo is irrelevant.
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5. BICLIQUE NUMBER

In this section, we prove Theorem 2.4. First, we introduce some additional notation. When
we refer to a bipartite graph H = (V , W ; E) as a bigraph, we consider a distinguished order
of the colour classes V = {v1, . . . , vp} and W = {w1, . . . , wq}. In such a case we define the
bipartite density of H in a bigraphon U : �1 × �2 → [0, 1] by

tB(H, U) =
∫

(x1,...,xp)∈�
p
1

∫
(y1,...,yq)∈�

q
2

∏
ij:viwj∈E

U(xi, yj) d(ν
q
2 )d(ν

p
1) . (19)

Note that for a bigraph H = (V , W ; E) and its conjugate H ′ = (W , V ; E) the quantities
tB(H , U) and tB(H ′, U) are not necessarily equal.

As we will see, the upper bound in Theorem 2.4 is trivial. For the lower bound, we need
to make a small detour to Sidorenko’s conjecture.

5.1. Sidorenko’s Conjecture

A famous conjecture of Simonovits and Sidorenko, “Sidorenko’s conjecture”, [24, 25]
asserts that among all graphs of a given (large) order n and fixed edge density d, the density
of a fixed bipartite graph is minimized for a typical sample from G(n, d). The conjecture
can be particularly neatly phrased in the language of graphons — as observed already by
Sidorenko a decade before the notion of graphons itself — in which case it asserts that

tB(H, U) �
(∫

x∈�1

∫
y∈�2

U(x, y) d(ν2)d(ν1)

)e(H)

, (20)

for each bigraphon U : �1 ×�2 → [0, 1] and each bigraph H. Despite recent results [5,12,
16, 17], the conjecture is wide open. We shall need the solution of Sidorenko’s Conjecture
for H = Kn,m which was observed already by Sidorenko. We give a short self-contained
and unoriginal proof here.

Proposition 5.1. Suppose that U : �1 × �2 → [0, 1] is an arbitrary bigraphon and
n, m ∈ N are arbitrary. Then for the complete bigraph Kn,m we have tB(Kn,m, U) �(∫

x∈�1

∫
y∈�2

U(x, y) d(ν2)d(ν1)
)nm

.

Proof. We have∫
x1,...,xn

∫
y1,...,ym

∏
i∈[n],j∈[m]

U(xi, yj) =
∫

x1,...,xn

( ∫
y

∏
i∈[n]

U(xi, y)
)m

�
( ∫

x1,...,xn

∫
y

∏
i∈[n]

U(xi, y)
)m

=
( ∫

y

∫
x1,...,xn

∏
i∈[n]

U(xi, y)
)m =

( ∫
y

( ∫
x

U(x, y)
)n)m

�
( ∫

x

∫
y

U(x, y)
)nm

,

where both inequalities follow by applications of Hölder’s inequality.
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5.2. Bicliques in Almost Constant Bigraphons

As a preliminary step for our proof of Theorem 2.4, we study bicliques in random bipar-
tite graphs sampled from almost constant bigraphons. This condition is formalized by the
following definition.

Definition 5.2. A bigraphon U : �1 × �2 → [0, 1] is (d, ε)-constant if∫
(x,y)∈�1×�2

U(x, y)d(ν1 × ν2) � d and ess sup U � d + ε.

Proposition 5.3. Let 0 < d1 < d2 < 1 be given. Then for every α ∈ (0, 1) there exists
ε ∈ (0, 1) such that the following holds: Whenever we have d ∈ (d1, d2)and a (d, ε)-constant
bigraphon U : �1 × �2 → [0, 1] then for G ∼ B(k, U) we have a.a.s. that

ω2(G) � (1 − α) · 2

log 1/d
· log k .

Proof. Let α ∈ (0, 1) be arbitrary. Suppose that ε > 0 is sufficiently small (we will make
this precise later), d ∈ (d1, d2) and U : �1 ×�2 → [0, 1] is (d, ε)-constant. Suppose further
that k is large.

Let Xk be the number of bicliques in B(k, U) whose two colour classes have size � =
(1 − α) · 2

log 1/d · log k. Multiplicities caused by automorphisms of K�,� are not counted. By
Proposition 5.1 we have

E[Xk] =
(

k

�

)2

· tB(K�,�, U) �
(

k

�

)2

d�2 �
(

k

�

)2�

d�2 =
(

k2α

�2

)�

. (21)

Next, we are going to show by a second moment argument that Xk ≈ E[Xk] a.a.s. For
p, q = 0, 1, . . . , �, we define the bigraph K[�,p,q] as a result of gluing two copies of K�,� along
p vertices in the first colour class and q vertices in the second colour class. Alternatively,
K[�,p,q] can be obtained by erasing edges of two disjoint copies of the bigraph K�−p,�−q from
K2�−p,2�−q. We have

e(K[�,p,q]) = 2�2 − pq . (22)

We have

E[X2
k ] =

�∑
p=0

�∑
q=0

E[Yp,q] , (23)

where Yp,q counts the number of bigraphs K[�,p,q] which preserve the order of the colour
classes. We expand the second moment as

E[Yp,q] =
(

k

� − p | � − p | p

)
·
(

k

� − q | � − q | q

)
· tB(K[�,p,q], U) . (24)

Claim 5.3.1. For every c > 0 there exists ε1 > 0 such that the following holds: Whenever
d ∈ (d1, d2) and U : �1 × �2 → [0, 1] is (d, ε1)-constant then for each p, q ∈ [�]0,
p + q � c log k, we have

E[Xk]2 � log3 k · E[Yp,q] .

Proof of Claim 5.3.1. Let c > 0 be arbitrary. Suppose that ε1 > 0 is sufficiently small,
d ∈ (d1, d2) and U : �1 × �2 → [0, 1] is (d, ε1)-constant. Let p, q ∈ [�]0 be such that
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p+q � c log k (and of course p+q � 2�). Upper-bounding the terms in (24) (while bearing
in mind that � = �(log k)), we get

E[Yp,q] � k4�−p−q(d + ε1)
e(K[�,p,q]) (22)= k4�−p−q(d + ε1)

2�2−pq

AM-GM Ineq., d + ε1 < 1 �
(
k2(d + ε1)

�
)2�
(

k(d + ε1)
p+q

4

)−(p+q)

p + q � 2� and d + ε1 < 1 �
(
k2(d + ε1)

�
)2�
(

k(d + ε1)
�
2

)−(p+q)

k(d + ε1)
�
2 � kα � exp

(
4� log k

(
1 + (1 − α)

log(d+ε1)

log 1/d

))
k−cα log k

= k4α� exp
(

4� log k (1 − α)
(

1 − log(d+ε1)

log d

)
− cα log2 k

)
ε1 sufficiently small � k4α� exp

(− 1
2 cα log2 k

)

(25)

It is now enough to compare this with (21).

Claim 5.3.2. There exist numbers C, ε2 > 0 such that the following holds: Whenever
d ∈ (d1, d2) and U : �1 × �2 → [0, 1] is (d, ε2)-constant then for each p, q ∈ [�]0,
1 � p + q < C log k, we have

E[Y0,0] � k
1
2 E[Yp,q] .

Proof of Claim 5.3.2. Suppose that ε2 > 0 is sufficiently small, d ∈ (d1, d2) and
U : �1 × �2 → [0, 1] is (d, ε2)-constant. Let us compare the combinatorial coefficients
corresponding to E[Y0,0] and E[Yp,q] in (24). We have( k

� | �

)2( k
�−p | �−p | p

) · ( k
�−q | �−q | q

) = k(1+o(1))(p+q) , (26)

where o(1) → 0 as k → ∞ uniformly for any choice of p and q.

It remains to compare the terms tB(K[�,0,0], U) and tB(K[�,p,q], U).
First, we claim that for each i, j, h ∈ N we have

tB(Ki,h, U)tB(Kj,h, U) � tB(Ki+j,h, U) . (27)

Indeed, by Hölder’s inequality, we have

tB(Ki,h, U) =
∫

T

(∫
x

deg(x, T)

)i

�
(∫

T

(∫
x

deg(x, T)

)i+j
) i

i+j

,

tB(Kj,h, U) =
∫

T

(∫
x

deg(x, T)

)j

�
(∫

T

(∫
x

deg(x, T)

)i+j
) j

i+j

,

where the integrations are over T = (t1, . . . , th) ∈ (�2)
h, and x ∈ �1, and deg(x, T) =∏h

r=1 U(x, tr). Thus

tB(Ki,h, U)tB(Kj,h, U) �
∫

T

(∫
x

deg(x, T)

)i+j

= tB(Ki+j,h, U) ,

as we wanted.
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Fig. 1. The p� + q� − 2pq edges of K[�,p,q] corresponding to factors bounded from above by d + ε2

in (19).

A double application of (27) followed by an application of Proposition 5.1 gives

tB(K�,�, U) � tB(K�−p,�, U)tB(Kp,�, U) � tB(K�−p,�−q, U)tB(K�−p,q, U)tB(Kp,�, U)

� tB(K�−p,�−q, U)dq�−pqdp� .
(28)

In the defining formula (19) for tB(K[�,p,q], U) we show that d +ε2 are upper bounds on some
factors in

∏
U(xi, yi), as in Fig. 1. Observe that after removal of the p� + q� − 2pq edges

indicated in Fig. 1, the graph K[�,p,q] decomposes into a disjoint union of K�,� and K�−p,�−q.
Note that for a disjoint union H1 ⊕H2 of two bigraphs H1 and H2 we have tB(H1 ⊕H2, U) =
tB(H1, U)tB(H2, U). Thus,

tB(K[�,p,q], U) � (d + ε2)
p�+q�−2pqtB(K�,�, U)tB(K�−p,�−q, U). (29)

Therefore,

tB(K[�,0,0], U) = tB(K�,�, U)tB(K�,�, U)
(28)

� tB(K�,�, U)tB(K�−p,�−q, U)dp�+q�−pq

(29)

� tB(K[�,p,q], U)

(
d

d + ε2

)p�+q� (
(d + ε2)

2

d

)pq

AM-GM Ineq., ε2 such that
(d+ε2)2

d � 1 � tB(K[�,p,q], U)

(
1 − ε2

d + ε2

)p�+q� (
(d + ε2)

2

d

)(p+q)· p+q
4

� tB(K[�,p,q], U)

(
1 − ε2

d + ε2

)p�+q�

d(p+q)· C log k
4 .

(30)

Substituting (26) and (30) into (24) we get

E[Y0,0]
E[Yp,q] �

(
k1+o(1)

(
1 − ε2

d + ε2

)�

d
C log k

4

)p+q

for ζ ∈ (0, 1
2 ) we have 1 − ζ � exp(−2ζ ) �

(
k1+o(1) exp

(
−(1 − α)

2ε2

d + ε2
· 2

log 1/d
· log k

)
d

C log k
4

)p+q
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=
(

k1+o(1) · k
(1−α)

2ε2
d+ε2

· 2
log d · k

C log d
4

)p+q

� k
1
2 (p+q) � k

1
2 ,

for C = 1/ log(1/d1), and ε2 < 1
20 d1 log(1/d2).

Let C > 0 and ε2 > 0 be given by Claim 5.3.2. Let ε1 > 0 be given by Claim 5.3.1
for c = C. Now if ε < min (ε1, ε2), we are ready provide upper bounds on the summands
in (23). Note that we have �(log2 k) many of these summands. We get

E[X2
k ] = E[Y0,0] +

∑
p,q∈[l]0

1�p+q<C log k

E[Yp,q] +
∑

p,q∈[l]0
p+q�C log k

E[Yp,q]

� E[Y0,0] + �(log2 k)E[Y0,0]k− 1
2 + �(log2 k)E[Xk]2 log−3 k

E[Y0,0] = (1 + o(1))E[Xk ]2 = (1 + o(1))E[Xk]2.

Therefore we have E[X2
k ] = (1 + o(1))E[Xk]2, and it follows by Chebyshev’s inequality

that P[Xk > 0] = 1 − o(1).

5.3. Proof of Theorem 2.4

The upper bound is easy, since it claims that ω2(B(n, U)) is typically not bigger than the
biclique number in the balanced bipartite Erdős–Rényi random graph B(n, p) (which clearly
stochastically dominates B(n, U)). For completeness, we include the calculations. We write
Yk(B(n, U)) for the number of complete balanced bipartite graphs on k + k vertices inside
B(n, U). For k = (1 + ε) · 2

log 1/p · log n, we have,

E[Yk] �
(

n

k

)
·
(

n

k

)
· pk2 � n2kpk2 = (n2pk)k . (31)

The statement now follows from Markov’s Inequality, provided that we can show that
n2pk → 0. Indeed,

n2pk = n2p
2 log n
log 1/p p

2ε log n
log 1/p = p

2ε log n
log 1/p → 0 .

We now turn to the lower bound. Let α ∈ (0, 1) be arbitrary and let ε0 > 0 be given
by Proposition 5.3 for d1 = p

2 and d2 = p. Let ε < min
(
ε0, p

2

)
be arbitrary. We denote by

νi the measure given on �i, i = 1, 2. The definition of the essential supremum, together
with Theorem 3.6, gives that there exist two measurable sets A ⊆ �1 and B ⊆ �2 such that
ν1(A), ν2(B) > 0 and∫

(x,y)∈�1×�2

U(x, y)d(ν1 × ν2) � (p − ε)ν1(A)ν2(B) .

We put δ = min (ν1(A), ν2(B)). By rescaling the measures ν1, ν2, we get probability mea-
sures ν∗

1 on A and ν∗
2 on B. Then we can view U �A×B as a bigraphon, which we denote by

U∗. Note that U∗ is (p − ε, ε)-constant (and thus also (p − ε, ε0)-constant as ε < ε0).
Consider now the sampling process to generate B ∼ B(n, U) as described above. A stan-

dard concentration argument gives that with high probability, at least δn
2 points xi sampled in

Random Structures and Algorithms DOI 10.1002/rsa



CLIQUES IN DENSE INHOMOGENEOUS RANDOM GRAPHS 21

�1 lie in the set A, and at least δn
2 points yj sampled in �2 lie in the set B. In other words, with

high probability we can find a copy of B( δn
2 , U∗) inside B(n, U). Looking at the biclique

number, we get that for � = (1 − α) · 2
log 1/(p−ε)

· log(δn/2), we have

P[ω2(B(n, U)) � �] � P
[
ω2(B( δn

2 , U∗)) � �
]− o(1) � 1 − o(1) ,

where the last inequality follows from Proposition 5.3. Since log(δn/2) = (1 + o(1)) log n,
and since α ∈ (0, 1) and ε < min

(
ε0, p

2

)
were arbitrary, the claim follows.

6. FORMULA FOR GRAPHS WITH LOGARITHMIC CLIQUE NUMBER

In this section we try to informally justify Theorem 2.5. While we believe that the derivation
here captures the essence of the problem, the actual proof, presented in Section 8, is quite
different. At the end of this section we comment on what fails in turning the heuristics into
a rigorous argument.

6.1. First Moment for a 2-Step Graphon

Let us try to gain some intuition on Theorem 2.5 by looking at one of the simplest non-
constant graphons. Let W : �2 → [0, 1] be represented on the unit interval � (c.f. Fact 3.1)
and defined by

W(x, y) =

⎧⎪⎨
⎪⎩

p11 if x, y ∈ �1,

p22 if x, y ∈ �2, and

p12 otherwise.

(32)

Here, p11, p22, p12 ∈ (0, 1) are arbitrary, and � is partitioned arbitrarily into two measurable
sets �1 and �2 of positive measures β1 and β2.

Our aim is to determine for which numbers c ∈ R
+ there typically exists a clique of order

c log n in G ∼ G(n, W), and for which c’s there is typically none. So let us fix c ∈ R
+ and

let Xn count the number of cliques of order c log n in G ∼ G(n, W). By Markov’s Inequality,
ω(G) will be typically smaller than c log n in the regime when E[Xn] → 0. On the other
hand, it is plausible that a second moment argument will give that typically ω(G) � c log n
when E[Xn] → +∞. With this belief — which is supported by the success of a second-
moment argument in the proof of Theorem 2.4 — let us estimate E[Xn]. Actually, we rather
look at a refined quantity Yα1,α2

n (G) which is defined as the number of cliques in G that
consist of α1 log n vertices whose representation on � lies in �1, and α2 log n vertices that
are represented in �2. We have

E[Xn] =
c log n∑
m=0

E
[
Y m/ log n,c−m/ log n

n

]
.

We expect the quantities Yα1,α2
n to be either super-polynomially small or super-polynomially

large. Since the sum above has only �(log n)-many summands, we expect that

E[Xn] → +∞ if and only if ∃α1, α2 � 0 such that α1 +α2 = c and E[Yα1,α2
n ] → +∞ .

(33)
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For a clique that contributes to Yα1,α2
n (G) to be present,

(
α1 log n

2

)
edges in the (�1×�1)-part

of W ,
(
α2 log n

2

)
edges in the (�2 ×�2)-part, and α1α2 log2 n edges in the (�1 ×�2)-part must

be present in the specific locations of perspective cliques or complete bipartite graphs. By
the Law of Large Numbers, approximately β1n points in the sampling process for G(n, W)

end up in �1 and approximately β2n points end up in �2. We get

E[Yα1,α2
n ] ≈

(
β1n

α1 log n

)(
β2n

α2 log n

)
p
(
α1 log n

2 )
11 p

(
α2 log n

2 )
22 pα1α2 log2 n

12

= exp

(
(1 + o(1)) log2 n

(
α1 + α2 + α2

1

2
log p11 + α2

2

2
log p22 + α1α2 log p12

))
.

(34)

Thus, whether E[Yα1,α2
n ] → 0 or E[Yα1,α2

n ] → +∞ depends on whether

α1 + α2︸ ︷︷ ︸
(∗)

+ 1

2

(
α2

1 log p11 + α2
2 log p22 + α1α2 log p12 + α2α1 log p12

)
︸ ︷︷ ︸

(∗∗)

(35)

is negative or positive, respectively. It is straightforward to generalize this formula to
graphons with more steps. Observe also that the values of β1 and β2 get lost in the transition
between the first and the second line of (34), and are immaterial in (35) consequently (pro-
vided that they are positive). In particular, the step sizes βi could have been “infinitesimally
small”. Thus, we can see a direct correspondence between (∗) and (∗∗) in (8) and (35),
where the integration corresponds to passing to infinitesimal steps. In view of this, we will
denote the term in (35) by 	(α, W), where α = (α1, α2). The optimization over α1 and α2

in (33) corresponds to taking the supremum in (7).

This is why we call the functions f in (7) (or vectors, in case of step-graphons) histograms:
they specify the densities of the vertices of the anticipated cliques over the space �. Also,
motivated by (7) and its interpretation above, we say that a histogram f is admissible for a
graphon W if 	(f , W) � 0.

Last, let us note that a physicist might refer to (∗) as the “entropy contribution”, as it
comes from the choice of the vertices of a clique, while (∗∗) could be referred to as the
“energy” needed to include all required edges of that clique.

6.2. Introducing the Second Moment to the Example

So far, our prediction was based on a first moment argument. Combined with Markov’s
Inequality this gives readily an upper bound on the typical clique number of G(n, W). We
now want to complement the upper bound with a lower bound based on a second moment
argument. Let us first recall the situation in the setting of the Erdős–Rényi random graphs
G(n, p). There, a straightforward calculation for the random variable Xn counting cliques
of order c log n (where c > 0 is fixed) gives that E[Xn]2 = (1 + o(1))E[X2

n ] if and only if
E[Xn] → +∞. Thus, the first and the second moment start working together at the same
time.

The situation is more complicated in the model G(n, W). We will illustrate this on the
graphon W from (32). Suppose that α1, α2 � 0 are such that (35) is positive, and we ask in
hope whether

E[Yα1,α2
n ]2 = (1 + o(1))E[(Yα1,α2

n )2] (36)
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In (34), we provided asymptotics for E[Yα1,α2
n ]. Thus, to understand whether we have (36),

we need to calculate E[(Yα1,α2
n )2]. We have

E[(Yα1,α2
n )2] = E

⎡
⎣(∑

K

1K induces a clique

)2
⎤
⎦ =

∑
K ,L

P[K and L induce cliques] , (37)

where K and L range over all sets of vertices with α1 log n vertices represented in �1 and
α2 log n vertices represented in �2. Let K1 be the vertices of K represented in �1, and let K2,
L1, and L2 be defined analogously. It is clear that |K1\L1| = |L1\K1| and |K2\L2| = |L2\K2|.
So for fixed sets K and L, we have

P[K and L induce cliques] = p
(
|K1∪L1|

2 )−|K1\L1|2
11 ·p(

|K2∪L2 |
2 )−|K2\L2|2

22 ·p|K1∪L1|·|K2∪L2|−2|K1\L1||K2\L2|
12 .

Thus, grouping (37) depending on the values of m1 = |K1 ∩ L1| and m2 = |K2 ∩ L2| we get

E[(Yα1,α2
n )2] ≈

α1 log n∑
m1=0

α2 log n∑
m2=0

(
β1n

m1 | α1 log n − m1 | α1 log n − m1

)

×
(

β2n

m2 | α2 log n − m2 | α2 log n − m2

)

×p
(

2α1 log n−m1
2 )−(α1 log n−m1)2

11 · p
(

2α2 log n−m2
2 )−(α2 log n−m2)2

22

×p(2α1 log n−m1)·(2α2 log n−m2)−2(α1 log n−m1)(α2 log n−m2)

12 ,

(38)

where the approximate equality represents the fact that we assumed on the right-hand side
that exactly βin vertices are represented in �i. Let us write γi = mi/ log n, and let us write
zγ1,γ2

n for the individual summands on the right-hand side of (38). Routine manipulations
give that

log zγ1,γ2
n

log2 n
≈ γ1 + γ2 + 2(α1 − γ1) + 2(α2 − γ2)

+ (α2
1 − 1

2γ
2
1 ) log p11 + (α2

2 − 1
2γ

2
2 ) log p22 + (2α1α2 − γ1γ2) log p12 .

Thus, if we want the second moment (36) to work then comparing the calculations above
with (34), we must have for each γ1 ∈ [0, α1] and γ2 ∈ [0, α2] that

2

(
α1 + α2 + α2

1

2
log p11 + α2

2

2
log p22 + α1α2 log p12

)
� γ1 + γ2 + 2(α1 − γ1) + 2(α2 − γ2) + (α2

1 − 1
2γ

2
1 ) log p11 + (α2

2 − 1
2γ

2
2 ) log p22

+ (2α1α2 − γ1γ2) log p12 ,

which rewrites as 	(γ , W) � 0. To summarize, to justify (7) (at least for step-functions), it
would suffice to have the following.

Dream Lemma. If W is a step-graphon with k steps and α ∈ [0, +∞)k is a vector with
	(α, W) > 0, then for all γ ∈ Box(α) we have 	(γ , W) � 0.
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This, however, does not hold in general. Indeed, take for example

p11 = e−3, p12 = p22 = e− 1
4 , α1 = 1, α2 = 1, γ1 = 1, γ2 = 0.

We have 	(α, W) = 1
8 > 0 but 	(γ , W) = − 1

2 < 0. It is worth explaining what is happening
in the example in words. The parameters p11 and α1 are set so that asymptotically almost
surely, G( n

2 , p11) contains no cliques of order α1 log n. However, in the rare cases when
G( n

2 , p11) (viewed as a subgraph of G(n, W)) does contain such a clique, there are typically
many ways of extending it on the �2-part by α2 log n additional vertices, thus inflating
E[Yα1,α2

n ] substantially.
The above suggests a correction for (7) in that we should range only over those histograms

f for which 	(g, W) � 0 for all histograms g ∈ Box(f ). Note also that the necessity of
testing the admissibility condition over all sub-histograms of f has a clear combinatorial
interpretation: If cliques with a given histogram typically appear, then for each given sub-
histogram cliques with that sub-histogram must appear (just because a subset of a clique
again induces a clique).

Now, after all the arguing why (7) should seem wrong, let us explain why it is actually
all right. We show in Lemma 7.2 that for any histogram f attaining the supremum in (7)
we automatically have that all sub-histograms are admissible (recall that a histogram h is
admissible for a graphon W if 	(h, W) � 0). If the supremum is not attained then for each
histogram f almost attaining the supremum, we have 	(g, W) � 0 for all sub-histograms
g, which is sufficient for the argument.

6.3. Failure of Turning the Above Heuristics into a Rigorous Argument

There are two types of errors that we introduced in the above argument. Firstly, the “little
imprecisions” when we replaced a sum by its maximal term (such as in (33)) or when we
used the �-symbol. Each such step introduces an error of o(1) to the quantities log Xn

log2 n
and

log Y
α1,α2
n

log2 n
. That means, that actually we can only conclude that

E[Yα1,α2
n ]2 = exp

(
o(log2 n)

)
E[(Yα1,α2

n )2] ,

which is too crude for the second moment argument to work.
Secondly, the notion of a “set of vertices following a certain histogram” makes sense only

in the stochastic block model, but not when we have a finite set of vertices in an uncountable
probability space. Let us jump ahead and note that in the rigorous proof in Section 8 we, in
a sense, are able to make use of histograms in the continuous setting. Namely, Lemma 3.4
allows us to discretize a given graphon in an appropriate sense, after which it does make
sense to talk about histograms.

Let us remark that for the stochastic block model the first issue (which is the only in
that case) can be dealt with by pedestrian calculations, thus yielding a routine proof of
Theorem 2.5 for the special class of stochastic block models.

7. TOOLS FOR THE PROOF OF THEOREM 2.5

In this section we prepare tools for the lower bound in Theorem 2.5. In Section 7.1 we state
and prove Lemma 7.2 which asserts that if f ∗ is a histogram almost attaining the supremum
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in (7) then 	(f , W) is almost positive for all subhistograms f � f ∗. The need for this lemma
was motivated in Section 6.2. In Section 7.2 we introduce a new graphon parameter ξ(W).
This parameter is motivated by controlling the second moment of the number of cliques
of a given size. All the work in Section 7 steers towards deriving the two main results of
this section, Lemma 7.7 and Lemma 7.9. The former lemma asserts that each graphon W
contains a subgraphon U with ξ(U) ≈ 1

κ(W)
. The latter asserts that ω(G(n, U)) � 1

ξ(U)
·log n.

These two lemmas combine easily to give the proof of the lower bound in Theorem 2.5 (as
is shown in Section 8).

7.1. Subhistograms of Optimal Histograms are Admissible

The main result of this section, Lemma 7.2, tells us that if f ∗ is a histogram almost attaining
the supremum in (7) then 	(f , W) is almost positive for all subhistograms f � f ∗. We
showed that this particular case of the (false, in general) Dream Lemma is needed for the
second moment to work. The proof of Lemma 7.2 is technical, building on Lemma 7.1.
It turns out that in those situations when the supremum in (7) is attained, Lemma 7.2 has
a much shorter (but conceptually the same) proof. We offer this simplified statement in
Lemma A.1 in the Appendix.

Lemma 7.1. Suppose that W is an arbitrary graphon with 0 < ess inf W � ess sup W <

1. Then there is a constant K > 0 depending only on the graphon W such that the following
holds: Let g be an arbitrary histogram admissible for W and let δ ∈ (0, 1). Suppose
that a ∈ (0, 1) and that g = g′ + g′′ for some non-trivial histograms g′ and g′′ such that
‖g′‖1 < ‖g‖1−δ. Then either 	(g′) � −a, or there exists a histogram g∗ which is admissible
for W and for which we have

‖g∗‖1 � ‖g‖1 + Kδ3a
5
2 . (39)

Proof. Since we shall work exclusively with the graphon W , we write 	(·) as a shortcut
for 	(·, W). Let us write m− = ess inf W and m+ = ess sup W .

Let us fix numbers a, δ ∈ (0, 1) and a decomposition g = g′ + g′′ of g into non-trivial
histograms g′, g′′ such that ‖g′‖1 < ‖g‖1 − δ. For ε1 ∈ (0, 1) and ε2 > 0, let us write
g∗(ε1, ε2) = (1 − ε1)g′ + (1 + ε2)g′′. Let us also write

A = ‖g′‖1 ,

B = ‖g′′‖1 ,

C = −1

2

∫
(x,y)∈�2

g′(x)g′(y) log W(x, y) d(ν2) ,

D = −1

2

∫
(x,y)∈�2

g′′(x)g′′(y) log W(x, y) d(ν2),

E = −
∫

(x,y)∈�2
g′(x)g′′(y) log W(x, y) d(ν2) ,

(40)

and note that A, B, C, D, E > 0. We have 	(g′) = A − C and 	(g) = A + B − C − D − E.
There is nothing to prove when 	(g′) � −a. Thus, assume otherwise. Then

A < C − a . (41)
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Upper-bounding C by 1
2‖g′‖2

1 log(1/m−) and using that C > a, we get

‖g′‖1 >

√
2a

log (1/m−)
. (42)

For each ε1 ∈ (0, 1) and ε2 > 0, the difference 	(g∗(ε1, ε2)) − 	(g) can be expressed as

(1−ε1)A+(1+ε2)B−(1−ε1)
2C−(1+ε2)

2D−(1−ε1)(1+ε2)E−(A + B − C − D − E)

= ε1(−A + 2C + E) + ε2(B − 2D − E) − ε2
1C − ε2

2D + ε1ε2E.

In particular, if ε2 = (1 + β) A
B ε1 (where ε1 ∈ (0, 1) and β > 0 will be determined later)

then we have

	
(
g∗(ε1, (1 + β) A

B ε1)
)− 	(g)

=ε1

(
2C + E − 2AD

B − AE
B

)+ ε1 · ε1

(
−C − A2D

B2 + AE
B − 2 A2

B2 βD + β AE
B − A2

B2 β2D
)

+ ε1β(A − 2AD
B − AE

B )

�ε1

(
2C + E − 2AD

B − AE
B

)︸ ︷︷ ︸
T1

−ε1 · ε1

(
C + A2D

B2 + 2 A2

B2 βD + A2

B2 β2D
)

︸ ︷︷ ︸
T2

−ε1 β( 2AD
B + AE

B )︸ ︷︷ ︸
T3

.

(43)

Let us expand the term T1.

2C + E − 2AD

B
− AE

B

(41)
> 2A − 2AD

B
− AE

B
+ 2a

> 2
A

B
(B − D − E) + 2a

> 2
A

B
(B − D − E + (A − C)) + 2a

= 2
A

B
	(g) + 2a

� 2a.

Now, set ε1 = a
4 min( 1

C , B2

2A2D
) and β = min(1, aB

4AD , aB
2AE ). Routine calculations give that

each of the terms T2 and T3 is smaller than a. Plugging the bounds above in (43), we get

	
(
g∗(ε1, (1 + β) A

B ε1)
)

� 	(g) � 0. (44)

We have

C = 1

2

∫
(x,y)∈�2

g′(x)g′(y) log (1/W(x,y)) d(ν2) � 1

2

∫
(x,y)∈�2

g(x)g(y) log (1/m−) d(ν2)

� 1

2
κ(W)2 log

1

m−

and similarly D � 1
2κ(W)2 log (1/m−) and E � κ(W)2 log (1/m−). We also have

B

A
= ‖g − g′‖1

‖g′‖1
� δ

‖g‖1 − δ
� δ

κ(W) − δ
� δ

κ(W)
.
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Therefore

ε1β � min

(
a

4C
,

aB2

8A2D
,

a2B

16ACD
,

a2B3

32A3D2
,

a2B

8ACE
,

a2B3

16A3DE

)

� a2 min

(
1

4C
,

B2

8A2D
,

B

16ACD
,

B3

32A3D2
,

B

8ACE
,

B3

16A3DE

)

� a2 1

log2 (1/m−)
min

(
log (1/m−)

2κ(W)2
,
δ2 log (1/m−)

4κ(W)4
,

δ

4κ(W)5
,

δ3

8κ(W)7
,

δ

4κ(W)5
,

δ3

8κ(W)7

)

� a2δ3 1

log2 (1/m−)
min

(
log (1/m−)

2κ(W)2
,

log (1/m−)

4κ(W)4
,

1

4κ(W)5
,

1

8κ(W)7
,

1

4κ(W)5
,

1

8κ(W)7

)
.

(45)

It follows that

‖g∗ (ε1, ε2) ‖1 = (1 − ε1)A + (1 + (1 + β) A
B ε1)B = ‖g‖1 + βε1‖g′‖1

(42),(45)
> ‖g‖1 + a

5
2 δ3 min

(
log (1/m−)

2κ(W)2
,

log (1/m−)

4κ(W)4
,

1

4κ(W)5
,

1

8κ(W)7
,

1

4κ(W)5
,

1

8κ(W)7

)
√

2

log5 (1/m−)
.

This finishes the proof.

Lemma 7.2. Suppose that W is an arbitrary graphon with 0 < ess inf W � ess sup W <

1. Then there exists a number γ0 > 0 and a function q : (0, γ0) → R+ with limγ↘0 q(γ ) = 0
such that the following holds. Let f ∗ be an admissible histogram for W and let γ ∈ (0, γ0).
Suppose that ‖f ∗‖1 � κ(W) − γ . Then for every f ∈ Box(f ∗) we have 	(f , W) � −q(γ ).

Proof. Let K be the constant from Lemma 7.1. Set γ0 so that γ0 < K2. Suppose that
γ ∈ (0, γ0) and f ∗ is an admissible histogram with ‖f ∗‖1 � κ(W) − γ .

We write 	(·) as a shortcut for 	(·, W).
Let f ∈ Box(f ∗) be non-trivial. Suppose first that ‖f ‖1 � ‖f ∗‖1 − 9

√
γ . Using (8) we get

	(f ) =
∫

x∈�

f (x) d(ν) + 1

2

∫
(x,y)∈�2

f (x)f (y) log W(x, y) d(ν2)

�
∫

x∈�

f ∗(x) d(ν) − 9
√

γ + 1

2

∫
(x,y)∈�2

f ∗(x)f ∗(y) log W(x, y) d(ν2)

= 	(f ∗) − 9
√

γ � − 9
√

γ .

(46)

Suppose next that ‖f ‖1 < ‖f ∗‖1 − 9
√

γ . We apply Lemma 7.1 to

g = f ∗, g′ = f , g′′ = f ∗ − f , δ = 9
√

γ , a =
5
√

γ

K
2
5

.

Then there is no histogram g∗ admissible for W such that ‖g∗‖1 � ‖f ∗‖1 + Kδ3a
5
2 as the

right hand side equals ‖f ∗‖1 + γ
5
6 > ‖f ∗‖1 + γ � κ(W). So the lemma tells us that

	(f ) � −
5
√

γ

K
2
5

. (47)
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Combining (46) with (47), it suffices to define the function q by

q(γ ) = max

(
9
√

γ ,
5
√

γ

K
2
5

)
, q > 0 ,

since then it is clear that limγ↘0 q(γ ) = 0.

7.2. The Graphon Parameter ξ(·)
In Section 6.2 we outlined why the second moment argument for counting cliques should
go through. (Recall that the second moment argument is needed to prove the lower bound
in Theorem 2.5, which is the more difficult half of the statement.) For the actual execution
of this step, however, we need to introduce a new graphon parameter. This parameter is a
version of the cut norm with an exotic scaling. Given an arbitrary graphon W represented
on a probability space � we define

ξ(W) = sup
B⊆�,ν(B)>0

1

2ν(B)

∫
(x,y)∈B×B

log(1/W(x,y)) d(ν2) . (48)

The key feature of ξ(W), which we prove in Lemma 7.9, is that the second moment argu-
ment for counting cliques of order almost 1

ξ(W)
log n works. More precisely, in the proof

of Lemma 7.9, we set up a random variable Y which essentially counts the number of
individually-weighted cliques of the said order.5 We show that E[Y 2] ≈ E2[Y ]. This allows
us to conclude that there must be at least one clique of such an order.

Of course, Lemma 7.9 itself is not enough to establish the lower bound in Theorem 2.5:
we need to connect the new quantity ξ(W) to the original quantity κ(W). Given Lemma 7.9
described above, we would hope that κ(W) = 1

ξ(W)
. Unfortunately, in general, we only have

κ(W) � 1
ξ(W)

, see Fact 7.3. Not all is lost though. In Lemma 7.7 we prove that every graphon

W contains a subgraphon U for which 1
ξ(U)

> κ(W) − ε (here, ε > 0 is arbitrarily small).

After picking a subgraphon U for which 1
ξ(U)

≈ κ(W) we continue with the proof of the
lower bound in Theorem 2.5 as follows. We prove in Lemma 7.9 that asymptotically almost
surely ω(G(n, U)) � 1

ξ(U)
log n. As described in (10), the above combination of Lemma 7.7

and Lemma 7.9 will conclude the desired proof of the lower bound in Theorem 2.5.

Now, let us state and prove the already advertised Fact 7.3. This fact will not be needed
in our proof of Theorem 2.5. However, since it is so basic we record it here.

Fact 7.3. Let W be an arbitrary graphon on a probability space �, and let U = W �A×A be
a subgraphon obtained by restricting W to a set A of positive measure. Then 1

ξ(U)
� κ(W).

Proof. By considering the set B = A in (48) we see that

ξ(U) � 1

2

∫
(x,y)∈A2

log(1/W(x,y)) d(ν2
A)

(9)= 1

2

1

ν(A)2

∫
(x,y)∈A2

log(1/W(x,y)) d(ν2)
(16)

� 1

κ(W)
.

5The weighting of the particular cliques is a technical but important subtlety, see (58) below.
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Fig. 2. The scheme of the proofs of Lemmas 7.9 and 7.7. [color figure can be viewed at
wileyonlinelibrary.com]

In the rest of this section we prove Lemmas 7.9 and 7.7. The paths towards these lemmas
are shown in Fig. 2.

For the next lemma, note that if G is a finite graph then the value of ξ(WG) does not
depend on the particular representation WG of G.

Lemma 7.4. Suppose that c ∈ (0, 1]. Let W be a graphon with ess inf W � c and G an
edge-weighted complete graph with all edge-weights w(i, j) in the interval [c, 1]. Consider
the “negative logarithms of W and G”, that is, an L∞-graphon W ′(x, y) := log(1/W(x,y)) and
a weighted graph G′ with V(G′) = V(G) and weight function w′(i, j) = log(1/w(i,j)). Then
for an arbitrary γ ∈ (0, 1] we have

|ξ(W) − ξ(WG)| � max
(

γ

2 log 1
c , 1

γ
δ�(W ′, G′)

)
.

Proof. We shall prove the upper bound only for ξ(W) − ξ(WG). The upper bound on
ξ(WG) − ξ(W) is done completely analogously. Suppose that W is represented on a
probability space �. Looking at definition (48), we need to provide an upper bound

1

ν(A)

∫
(x,y)∈A2,x<y

log (1/W(x,y)) d(ν2)︸ ︷︷ ︸
S1

− ξ(WG)︸ ︷︷ ︸
S2

(49)

for each set A ⊆ � of positive measure. If ν(A) � γ then the integral is over a set of
measure at most 1

2ν
2(A) � γ

2 ν(A). Thus, the term S1 can be bounded from above by
− γ

2 log(ess inf W) � γ

2 log 1
c , as needed.

Suppose next that ν(A) > γ . Suppose first that δ�(W ′, G′) = 0. Using the invertible
measure preserving maps from (12), we know that for each ε > 0 there exists a graphon
representation WG′ of G′ on � such that d�(W ′, WG′) < εν(A). Then

1

ν(A)

∫
(x,y)∈A2,x<y

log (1/W(x,y)) d(ν2) − 1

ν(A)

∫
(x,y)∈A2,x<y

WG′(x, y) d(ν2)

= 1

2ν(A)

(∫
(x,y)∈A2

(
W ′(x, y) − WG′(x, y)

)
d(ν2)

)

� 1

ν(A)
· d�(W ′, WG′) � ε ,

as was needed.
Suppose next that δ�(W ′, G′) > 0. Using the invertible measure preserving maps

from (12), we know that for each ε > 0 there exists a graphon representation WG′ of
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G′ on � such that d�(W ′, WG′) < (1 + ε)δ�(W ′, WG′). We shall fix such a representation
WG′ for ε = ν(A)

γ
− 1. Then (49) can be bounded from above by

1

ν(A)

∫
(x,y)∈A2,x<y

log 1
W(x,y) d(ν2) − 1

ν(A)

∫
(x,y)∈A2,x<y

WG′(x, y) d(ν2)

= 1

2ν(A)

(∫
(x,y)∈A2

(
W ′(x, y) − WG′(x, y)

)
d(ν2)

)

� 1

ν(A)
· d�(W ′, WG′) � 1

γ
· δ�(W ′, WG′) ,

as was needed.

Lemma 7.5. Suppose that c ∈ (0, 1]. Let W be a graphon with ess inf W � c. Suppose
that a sequence of integers (kn)

∞
n=1 has the property that

√
log n � kn � 3

√
n. Suppose that

ε > 0 is arbitrary.
In the weighted random graph G ∼ H(n, W) consider the family H of all sets X ⊆ V(G)

of size kn which have the property that |ξ(W) − ξ(WG[X])| � ε. Then asymptotically almost
surely (as n → +∞) we have that |H| � ε

( n
kn

)
.

Actually, the assertion of Lemma 7.5 is violated only with probability at most
exp(− n

2 log n ), as can be seen from the proof of Lemma 7.5. We shall not need this refinement,
though. For the proof of Lemma 7.5 we shall need the following well-known fact which we
include here for the reader’s convenience.

Fact 7.6. Let us place m balls independently at random into one of n bins. If n � m3 then
with probability at least 1 − 2n−1/3 each bin contains at most one ball.

Proof. Let us first bound the probability that one distinguished ball is placed into a bin
which contains some other balls. Recall that for each n � 2,

1 − 1
n � exp(− 2

n ) . (50)

The mentioned probability is exactly

1 − (1 − 1
n )

m−1
(50)

� 1 − exp(− 2(m−1)

n ) � 1 − exp(− 2m
n ) � 1 − exp(−2n−2/3) � 2n−2/3 .

The claim then follows by summing this error probability over all m � n1/3 balls.

Proof of Lemma 7.5. Let � be the probability space underlying W . Let W ′ = log 1/W be
the negative logarithm of W . Note that W ′ is bounded from above by log 1/c. Sampling
the random graph G ∼ H(n, W) can be naturally coupled with sampling a random graph
G′ ∼ H(n, W ′). So, for the first part of the argument, we shall analyze the graph G′.

Suppose first that n is fixed. Corollary 3.5 implies that with probability at least 1 −
exp(− n

2 log n ) = 1 − o(1) we have δ�(G′, W ′) � 20 log 1/c√
log n

. We shall prove the statement for

each weighted graph G′ satisfying this property (provided that n is sufficiently large). That
means that we assume that G′ is fixed, and G is its exponentiated version. In particular, all
the probabilistic calculations below are only with respect to later randomized steps. Let K
be the family of all subsets X of V(G′) = V(G) of size kn for which δ�(G′, G′[X]) � 20 log 1/c√

log kn
.
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Consider the graphon representation WG′ of G′ represented on a partition
A1∪̇A2∪̇ . . . ∪̇An = �. Sample the graph H ∼ H(kn, WG′). If we condition on the event
E that the kn representatives of the vertices of H in the sampling procedure were selected
from pairwise distinct “bins” A1∪̇A2∪̇ . . . ∪̇An then H is a uniformly random subgraph of
G′ of order kn. Fact 7.6 gives that P[E] � 1 − 2n−1/3. Thus,

P
[
δ�(H , WG′) � 20 log 1/c√

log kn

]
� P

[
δ�(H, WG′) � 20 log 1/c√

log kn
| E
]

P[E] � |K|( n
kn

) (1 − 2n−1/3) .

Another application of Corollary 3.5 gives that P[δ�(H, WG′) � 20 log 1/c√
log kn

] < exp(− kn
2 log kn

).

Thus, we get (for n sufficiently large) that |K| � ε
( n

kn

)
. So, the lemma will follow provided

that we prove that H ⊆ K, which we prove next.
Indeed, let X �∈ K be an arbitrary vertex set of size kn. Then δ�(G′[X], W ′) �

δ�(G′[X], G′) + δ�(WG′ , W ′) � 20 log 1/c√
log kn

+ 20 log 1/c√
log n

� 40 log 1/c√
log kn

. Then Lemma 7.4 tells us

that for each γ ∈ (0, 1),

|ξ(W) − ξ(WG[X])| � max

(
γ

2 log 1/c,
1

γ
· 40 log 1/c√

log kn

)
.

We take γ = 1/ 4
√

log kn, and see that the right-hand side is, for large enough n, smaller than
ε. This proves that X �∈ H and consequently concludes the lemma.

Our next two lemmas are crucial in proving the lower bound in Theorem 2.5. The first
lemma, Lemma 7.7, tells us that in every graphon W there exists a subgraphon U of W for
which we have 1

ξ(U)
� κ(W). The second lemma, Lemma 7.9, then tells us that in G(n, U)

we can typically find cliques of order almost 1
ξ(U)

log n.

Lemma 7.7. Suppose that W : �2 → [0, 1] is a graphon with 0 < ess inf W �
ess sup W < 1. Then for every ε > 0 there exists a set A ⊆ � of positive measure such that
for the subgraphon U = W �A×A we have 1

ξ(U)
� κ(W) − ε.

Proof. Let us write m = log (1/ess inf W). Consider the number γ0 > 0 and the function
q : (0, γ0) → R+ given by Lemma 7.2 for the graphon W .

Let δ > 0 be fixed such that δκ(W) < γ0. We use (16) to find a set A of positive measure
such that

(1 + δ)
2

κ(W)
� 1

ν(A)2

∫
(x,y)∈A2

log(1/W(x,y)) d(ν2) . (51)

Consider now the subgraphon U = W �A×A on the probability space A endowed with the
measure νA.

We now turn to obtaining the bound on ξ(U). To this end we want to control each term
in (48).

Claim 7.7.1. Suppose that B ⊆ A is an arbitrary set of positive measure. We have

1

1 + δ
· 1

νA(B)

∫
(x,y)∈B2

log(1/W(x,y))d(ν2
A) � 2

κ(W)
+
√

q(δκ(W))

(1 − δ)κ(W)
· m . (52)

Random Structures and Algorithms DOI 10.1002/rsa



32 DOLEŽAL, HLADKÝ, AND MÁTHÉ

Proof of Claim 7.7.1. In the following, we abbreviate q = q(δκ(W)). Suppose first that

νA(B) <

√
q

(1 − δ)κ(W)
.

Then

1

νA(B)

∫
(x,y)∈B2

log(1/W(x,y)) d(ν2
A) � νA(B)m <

√
q

(1 − δ)κ(W)
· m ,

as needed.
So, it remains to consider the case

νA(B) �
√

q

(1 − δ)κ(W)
. (53)

Let c > 0 be maximum such that 	(c ·1A, W) � 0. That is, we have 	(c ·1A, W) = 0 which
can be rewritten using (8) as 0 = cν(A) + c2 1

2

∫
(x,y)∈A2 log W(x, y) d(ν2). Thus,

c = 2ν(A)∫
(x,y)∈A2 log(1/W(x,y)) d(ν2)

. (54)

Now the assumption of Proposition 3.8 is satisfied by (51) (after a change of W on a null
set).6 The “more precisely” part of this proposition tells us that

c � (1 − δ)
κ(W)

ν(A)
. (55)

Consider now the function f = c · 1A. We have ‖f ‖1 � (1 − δ)κ(W). Thus Lemma 7.2
tells us that 	(g, W) � −q for each subhistogram g of f . Let us apply this to the function
g := c · 1B. Then

	(g, W) = cν(B) − 1

2
c2

∫
(x,y)∈B2

log(1/W(x,y)) d(ν2) � −q ,

yielding

ν(B) � 1

2
c
∫

(x,y)∈B2
log(1/W(x,y)) d(ν2) − q

c
(54)= ν(A)

∫
(x,y)∈B2 log(1/W(x,y)) d(ν2)∫
(x,y)∈A2 log(1/W(x,y)) d(ν2)

− q

c
.

6Proposition 3.8 was formulated only for graphons represented on the unit interval. However, we can use Fact 3.1
to represent W on the unit interval, and then we can apply Proposition 3.8.
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This can be rewritten as

1

ν(A)

∫
(x,y)∈A2

log(1/W(x,y)) d(ν2) � 1

ν(B)

∫
(x,y)∈B2

log(1/W(x,y)) d(ν2)

− q
∫

(x,y)∈A2 log(1/W(x,y)) d(ν2)

cν(A)ν(B)

� 1

ν(B)

∫
(x,y)∈B2

log(1/W(x,y)) d(ν2) − qmν(A)

cν(B)

(55)

� 1

ν(B)

∫
(x,y)∈B2

log(1/W(x,y)) d(ν2) − qmν(A)

(1 − δ)κ(W)νA(B)

(53)

� 1

ν(B)

∫
(x,y)∈B2

log(1/W(x,y))d(ν2)

−
√

q

(1 − δ)κ(W)
· m · ν(A) .

(56)

Thus,

2

κ(W)

(51)

� 1

1 + δ

1

ν(A)2

∫
(x,y)∈A2

log(1/W(x,y)) d(ν2)

(56)

� 1

1 + δ

1

ν(A)ν(B)

∫
(x,y)∈B2

log(1/W(x,y)) d(ν2) − 1

1 + δ

√
q

(1 − δ)κ(W)
· m

(9)

� 1

1 + δ

1

νA(B)

∫
(x,y)∈B2

log(1/W(x,y)) d(ν2
A) −

√
q

(1 − δ)κ(W)
· m ,

as required.

The term
√

q(δκ(W))

(1−δ)κ(W)
in (52) does not depend on the choice of the set A. Thus, it tends

to zero as we let δ ↘ 0. We conclude that for δ > 0 sufficiently small, if we select A as
in (51), we have

1

2νA(B)

∫
(x,y)∈B2

log(1/W(x,y))d(ν2
A) � 1 + δ

κ(W)
+ 1 + δ

2
·
√

q(δκ(W))

(1 − δ)κ(W)
· m

for each B ⊆ A of positive measure. By (48), we have

ξ(U) � 1 + δ

κ(W)
+ 1 + δ

2
·
√

q(δκ(W))

(1 − δ)κ(W)
· m .

If δ > 0 is sufficiently small then the right hand side (which tends to 1
κ(W)

as δ ↘ 0) is

smaller than 1
κ(W)−ε

, and so
1

ξ(U)
� κ(W) − ε ,

as was needed.

We shall need the following observation.
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Fact 7.8. Let G be a finite edge-weighted complete graph with vertex set [n] whose
symmetric weight function w : V(G)2 → [0, 1] puts weight 1 on all self-loops. Then for
every C ⊆ [n] and for the graphon representation WG of G we have∏

i,j∈C
i<j

w(i, j) � exp(−ξ(WG)n|C|) .

Proof. Suppose that WG is a representation of G on the unit interval I . Suppose further
that each vertex i ∈ [n] is represented by an interval Di ⊆ I (c.f. Remark 3.3), and that
for each 1 � i < j � n the interval Di lies to the left of the interval Dj. Of course, such a
change of representation of WG does not change ξ(WG).

The case C = ∅ is trivial, so assume C �= ∅. Consider the set X = ⋃
i∈C Di.

Definition (48) gives that

ξ(WG) � 1

λ(X)

∫
(x,y)∈X2,x<y

log(1/WG(x,y)) d(λ2).

Let us split the integration above according to the partition (Di × Dj)i,j∈[n]. We can neglect
the terms for which i = j since then the integrand is log(1/1) = 0. So, suppose that
i < j. Then for each x ∈ Di, y ∈ Dj we have WG(x, y) = w(i, j). Thus, in this case∫

(x,y)∈Di×Dj ,x<y log(1/WG(x,y)) d(λ2) = 1
n2 log(1/w(i,j)). We conclude that

ξ(WG) � n

|C| · 1

n2

∑
i,j∈C×C

i<j

log(1/w(i,j))

The lemma follows after exponentiation.

Lemma 7.9. Suppose that W is a graphon with ess inf W > 0. Suppose that α < 1/ξ(W).
Then asymptotically almost surely, G(n, W) contains a clique of order α log n.

Proof. Choose δ > 0 such that α(ξ(W) + δ) < 1 and let us write

γ = 1 − α(ξ(W) + δ) . (57)

Let H ∼ H(n, W). Set k := α log n. Let A be be the family of all sets A ⊆ V(H) of size
k for which |ξ(W)−ξ(WH[A])| < δ. Lemma 7.5 tells us that with high probability, the graph
H has the property that |A| � (1 − δ)

(n
k

)
. Condition on this event, and fix a realization of

the weighted graph H with a weight function w :
(V(H)

2

)→ [0, 1] having the above property.
We shall now obtain from H an unweighted graph G by including each edge ij with

probability w(i, j). It is our task to show that with high probability, G contains a clique of
order k. (Recall that this probability is only with respect to obtaining G from H.)

For each A ∈ A set up the indicator XA of the event that G[A] is a clique. Define

YA := XA

E[XA] (58)

(note that the denominator is not zero because ess inf W > 0). Let Y = ∑
A∈A YA. To

conclude the proof, we want to prove that for each ε > 0 (which we now consider fixed),
we have

Y > 0 with probability at least 1 − ε, (59)
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provided that n is sufficiently large.
We have E[YA] = 1 for each A ∈ A, and consequently E[Y ] = |A|, which tends to

infinity with n → +∞. Below we shall prove that E[Y 2] � (1 + ε)E2[Y ], which will
establish (59) via the usual second-moment argument.

Claim 7.9.1. We have E[Y 2] < (1 + ε)E2[Y ].
Proof of Claim 7.9.1. For � = 0, 1, . . . , k, let us write

M� =
∑

A,B∈A
|A∩B|=�

E[YAYB] .

Then we have E[Y 2] = ∑k
�=0 M�. So, it is our goal to bound each of the numbers M�. We

have

M0 �
(

n

k

)2

. (60)

For � > 0 we have7

M� =
∑

A,B∈A
|A∩B|=�

E[YAYB] =
∑

C∈(V(G)
� )

∑
A,B∈A
A∩B=C

E[XAXB]
E[XA]E[XB] .

Given two sets A, B ∈ A, it is easy to see that

E[XAXB] = E[XA]E[XB]∏
ij∈(A∩B

2 ) w(i, j)
.

Thus,

M� =
∑

C∈(V(G)
� )

∑
A,B∈A
A∩B=C

∏
ij∈(C

2)

w−1(i, j)

Fact 7.8 applied on the graph H[A] and subset C �
∑

C∈(V(G)
� )

∑
A,B∈A
A∩B=C

exp ((ξ(W) + δ)k�)
(61)

�
(

n

� | k − � | k − �

)
exp ((ξ(W) + δ)k�)

= n!(n − k)!2
(n − 2k + �)!n!2 · k!2

�!(k − �)!2 ·
(

n

k

)2

exp ((ξ(W) + δ)k�)

n is sufficiently large �
(

2

n

)�

· k2� ·
(

n

k

)2

exp ((ξ(W) + δ)k�)

=
(

2k2 exp ((ξ(W) + δ)k)

n

)�

·
(

n

k

)2

(57)

�
(
2�k2� exp (−γ � log n)

) ·
(

n

k

)2

7the calculations below are also valid in the case � = 0, but we shall not use them in that case
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n � k � exp
(− γ � log n

2

) ·
(

n

k

)2

.

Recall that E[Y ] = |A| � (1 − δ)
(n

k

)
. Thus,

E[Y 2]
E2[Y ] =

∑k
�=0 M�

E2[Y ]
(60)

� 1

(1 − δ)2
+

∑k
�=1 M�

(1 − δ)2
(n

k

)2

(61)

� 1

(1 − δ)2
+ 1

(1 − δ)2

k∑
�=1

exp
(− γ � log n

2

)

� 1

(1 − δ)2

∞∑
�=0

exp
(− γ � log n

2

)
.

Note that the last expression is a geometric series, and its quotient exp
(− γ log n

2

)
tends to 0

as n → ∞. Therefore the sum of the series tends to 1. Thus for sufficiently large n and for
sufficiently small δ > 0 we get E[Y2]

E2[Y ] < 1 + ε, as was needed.

Claim 7.9.1 tells us that Var[Y ] � εE2[Y ]. Therefore, (59) follows from Chebyshev’s
Inequality.

8. PROOF OF THEOREM 2.5

Let c = ess inf W . Suppose that W is represented on the unit interval I = (0, 1) equipped
with the Lebesgue measure λ. Let us replace the value of W in every point (x, y) ∈ (0, 1)2 that
is not a point of approximate continuity by c. This is a change of measure zero by Fact 3.7.
In particular, κ(W) does not change, nor does the distribution of the model G(n, W).

8.1. Upper Bound

Let ε ∈ (0, κ(W)/4) be arbitrary. Let n be sufficiently large. We want to show that a.a.s. G ∼
G(n, W) contains no clique of order k = (κ(W) + ε) log n. Let Xn(G) count such cliques.
We have

E[Xn(G)] =
∫

(x1,x2,...,xn)∈In

∑
A∈([n]

k )

∏
i,j∈A,i<j

W(xi, xj) d(λn) .

This summation has
(n

k

)
< nk = exp

(
(κ(W) + ε) log2 n

)
terms. By (15), each of these

terms is bounded by P
k(k−1)

2
k where lim

k→∞
Pk = exp

(
− 2

κ(W)

)
. So if n is sufficiently large then

each term is bounded by

exp

(
− 2

κ(W)
· k(k − 1)

2
+ ε

)
.
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Thus,

E[Xn(G)] � exp

(
(κ(W) + ε) log2 n − 2

κ(W)
· k(k − 1)

2
+ ε

)

= exp

((
−ε − ε2

κ(W)

)
log2 n +

(
1 + ε

κ(W)

)
log n + ε

)
→ 0 ,

as n goes to infinity. Markov’s inequality concludes the proof.

8.2. Lower Bound

We shall assume that ess sup W < 1. Let us justify this step. Suppose that W is an arbitrary
graphon. We can then take a sequence of graphons W1, W2, . . ., where Wj = min(W , 1 − 1

j )

(pointwise). Then (16) tells us that κ(Wj) → κ(W) (even in the case κ(W) = +∞). Thus,
it suffices to prove a lower bound for each of the graphons Wj.

Let ε > 0 be arbitrary. We apply Lemma 7.7 to find a set A ⊆ � of positive measure
such that for the subgraphon U = W �A×A we have 1

ξ(U)
� κ(W) − ε. Lemma 7.9 then

tells us that asymptotically almost surely, ω(G(n, U)) � (κ(W) − 2ε) log n. Since there is
a coupling of G = G(n, W) and G′ = G( λ(A)n

2 , U) such that G asymptotically almost surely
contains a copy of G′, we obtain that (cf. (10)),

ω(G(n, W)) � (κ(W) − 3ε) log n asymptotically almost surely.

Since ε > 0 was arbitrary, this completes the proof of Theorem 2.5.

9. CONCLUDING REMARKS

Our concluding remarks concern possibilities of extending the main result, Theorem 2.5.

9.1. Sharpening the Results

As mentioned in Section 1, Matula, Grimmett and McDiarmid proved for p ∈ (0, 1) an
asymptotic concentration of ω(G(n, p)) on two consecutive values for which they provided
an explicit formula. It is possible that when, say, 0 < ess inf W � ess sup W < 1, then
ω(G(n, W)) is asymptotically concentrated on two consecutive values.

9.2. Sparse Inhomogeneous Random Graphs

Let us look at our set of problems for G(n, pn ·W), where pn → 0, i.e., the model introduced
in Section 1.1. Note that Remark 2.7 is no longer valid: the problem of maximum clique
and maximum independent set in G(n, pn · W) is genuinely different. It turns out that the
more interesting problem is that of the independent set. For the Erdős–Rényi random graph
G(n, pn), the problem of determining the independence number is essentially solved by the
above mentioned work [11, 21], and by the work of Frieze [10] down to the range pn � 1

n .
Note that the regime pn � 1√

n is more subtle as the second moment argument does not
work, and indeed Frieze’s contribution was in establishing concentration of the count of
large independent sets by alternative means. The regime pn = C/n seems to require methods
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from statistical physics. In the related model of random regular graphs, these methods have
already provided an answer [7].

It would be of interest to see whether the methods we developed in this paper can give
an answer also for the independence number in sparser inhomogeneous random graphs.
It seems that the two core ingredients of our proof, Lemma 3.4 and the second moment
argument do have sparse counterparts.

• The sparse counterpart to Lemma 3.4 is [3, Theorem 2.14] which says that if pn � 1
n

then the sequence 1
pn

· G(n, pn · W) (here, the factor 1
pn

in front of the random graph
G(n, pn · W) denotes edge weighting; this is the natural way to deal with the scaling
in this situation) converges to W in the cut-distance almost surely.

• Our second moment argument is complicated but it builds on the seminal work [11,21]
which works down to the range pn = �( 1√

n ). Thus, at least when W ∈ L∞(�2), our

methods possibly extend to this range. The situation when W ∈ Lp(�2) for some
general p is probably more subtle.

Of course, one might ask whether the methods used by Frieze [10] could be extended
to the inhomogeneous setting, thus possibly giving results even for 1

n � pn < 1√
n .

This however goes beyond the scope of this paper.
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APPENDIX A: A SIMPLIFIED VERSION OF LEMMA 7.2

Here we provide a weaker version of Lemma 7.2 which deals with the case that the supremum
in (7) is attained. While this version is not sufficient for our purposes we decided to offer it
to the reader because its proof is based on the same idea yet is stripped off technicalities.

Lemma A.1. Suppose that W is an arbitrary graphon, and suppose that f ∗ is an admissible
histogram for W for which ‖f ∗‖1 = κ(W). Then every subhistogram of f ∗ is admissible for
W.

Proof. The statement follows immediately from Claim A.1.1 (which is a simplified version
of Lemma 7.1).

We abbreviate 	(·, W) as 	(·). Also, when we say “admissible”, we mean with respect
to W .

Claim A.1.1. Assume that g is an arbitrary admissible histogram. Suppose further that
g = g′ + g′′ for some histograms g′ and g′′. Then either g′ is admissible, or there exist
ε1, ε2 ∈ (0, 1) such that for g∗ = (1 − ε1)g′ + (1 + ε2)g′′ we have that g∗ is admissible, and
‖g∗‖1 > ‖g‖1.
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Proof of Claim A.1.1. For ε1, ε2 ∈ (0, 1), let us write g∗(ε1, ε2) = (1 − ε1)g′ + (1 + ε2)g′′.
We define numbers A, B, C, D, and E as in (40). Note that A, B, C, D, E � 0. For any
ε1, ε2 ∈ (0, 1), the difference 	(g∗(ε1, ε2)) − 	(g) can be expressed as

(1−ε1)A+(1+ε2)B−(1−ε1)
2C−(1+ε2)

2D−(1−ε1)(1+ε2)E−(A + B − C − D − E)

= ε1(−A + 2C + E) + ε2(B − 2D − E) − ε2
1C − ε2

2D + ε1ε2E.

In particular, if ε2 = A
B ε1 then we have

	

(
g∗
(

ε1,
A

B
ε1

))
− 	(g) = ε1

(
2C + E − 2AD

B
− AE

B

)
+ ε2

1

(
−C − A2D

B2
+ AE

B

)
.

(A1)
Now let us assume that 	(g′) < 0, i.e. A < C. Then we have

2C + E − 2AD

B
− AE

B
> 2A − 2AD

B
− AE

B

> 2
A

B
(B − D − E)

> 2
A

B
(B − D − E + (A − C))

= 2
A

B
	(g)

� 0.

(A2)

By (A2), the right hand side of (A1) is a quadratic expression (in the variable ε1) with a
positive linear coeficient. Therefore there is ε1 > 0 (which we fix now) small enough such
that ε1, A

B ε1 ∈ (0, 1) and

	

(
g∗
(

ε1,
A

B
ε1

))
> 	(g) (� 0) . (A3)

Since the function (ε1, ε2) �→ 	 (g∗ (ε1, ε2)) is obviously continuous, we can find ε2 ∈(
A
B ε1, 1

)
such that 	 (g∗ (ε1, ε2)) is still nonnegative. Then we have

‖g∗ (ε1, ε2) ‖1 = (1 − ε1)A + (1 + ε2)B > (1 − ε1)A +
(

1 + A

B
ε1

)
B = A + B = ‖g‖1.

This finishes the proof.
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