

warwick.ac.uk/lib-publications

Original citation:
Chang, Cheng, He, Ligang, Chaudhary, Nadeem, Fu, Songling, Chen, Hao, Sun, Jianhua, Li,
Kenli, Fu, Zhangjie and Xu, Ming-Liang. (2017) Performance analysis and optimization for
workflow authorization. Future Generation Computer Systems, 67 . pp. 194-205.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/84234

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/74227279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/84234
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Performance Analysis and Optimization for
Workflow Authorization

Cheng Changa, Ligang Heb, a, Nadeem Chaudharyb, Songling Fuc, Hao Chena, Jianhua Suna, Kenli Lia,
Zhangjie Fud, Ming-Liang Xue

a. School of Information Science and Engineering, Hunan University, Changsha, 410082, China
b. Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom

c. College of Polytechnic, Hunan Normal University, Changsha, China
d. School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

e. Center for Interdisciplinary Information Science Research, Zhengzhou University, Zhengzhou, China
Email: liganghe@dcs.warwick.ac.uk

Abstract—Many workflow management systems have been
developed to enhance the performance of workflow executions.
The authorization policies deployed in the system may restrict the
task executions. The common authorization constraints include
role constraints, Separation of Duty (SoD), Binding of Duty (BoD)
and temporal constraints. This paper presents the methods to
check the feasibility of these constraints, and also determines the
time durations when the temporal constraints will not impose
negative impact on performance. Further, this paper presents
an optimal authorization method, which is optimal in the sense
that it can minimize a workflow’s delay caused by the temporal
constraints. The authorization analysis methods are also extended
to analyze the stochastic workflows, in which the tasks’ execution
times are not known exactly, but follow certain probability
distributions. Simulation experiments have been conducted to
verify the effectiveness of the proposed authorization methods.
The experimental results show that comparing with the intuitive
authorization method, the optimal authorization method can
reduce the delay caused by the authorization constraints and
consequently reduce the workflows’ response time.

I. INTRODUCTION

Business processes or workflows are often used to model
enterprise applications [1][2][3][4]. A workflow consists of
multiple activities or tasks with precedence constraints. When
we design workflow management/scheduling strategies, or
evaluate the performance of workflow execution on target
resources, it is often assumed that when a task is allocated to a
resource, the resource will accept the task and start the execu-
tion once the processor becomes available. In reality, however,
authorization policies may be deployed in the organisations
and used to specify who is allowed to perform which tasks at
what time. When these authorization schemes are taken into
account, the situation can become complex.

A number of authorisation schemes have been presented in
[5][6][7]. The RBAC (Role Based Access Control) scheme
is one of most popular authorisation schemes. Under the
RBAC scheme, users are assigned to certain roles while the
roles are associated with prescribed permissions. Therefore,
the organisations can control the users permissions through
these roles. The following example in banking illustrates the
effect of the RBAC scheme on the workflow execution [8]. A

bank often uses a variety of computing applications to support
its business; these applications may be deployed in a central
resource pool (e.g., a cluster) of the bank. A workflow may
consist of tasks such as credit data checks, automated signature
approval, risk analysis and so on. In each task, a particular
application has to be launched to perform the corresponding
business functions. Under RBAC, an application may only be
launched by certain users (i.e., the employees in the bank)
assuming certain roles (i.e., job positions, such as branch
manager or financial advisor). The following authorisation
constraints are often encountered in such scenarios: 1) Role
constraints: A task may only be performed by a particular role;
2) Temporal constraints: A role or a user is only activated
during certain time intervals (e.g., a staff member only works
in certain hours of a day); 3) Separation of Duty constraints:
If Task A is run by a role (or a user), then Task B must
not be run by the same role (or user); 4) Binding of Duty
constraints: If Task A is run by a role (or user), then Task
B must be run by the same role (or user). Since a valid and
activated role has to be assigned to a task before the task can
start execution, these authorisation constraints may delay the
start of a task in a workflow, and consequently have negative
impact on application performance (e.g. mean response time
of workflows). Similar authorization constraints and situation
also exist in other application domains such as healthcare
systems [9], the manufacturing community [10][11], and other
business processes [12][13].

The focus of this paper is to investigate the performance
impact of the authorization constraints and the authorization
method (i.e., the way of selecting the roles to assign to
the tasks). This paper starts with investigating the issue of
checking the feasibility of the authorization constraints de-
signed for workload management systems. More specifically,
this paper 1) checks whether all tasks in a workflow can be
authorized so that the authorization constraints deployed in
the system can be satisfied, 2) determines such time durations
in which the temporal constraints will not have negative
impact on the performance of workflow executions. Then, the
methods are developed to quantitatively determine 1) the time

duration for the arrivals of the workflows within which the
authorization constraints will not have negative impact on the
execution performance of the workflows, and 2) the delay
caused by the authorization constraints, if a workflow arrives
beyond the above duration. Based on the above analyses, this
paper further proposes an optimal authorization method under
which the delay caused by the authorization constraints can
be minimized. The methods of analyzing the authorization
behaviour are then extended to handle stochastic workflows,
in which the tasks’ execution times are not exactly known, but
follow certain probability distributions.

Based on the discussions above, it is worth noting the rela-
tion between workflow scheduling and authorization method.
Workflow scheduling typically refers to deciding the execution
order and the resource allocation of workflow tasks, namely,
in which order the workflow tasks should be run and which
computer node should be allocated to run a particular task.
Authorization method refers to deciding which authorization
roles should be assumed to run individual workflow tasks.
From the processing order, the authorization method is enacted
before workflow scheduling. However, if authorization method
and workflow scheduling are treated separately, the autho-
rization method may have negative impact on the workflow
performance. This is because after the authorization method
decides to run a task under a particular role, it is possible
that the role is not activated when the task itself is ready
to run from the scheduling point of view, namely when the
task is at the head of the queue and the allocated computer
node becomes available. Consequently, the task has to wait
for the assigned role to be activated and its performance
is then jeopardized. So a better strategy is that when the
authorization method makes the authorization decisions, it
takes the scheduling process into account and tries to mitigate
the above situation. In order to achieve this, it is necessary to
investigate the possible negative impact that the authorization
constraints and the authorization method may impose on the
workflow execution. This is the motivation and essence of the
work presented in this paper.

The rest of this paper is organized as follows. The related
work in this topic is presented in II. Section III presents
the methods to check the feasibility of role, SoD and BoD
constraints deployed in the system. Section IV presents the
method to determine the time durations in which the workflow
executions will not be delayed by the authorization constraints
in the system. Section V presents an optimal authorization
method to assign the roles to the tasks in a workflow. Section V
also proves the method is optimal in the sense that the method
generates the minimal delay caused by the authorization
constraints for workflow executions. Section VII concludes the
paper.

II. RELATED WORK

There is the existing work to check the satisfiability of the
authorization constraints in a workflow [14][15][8][16][17].
The work in [15] conducted the theoretical analysis about the
satisfiability of the authorization constraints for a workflow.

The work conducted theoretical analysis and found out that
in order to check whether there is a valid the workflow au-
thorization, it only needs to consider a single linear extension
(i.e., a linear ordering) of the tasks in the workflow. There
exists a valid workflow authorization if and only if there is
also a valid authorization solution for the linear extension.
However, the approach proposed in our work is able to obtain
all valid authorization solutions. Based on this, our work
further develops the authorization methods, aiming to reduce
the negative impact imposed by the authorization constraints.

The work in [8] conducts the safety analysis, i.e., analyzes
whether a specified authorization state (i.e., the task-role
assignments) can be reached under a set of authorization
constraints, given an initial authorization state. The work uses
the Color Timed Petri Nets (CTPN) to model roles, SoD
and temporal constraints, and then converts the constructed
CTPN model to an ordinary Petri-Net (PN) model so that the
established PN analysis techniques can be applied to generate
the results. The work can generate all possible authorization
solutions. However, the approach is a bit heavy since it needs
to construct the CPTN model, covert the CPTN model to
ordinary PN models, and analyze the PN models. In this
paper, we model the feasibility checking problem concisely
as a Constraint Satisfaction Problem (CSP).

There are also studies to investigate the overhead caused
by authorization constraints [18][19]. The work in [18] also
applies CTPN to model various authorization constraints, and
the interactions between workflow authorization and workflow
execution. Then, the work analyzes and obtains the autho-
rization overhead and other associated performance data from
the constructed CTPN model. The work makes use of the
modelling capability to capture the dynamics in the workflow
authorization and execution. The approach is experiment-
oriented since the performance data is gathered through run-
ning the constructed model in a Petri-Net simulation toolkit,
CPN Tools [20]. Also, the CTPN modelling is a heavy
approach, and the construction and running of the models
could be time consuming. In this paper, we adopt a theoretical
approach to analyzing the authorization overhead, and reveals
some fundamental properties with regards to authorization
overhead (i.e., the delay caused by the authorization con-
straints). Based on the theoretical analysis of the overhead,
this paper further presents an optimal authorization method
that is able to minimize the overhead.

III. CHECKING FEASIBILITY OF ROLE, SOD AND BOD
CONSTRAINTS

S = {s1, . . . , sL} denotes the set of services running on the
resource pool.

F = (T,E) denotes a workflow, in which T = {t1, ..., tN}
is a set of tasks in the workflow and E = {(ti, tj)|ti, tj ∈ T}
is a set of directed edges linking task ti to tj . A task invokes
one of the services in S.
R = {r1, ..., rM} denotes the set of roles defined in the

authorisation control system. The role constraint specifies the
set of roles that are permitted to run a particular service. Cr(si)

denotes the role constraint applied to service si. r(si) denotes
the role that is assigned to run si. The Separation of Duty
(SoD) and the Binding of Duty (BoD) constraint between si
and sj are represented as r(si) 6= r(sj) and r(si) = r(sj),
respectively.

In this paper, the problem of checking feasibility of role,
SoD and BoD constraints is formulated as a Constraint Sat-
isfaction Problem (CSP) [21]. A CSP consists of a triple
< V,D,C >, where V = {v1, v2, ..., vn} is a set of variables,
D = {Dv1 , Dv2 , ..., Dvn}, where Dvi is the domain of the
value of vi, C is a set of constraints restricting the values
that the variables can take. The Feasibility Checking Problem
(FCP) in this paper can be modelled as CSP in the following
way. The services in FCP are regarded as the variables in CSP.
The role constraint of a service is regarded as the domain
of the value of the service. The BoD and SoD constraints
are regarded as the constraints restricting the values that the
services can take.

An example is given below to illustrate the modelling.
Assume there are 7 services, s1 − s7, and 6 roles, r1 − r6
in the system. The role constraints of service si, denoted as
Cr(si), are Cr(s1) = {r1}, Cr(s2) = {r2, r3, r4}, Cr(s3) =
{r2, r3, r5}, Cr(s4) = {r2, r3, r5}, Cr(s5) = {r2, r3, r5},
Cr(s6) = {r2, r4}, Cr(s7) = {r4, r6}. The SoD constraints
are r(t2) 6= r(t5), r(t2) 6= r(t7), r(t6) 6= r(t7). The BoD
constraints are r(t2) = r(t4), r(t3) = r(t5). Then the problem
of checking feasibility of these authorization constraints can
be formulated as CSP as follows.
CSP =< V,D,C >,
V = {s1, s2, s3, s4, s5, s6, s7},
D = {Ds1 , Ds2 , ..., Ds7},
C = {C1, C2, C3, C4, C5},
Ds1 = {r1},
Ds2 = {r2, r3, r4},
Ds3 = {r2, r3, r5},
Ds4 = {r2, r3, r5},
Ds5 = {r2, r3, r5},
Ds6 = {r2, r4},
Ds7 = {r4, r6},
C1 : r(t2) = r(t4);
C2 : r(t2) 6= r(t5);
C3 : r(t2) 6= r(t7);
C4 : r(t6) 6= r(t7);
C5 : r(t3) = r(t5);
There are the existing solvers to solve the CSP problem

[21]. The solutions are the feasible role assignments to the
tasks so that all SoD, BoD and role constraints are satisfied.

IV. ANALYZING THE COVERAGE OF TEMPORAL
CONSTRAINTS

A. Calculating the coverage of temporal constraints based on
exact values of execution times

Roles have temporal constraints. It is useful to check the
coverage of roles’ temporal availability in a given security
setting. We can use the CSP solver to obtain all feasible role
assignment solutions for the tasks in a workflow. A denotes

the set of all feasible role assignments for the workflow,
and Ak = {(ti, rj)|ti ∈ T} denotes the k-th feasible role
assignment, in which ti is a task in the workflow and rj
is the role assigned to ti. In most cases, a role is activated
periodically. For example, the role of bank manager is only
activated from 9am to 12pm, and from 2pm to 4pm in a
day. Therefore, the temporal constraint of role ri, denoted
as Ct(ri) can be expressed as Eq.1, where Pi is the period,
Di = {[lij , uij]|i ∈ N} is the time duration when ri is
activated in the period Pi, and Si and Ei are the start and
end time points when this period pattern begins and ends. Ei

can be∞, meaning the periodic pattern continues indefinitely.

Ct(ri) = (Pi,Di,Si, Ei) (1)

Assume that the exact execution times of the tasks in a
DAG (and the scheduling algorithm used to schedule the
tasks) are known. Therefore, if we know the arrival time
of the entry task in the DAG, we can calculate the start
time of every task in the DAG. sti denotes the start time of
task ti, r(ti, Ak) denotes the role assigned to task ti in Ak.
Assume r(ti, Ak) = rq . Assume t0 is the entry task. Given
Ak = {(ti, rj)|ti ∈ T}, Ct(r(t0, Ak)) represents the temporal
constraint of the role assigned to t0. Assume r(t0, Ak) = rp.
T (rq) denotes the time durations when r(ti) has to be acti-
vated to run ti so that ti can start execution without being
delayed by the temporal constraints. Given Ct(rp), T (rq) can
be determined by Eq. 2, where Dj is determined in Eq.3.
However, rq is subject to the temporal constraint, Ct(rq).
Therefore, The intersection of T (rq) and Ct(rq), denoted
by I(ti, Ak) = (P I

ki, D
I
ki, S

I
ki, E

I
ki), is the time durations

when task ti can start execution immediately without being
delayed by the temporal constraints, given a role assignment
Ak. P I

ki is lcm(Pp, Pq), i.e., the least common multiple of
Pp and Pq . SI

ki = max(Sp, Sq). EI
ki = min(Ep, Eq). Let

DI
ki = {[lIkij , uIkij]|j ∈ N}.

T (r(ti, Ak)) = (P0, Dj , S0+(sti−st0), E0+(sti−st0)) (2)

Dj = {[l0k + (sti − st0), u0k + (sti − st0)]|k ∈ N} (3)

As shown above, we calculate T (r(ti, Ak)) from
Ct(r(t0, Ak)), and then calculate I(ti, Ak) from T (r(ti, Ak)).
I(ti, Ak) is a subset of T (r(ti, Ak)). This means that only
when t0 arrives in a subset of the time durations in
Ct(r(t0, Ak)), ti’s start time falls into I(ti, Ak). Such a
subset of time durations in Ct(r(t0, Ak)) is called r(t0, Ak)’s
effective time durations for ti in the role assignment
Ak, which is denoted by ETk(t0, ti). ETk(t0, ti) can be
determined by Eq.4.

ETk(t0, ti) = (P0, {[lIkij − (sti − st0),
uIkij − (sti − st0)]|j ∈ N},
S0, E0)

(4)

We can calculate ETk(t0, ti) for every task ti in the DAG.⋂
ti∈T ETk(t0, ti) is the time durations in Ct(r(t0, Ak)) that

Fig. 1. The workflow in the case study

TABLE I
EXECUTION TIMES OF THE WORKFLOW TASKS IN THE CASE STUDY

Task Execution time Task Execution time
t0 30 t1 30
t2 36 t3 42
t4 48 t5 42
t6 30 t7 36
t8 42

can ensure the start time of every task ti ∈ T (i 6= 0) in the
DAG falls into the times durations specified in Ct(r(ti, Ak)).
Only when t0 arrives in these time durations, can every task
in the DAG starts execution without being delayed by the
authorization constraints of the role assigned to run the task in
Ak.

⋂
ti∈T ETk(t0, ti) is called t0’s effective arrival time when

the role assignment is Ak, denoted by EAk(t0). Note that
according to the calculation method of EAk(t0), EAk(t0) is
a subset of Ct(r(t0, Ak)). Therefore, we also call EAk(t0) the
effective temporal constraint of r(t0, Ak) for the DAG in the
role assignment Ak. Assume EAk(t0) = {[l0j , u0j]|j ∈ N}.
We can further determine the set of time durations which the
start time of ti falls into, denoted by EAk(ti), using Eq.5 .
Note that EAk(ti) is a subset of Ct(r(ti, Ak)). Therefore, we
call EAk(ti) the effective temporal constraint of r(ti, Ak).

EAk(ti) = {[l0j + (sti− st0), u0j + (sti− st0)]|j ∈ N} (5)

We can calculate EAk(t0) for every feasible role assign-
ment. Assume [S,E] is the time duration for which we want
to check the Coverage of the Temporal Constraints (CTC).
If

⋃
Ak∈AEAk(t0) cover the entire range of [S,E], then no

matter when the workflow instance is initiated, we can always
find a role assignment so that all tasks in the workflow can start
execution without delay due to the roles’ temporal constraints.
Otherwise, [S,E] −

⋃
Ak∈AEAk(t0) is the time gap during

which the execution of at least one task in DAG will be
delayed by the current setting of the temporal constraints.

A case study: A case study is given below to illustrate the
method of calculating the coverage of the temporal constraints.

Fig. 1 shows the workflow in the case study, in which there
are 9 tasks and the execution time of each task is given in
Table I.

TABLE II
TEMPORAL CONSTRAINTS OF THE ROLES IN THE CASE STUDY

Role Temporal Role Temporal constraint
r1 {[09:00, 17:00]} r2 {[12:00, 17:00]}
r3 {[11:00, 17:00]} r4 {[09:00, 12:00], [14:00, 17:00]}

TABLE III
ALL FEASIBLE AUTHORIZATION SOLUTIONS IN THE CASE STUDY

A1 A2 A3 A4 A5 A6 A7 A8

t0 r1 r1 r1 r1 r1 r1 r1 r1
t1 r3 r3 r3 r3 r4 r4 r4 r4
t2 r1 r1 r2 r2 r1 r1 r2 r2
t3 r1 r1 r1 r1 r1 r1 r1 r1
t4 r2 r2 r2 r2 r2 r2 r2 r2
t5 r3 r3 r3 r3 r4 r4 r4 r4
t6 r2 r2 r2 r2 r2 r2 r2 r2
t7 r2 r3 r2 r3 r2 r3 r2 r3
t8 r2 r2 r2 r2 r2 r2 r2 r2

There are 4 roles in the system, and the temporal constraint
of each role is given in Table II and illustrated in Fig. 2 (for
brevity, we assume the temporal constraints of all roles have
the same period P of 8 hours, and only show the element
Di in the temporal constraint of a role). Also for simplicity
and without compromising the clarity of the illustration, we
assume the role constraints are applied to tasks directly in this
case study (in the example in Section III, the tasks call one of
the services in the system and the role constraints are applied
on services).

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

r0

r1

r2

r3

Fig. 2. The temporal constraints of the roles in the case study, the shaded
area is the duration when the roles are not activated

Assume that all feasible authorization solutions are as
in Table III, after applying the feasibility checking method
presented in Section III.

Let us first show how to calculate EA1(t0). Since 1) t0 is
authorized to r1 in A1, 2) r1 is activated during [09 : 00, 17 :
00], and 3) the execution time of t0 is 30 minutes (therefore
st1 − st0 = 30 minutes), the possible start time of t1 can
be calculated as below after applying Eq.2, which is also the
duration when the role assigned to t1 in A1 (i.e., r3) has to
be activated in order for t1 to start execution without being
delayed by the temporal constraints (i.e., T (r3)).

T (r(t1, A1)) = T (r3) = {[09 : 30, 17 : 30]}

However, the temporal constraint of r3 is

Ct(r3) = [11 : 00, 17 : 00].

Consequently,

I(t1, A1) = Ct(r3)
⋂
T (r3) = {[11 : 00, 17 : 00]}.

TABLE IV
THE VALUES OF ET1(t0, ti) IN THE CASE STUDY

ET1(t0, t1) {[10 : 30, 16 : 30]}
ET1(t0, t2) {[09 : 00, 16 : 30]}
ET1(t0, t3) {[09 : 00, 16 : 00]}
ET1(t0, t4) {[10 : 54, 15 : 54]}
ET1(t0, t5) {[09 : 54, 15 : 54]}
ET1(t0, t6) {[10 : 06, 15 : 06]}
ET1(t0, t7) {[10 : 12, 15 : 12]}
ET1(t0, t8) {[09 : 36, 14 : 36]}

TABLE V
THE VALUES OF ETk(t0) IN THE CASE STUDY

EA1(t0) {[10 : 54, 14 : 36]}
EA2(t0) {[10 : 54, 14 : 36]}
EA3(t0) {[11 : 30, 14 : 36]}
EA4(t0) {[11 : 30, 14 : 36]}
EA5(t0) {[14 : 00, 14 : 36]}
EA6(t0) {[13 : 30, 14 : 36]}
EA7(t0) {[13 : 30, 14 : 36]}
EA8(t0) {[13 : 30, 14 : 36]}

Then,

ET1(t0, t1) = {[11 : 00− 30mins, 17 : 00− 30mins]}
= {[1030, 1630]}

Similarly, t2 is authorized to run under r1 in A1.

T (r1) = {[09 : 30, 17 : 30]},

I(t2, A1) = Ct(r1)
⋂
T (r1) = {[09 : 30, 17 : 00]}.

Therefore,

ET1(t0, t2) = {[09 : 00, 16 : 30]}.

Similarly, ET1(t0, ti) for tasks t3-t8 can also be calculated,
which are all summarized in Table IV.

Then, the effective arrival time of t0 (i.e., the arrival time
of the workflow), EA1(t0), can be calculated as follows.

EA1(t0) =
⋂
ti∈T

ETk(t0, ti) = {[10 : 54, 14 : 36]}

This means that if the workflow arrives during [10 : 54, 14 :
36] and A1 is used as the authorization solution, all tasks in
the workflow can start execution without being delayed by the
temporal constraints.

Similarly, we can calculate the value of EAk(t0), (2k8)
(i.e., other authorization solutions A2-A8), which are summa-
rized in Table V.⋃

Ak∈A

EAk(t0) = {[10 : 54, 14 : 36]}

This suggests that whenever the workflow arrives in the time
duration of [10:54, 14:36], there exists an authorization solu-
tion under which all tasks in the workflow can start execution
without being delayed by the authorization constraints.

B. Calculating the Probability of Immediate Execution

The derivation in previous section is based on the assump-
tion that the exact execution times of the tasks in a DAG
are known (therefore the exact value of sti, i.e., the start
time of task ti, can be determined). However, in some cases,
it is difficult to know the precise execution time of a task
in advance. Instead, maybe only the probability distribution
of the task’s execution time is known. In this subsection, a
method is proposed to calculate the probability that all tasks in
a DAG can start execution immediately without being delayed
by the authorization constraints. We call this probability IEP
(Immediate Execution Probability). Essentially, IEP is the
probability that the authorization constraints will not pose
negative performance impact on the workflow execution.

Assume the execution time eti of task ti (0 ≤ i ≤ N − 1)
is a random variable. xi denotes the total execution time of all
tasks on the path from t0 to ti The completion time cti can
be expressed as Eq. 6.

cti = sti + eti (6)

In a DAG, sti of task ti depends on the completion times
of all direct predecessors (denoted by prec(ti)). Only after all
predecessors of a task are completed, the task becomes ready
to execute. Therefore, sti can be calculated by Eq. 7.

sti =MAXtj∈pred(ti) {ctj} (7)

From another perspective, sti can be calculated as the total
execution time of all tasks in the longest path from the entry
task to ti in the DAG. Let xi denote the sum of execution
times of all tasks on the longest path from the entry task t0
to ti. sti can be calculated by Eq. 8.

sti = st0 + xi (8)

1) Maximizing IEP for workflow execution: r(ti) denotes
the role assigned to task ti in an authorization solution.
Assume that the workflow arrives at a time point τ that is
within the temporal constraints of the role assigned to task
t0 (i.e., r(t0)). t0 can start execution immediately without
the delay caused by the temporal constraint of r(t0), namely,
st0 = l0,k. Based on Eq. 8, sti is then τ + xi since xi is the
total execution time of the tasks on the longest path from t0
to ti. If τ + xi is within one of the intervals in the temporal
constraint of r(ti) (i.e., the role assigned to task ti), ti can
start execution without delay (i.e., the probability that ti can
start execution without delay is 1). Otherwise, the probability
is 0.

We now present the method to derive the IEP of the
workflow under an authorization solution when a workflow
arrives at a certain time point.

Assume a workflow is assigned the roles according to
an authorization solution, Ak. When the workflow arrives
beyond Ct(r(t0)), it is impossible that the workflow can start
execution immediately. Assume the workflow arrives at a time
point τ within Ct(r(t0)). Then the IEP of task ti under the

authorization Ak can be calculated by Eq. 9, where the value
of function p(τ + x) is 1 when li,k ≤ τ + x ≤ ui,k and is 0
otherwise.

IEPk(ti, τ) =

∫ ∞

0

f(xi)× p(τ + xi)dxi (9)

We can calculate IEPk(ti, τ) for every task in the workflow.
The minimal IEPk(ti, τ) among them all can be regarded as
the IEP of the workflow when it arrives at the time point τ and
the tasks in the workflow are assigned roles according to the
authorization solution Ak, denoted by IEPk(τ), which can be
expressed as Eq. 10.

IEPk (τ) = MIN {IEPk (ti, τ)|1 ≤ i ≤ N}} (10)

With Eq. 10, we can calculate IEPk (τ) for every autho-
rization solution. Namely, we can determine that when a
workflow arrives at time τ , the probability that all tasks in
the workflow can start execution without delay under any
authorization solution. Eq. 11 calculates the maximum value
of IEP obtained among all feasible authorization solutions
(denoted by IEP(τ)), which can be regarded as the IEP that
the workflow can achieve when it arrives at time τ .

IEP(τ) = MAX {IEPk (τ)|Ak ∈ A} (11)

We can also apply Eq. 10 to calculate such arriving times
of the workflow that the IEP of the workflow is no less
than a desired value when the workflow is authorized with
a particular authorization solution. These arriving times form
a time duration in which the workflow can achieve the desired
IEP (denoted by IEPD) under that authorization solution.
Ik(IEPD) denotes such time duration for the authorization
solution Ak. Then when the workflow can be assigned to any
of the possible authorization solutions, the time durations in
which the workflow can achieve IEPD can be calculated by
Eq. 12.

I(IEPD) =
⋃

Ak∈A

Ik(IEPD) (12)

If the result of I(IEPD) in Eq. 12 covers the entire period,
then we can conclude that whenever the workflow arrives,
there is at least the probability of IEPD that all tasks in
the workflow can start execution without delay caused by the
specified authorization constraints.

Eq. 10, 11 and 12 can be utilized to design the authorization
method, i.e., to determine the assignment of the authorization
solution to an arriving workflow, which is presented in Section
V.

Note that we do not specify any particular form of prob-
ability distribution for the execution time of workflow tasks.
In theory, any probability distribution can be used. However,
we can only conduct the mathematical derivation with certain
probability distributions to obtain the probability distribution
function of f(xi) in Eq.9. In Subsection IV-B2, we will
derive how to derive f(xi) when the execution times of tasks
follow the normal distribution. For the forms of probability

TABLE VI
THE MEAN AND STANDARD DEVIATION OF THE EXECUTION TIMES OF THE

WORKFLOW TASKS IN THE CASE STUDY

Task µ σ Task µ σ
t0 30 3 t1 30 3
t2 36 2 t3 42 3
t4 48 1 t5 42 1
t6 30 2 t7 36 2
t8 42 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500

IE
P

Time

.95

I1
0.95

217 316

(a)

t1

t2

t3

t4

t5

t6

t7

Fig. 3. The IEP result for A1, the interval [217, 316] is optimal arrival time
for workflow

distribution that cannot be mathematically derived, we can
resort to the numerical methods to calculate the value of Eq.
9.

2) A Case Study: To demonstrate the process of calculating
the IEPs for the tasks in a workflow, we present a case study
assuming that the execution time of a task in a workflow
follows a normal distribution and that the expected value
and variance of the normal distribution are known. Many
real applications and research studies [22], [23], [24] have
justified the assumption of normal distribution, which makes
the analysis of many random variables tractable analytically.
Note that the calculation method does not limit the probability
distribution of the tasks’ execution time. The execution times
can also follow other probability distributions.

The workflow topology in this case study is same as that
in Fig. 1. The settings of the temporal constraints in this
case study are also same as those in Fig. 2. All feasible
authorization solutions are the same as those in Table III.

In Fig. 1, the tasks’ execution times have exact values as
shown in Table I. In this case study, the execution times of the
tasks follow the normal distributions with their means being
the same values as those in Table I and but with the deviation
being the values in Table VI.

Let N(µ, σ) denote a normal distribution with mean µ and
variance σ2. The execution time of task ti, eti, following the
normal distribution is expressed by eti ∼ N(µ, σ2). Before
calculating the IEP, we explain two properties of normally
distributed random variables.

First, if Xi is normally distributed with expected value µi

and variance σ2
i (i = 1, 2, 3..., n), then X =

∑i
nXi is also

normally distributed, with the mean of
∑i

n µi and the variance
of

∑i
n σ

2
i . Namely, Eq. 13 holds.

X ∼ N(

i∑
n

µi,

i∑
n

σ2
i). (13)

Second, we need to calculate the maximum of a set of
random variables in Eq.7. Unfortunately, the maximum value
of a set of normal random variable is no longer normally dis-
tributed. However, Clark et al. developed a method [25], [26],
[27] to recursively estimate the expected value and variance
of the maximum value among a finite set of random variables
with normal distribution. Based on the estimated expected
value and variance, we can obtain the normal distribution
which is close to the actual distribution of the random variable
defined by the MAX operator. In other words, xi in Eq. 8
can be approximated as a normal random variable and f(xi) in
Eq. 9 is a normal probability density function (PDF) function.

Fig. 3 depicts the value of IEP of each task (calculated
by Eq. 9) as the workflow arrives at different times, being
authorized with A1 in Table III. When the desired value of
IEP is set to be 95% (i.e., IEPD = 95%), we can obtain
the interval of the workflow’s arrival time for each task in
which the value of IEP is no less than 95%. Consequently,
we can obtain the interval of the arrival times in which all
tasks in the workflow can achieve the IEP of no less than
95% under the authorization A1 (i.e., I1(IEPD)), which is
[217, 316] as shown in Fig. 3. This result indicates that when
the workflow arrives between 217 and 316 seconds, there is at
least 95% of probability that when the workflow is authorized
with A1, all tasks in the workflow can start execution without
delay caused by the authorization constraints. Similarly, we
can obtain Ik(IEPD) for each Ak. Fig. 4 shows the IEP curves
for all possible Ak.

⋃
Ak∈A Ik(IEPD) (i.e., Eq. 12) is then

the interval of the workflow’s arrival times in which there
is at least 95% of probability that all tasks in the workflow
can start execution without delay caused by the authorization
constraints.

V. THE WORKFLOW AUTHORIZATION METHODS

Section IV-A calculates the time durations when the ex-
ecutions of all tasks in a workflow will not be delayed by
the authorization constraints, which is

⋃
Ak∈AEAk(t0). The

delay caused by the authorization constraints for a task is
defined as the time that a ready task (a task in a workflow is
ready when all of its predecessors have been completed) has to
wait until the role assigned to the task becomes activated. The
delay caused by the authorization constraints for a workflow
(denoted by td) is defined as the total delay caused by the
authorization constraints for the workflow. When a workflow
arrives beyond

⋃
Ak∈AEAk(t0), it is useful to quantitatively

determine td. Further, it is desired to develop an authorization
method that can minimize td. This section strives to achieve
these.

In this section, we first propose an intuitive policy of
authorizing the tasks in a workflow, called the EAF (Earliest

Algorithm 1. The EAF authorization method
1 Obtain all feasible authorization solutions using

the CSP (Constraint Satisfaction Program)
formulation;

2 for a ready task ti in the workflow
3 Search the set of feasible authorization

solutions to obtain a set of roles (denoted
by CA(ti)) that can be assigned to ti;

4 if all roles in CA(ti) are not activated,
5 Assign to ti a role with the earliest activation

time;
6 if there are the roles in CA(ti) that are activated,
7 A role is randomly selected and assigned to ti;

Activation First) method. Then we conduct quantitative anal-
ysis about the delay caused by temporal constraints. Based on
the delay analysis, we further propose a optimized method of
authorizing the tasks in a workflow, called the GAA (Global
Authorization-Aware) method. The GAA method is optimal in
the sense that the method can minimize the delay caused by the
temporal constraints. GAA is designed for the scenario where
the exact execution times of the workflow tasks are known.
In last subsection, we extend the GAA method to work with
the stochastic workflows, where we only know the probability
distributions of the tasks’ execution times.

A. The EAF authorization method

The EAF method is intuitive. Its fundamental idea is that
when a task in the workflow is ready to run (i.e., all pre-
decessors of the task have completed the executions), but
all roles that can be assigned to the task (i.e., satisfy the
authorization constraints) are not activated, a role with the
earliest activation time will be assigned. The EAF method is
outlined in Algorithm 1.

The workflows with different arrival times may have dif-
ferent delay, td, caused by the authorization constraints for
a workflow. td(τ) denotes the delay experienced by the
workflow whose arrival time is τ . tdEAF (τ) denotes the delay
experienced by all tasks in the workflow whose arrival time is
τ when the EAF authorization method is applied.

B. The GAA authorization method

Assume a workflow arrives at time τ . EAk(t0).next(τ)
denotes the beginning of the next duration after τ in EAk(t0).
If the workflow waits for (EAk(t0).next(τ)−τ), then Ak can
be used as the authorization solution of the workflow and the
workflow execution can progress without further delay caused
by the temporal constraints.

The GAA authorization method is proposed based on the
above discussion. The GAA method takes as input the set of
all feasible authorization solutions. It finds from the set such
a authorization solution, Ak, that Ak generates the minimal
value of (EAk(t0).next(τ) − τ), and authorizes the tasks in
the workflow according to Ak. The time complexity of GAA
is the number of feasible authorization solutions solved by
the CSP (Constraint Satisfaction Problem) formulation, since
the authorization methods presented in this paper, no matter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 250 500

IE
P

Time

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 250 500

IE
P

Time

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 250 500

IE
P

Time

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 250 500

IE
P

Time

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 250 500

IE
P

Time

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 250 500
IE

P

Time

(f)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 250 500

IE
P

Time

(g)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 250 500

IE
P

Time

(h)

t1

t2

t3

t4

t5

t6

t7

Fig. 4. The IEP curves for all feasible authorizations in the case study.

whether it is EAF or GAA, checks all feasible authorization
solutions to find most appropriate one.

Let tdGAA(τ) denote the delay caused by the temporal con-
straints for a workflow whose arrival time is τ under the GAA
method. Then tdGAA(τ) equals to (EAk(t0).next(τ) − τ).
Assume that a workflow arrives at the time point τ , and assume
that it turns out that Ak is the authorization solution used
for the workflow under the EAF method. We can prove that
the delay caused by the temporal constraints for the workflow
under the EAF method equals to (EAk(t0).next(τ) − τ), as
shown in Theorem 1.

Theorem 1. If a workflow arriving at time τ is authorized
using the EAF method and the outcome is that the roles are
assigned to the tasks in the workflow as in the authorization
solution Ak, then Eq.14 holds.

tdEAF (τ) = (EAk(t0).next(τ)− τ) (14)

Proof: If the role assigned to t0 in Ak (i.e., r(t0))
is only activated at time EAk(t0).next(τ), then t0 starts
execution at EAk(t0).next(τ) under the EAF method. Con-
sequently, the delay caused by the temporal constraints on
t0 is EAk(t0).next(τ) − τ , and according to the definition
of EAk(t0).next(τ), all successors of t0 can start execution
without further delay caused by the temporal constraints. Then

tdEAF (τ) = (EAk(t0).next(τ)− τ).

Therefore, Eq.14 holds. We call EAk(t0).next(τ) t0’s
effective start time (denoted by est0).

When t0 starts at EAk(t0).next(τ), we can calculate the
start time of t0’s any successor ti, which is called ti’s effective
start time (denoted by esti) because if ti starts at time esti, all
successors of ti can start execution without being delay by the
temporal constraints of the roles assigned to the successors in
Ak. esti equals est0 plus the length of the longest path from
t0 to ti in the workflow.

If task t0 starts execution at time τ ′0 when the role assigned
to t0 in Ak becomes activated, then the delay caused by the
temporal constraints on t0 is τ ′0 − τ . Assume tk is t0’s child.
If t0 starts execution at τ ′0, then tk can be ready for execution

(tk’s ready time is denoted by τk) at time τ ′0 plus the length
of the longest path from t0 to tk (i.e., all its predecessors have
been completed), that is, τ ′0 + (estk − est0), only subject to
the availability of role r(tk).

If r(tk) is activated only at estk, then tk’s delay caused
by r(tk)’s temporal constraints is estk − (τ ′0 + (estk −
est0))=est0− τ ′0, and all successors of tk can start executions
without being delayed by temporal constraints. Therefore,
tdEAF (τ) can be calculated as

tdEAF (τ) = (est0 − τ ′0) + (τ ′0 − τ)
= est0 − τ
= EAk(t0).next(τ)− τ

It shows Eq.14 holds.
If r(tk) is activated at time τ ′k (τ ′k < estk), then tk starts

execution at τ ′k in the EAF method. We can repeat the analysis
similar as above only replacing t0 with tk, τ with τk and est0
with estk. Similarly, we can recursively conduct the analysis
for the rest of all tasks in the workflow. It can be shown that
Eq.14 holds.

Besides the EAF method, other authorization method can
be used to assign the roles to the tasks in a workflow. Based
on Theorem 1, however, we can prove that no matter what
authorization method is used to authorize the workflow, if it
turns out that the workflow is authorized as in the authorization
solution Ak, then the delay caused by the authorization con-
straints under the authorization method will be no less than
the delay when using the EAF method to assign the roles
to the tasks as in Ak. This relation is stated in Theorem 2.
The proof of the theorem takes the similar steps as those in
Theorem 1. The difference is that when using the EAF method
to authorize the tasks as Ak, a task is authorized as soon as
the role assigned to the task in Ak becomes activated, while
under other authorization method, a task may be authorized
(therefore start execution) later than the role’s activation time.

Theorem 2. No matter what authorization method is used to
assign the roles to the tasks in a workflow, if the outcome is
that the tasks are authorized as in the authorization solution
Ak, then the delay caused by the authorization constraints

under the authorization method is no less than the delay when
using the EAF method to authorize the tasks as in Ak.

Proof: Assume that a workflow arrives at time τ . Similar
to Theorem 1, we can determine esti for every task in the
workflow.

If r(t0) in Ak is activated at time EAk(t0).next(τ), then
the minimal delay caused by the authorization constraints is
EAk(t0).next(τ) − τ , which equals to the delay generated
when using the EAF method to authorize t0. Any method that
authorizes t0 later than EAk(t0).next(τ) will generate a delay
greater than that generated by the EAF method. The theorem
holds.

If r(t0) becomes activated at time τ ′0, but under the au-
thorize method, task t0 is authorized and starts execution at
a later time τ ′0 + δ0 (δ0 > 0), then the delay caused by the
authorization constraints on t0 is τ ′0 + δ0 − τ .

Assume tk is t0’s child. If t0 starts execution at τ ′0+δ0, then
tk can be ready for execution at time τk=τ ′0+δ0+(estk−est0).

Assume τ ′0 + δ0 + (estk − est0) ≥ estk. Then tk can
be authorized and start execution immediately and further,
all successors of tk can be authorized and start execution
immediately when they are ready for execution. Therefore,
the minimal delay for the workflow is τ ′0 + δ0 − τ . Since
τ ′0 + δ0 + (estk − est0) ≥ estk, we can have δ0 > est0 − τ ′0.
Then the following inequality holds, which shows that the EAF
method generates the minimal delay.

τ ′0 + δ0 − τ > est0 − τ
= EAk(t0).next(τ)− τ
= tdEAF (τ)

Assume τ ′0 + δ0 + (estk − est0) < estk. We can repeat the
same analysis on tk as that on t0, only replacing t0 with tk,
τ with τk and est0 with estk. Similarly, we can recursively
conduct the analysis for the rest of all tasks in the workflow.
It can be shown that the theorem holds.

Based on Theorem 1 and 2, we can further prove that the
GAA method is the optimal authorization method, as shown
in Theorem 3.

Theorem 3. The GAA authorization method is optimal in the
sense that under the GAA method, the delay caused by the
authorization constraints for a workflow is not more than that
under any other authorization method.

Proof: Given an authorization method and a workflow
arriving at time τ , assume that the method authorizes the tasks
as in the authorization solution Ak. From Theorem 2, we
know that the delay generated by the authorization method
is no less than the delay when using the EAF method to
authorize the tasks as in Ak. From Theorem 1, we know that
the delay generated by the EAF method can be calculated
as EAk(t0).next(τ) − τ . Therefore, the given authorization
method generates a delay greater than EAk(t0).next(τ)− τ .
According to the algorithm of the GAA method, the GAA
method selects the authorization solution Aj that has the least

value of (EAj(t0).next(τ)−τ) from all possible authorization
solutions. Therefore, the theorem holds.

C. Extending the GAA method to stochastic workflows

The previous subsections present the methods for autho-
rizing the workflows in which the tasks’ execution times
are exactly known. In this subsection, we extend the GAA
method to authorize the worklfow whose constituent tasks
have statistically distributed execution times.

When a workflow arrives at time point τ , we apply Eq. 10
and 11 to calculate which authorization solution provides the
highest value of IEP(τ). The calculated authorization solution
is then used to authorize the workflow. We call this method
the MinIEP method.

In some cases, we want to maximize the opportunity that
the arriving workflows can achieve the desired IEP. In or-
der to achieve this, we propose the SGAA (Statistic Global
Authorization-Aware) method. In SGAA, we first apply Eq.
10 and 12 to calculate the intervals in which the workflow can
acquire the desired IEPD and also record the corresponding
authorization solution that can realize the IEPD.

Assume a workflow arrives at a time point τ . If τ is
within one of the calculated intervals, the workflow is im-
mediately authorized with the corresponding authorization
solution. Otherwise, the workflow waits until the start of next
nearest interval in I(IEPD) before it is authorized using the
corresponding authorization solution.

VI. SIMULATION EXPERIMENTS

We conducted the simulation experiments to evaluate the
performance of the GAA method against that of the EAF
method. The performance metrics evaluated in the experiments
include the delay caused by the authorization constraints for a
workflow (i.e., td defined in the first paragraph of Section V)
and the response time of a workflow (denoted as rt), which is
defined as the duration between the time when a first task of
the workflow arrives and the time when the last tasks of the
workflow is completed.

We also compared the performance among the SGAA, the
GAA and the EAF methods. Since SGAA makes authorization
decisions based on probability, we adopted the following
strategy to compare these three methods. First, a large number
of workflow instances are generated with the tasks’ execution
times following a particular probability distribution. The gen-
erated execution times of each task are recorded. We then
employ the GAA method to make the authorization decisions
for the generated workflow instances. GAA can access the
exact execution times of the workflow tasks. GAA is supposed
to select the best authorization solution which produces the
minimum delay as discussed in Section V-B. Next, we employ
the SGAA method to process the same batch of workflow
instances. SGAA makes the authorization decisions only based
on the probability distributions of the tasks’ execution times
(without knowing the exact execution times). When SGAA
makes the same authorizatoin decision as GAA for a workflow
instance (i.e., SGAA makes an optimal authorization decision),

TABLE VII
EXPERIMENTAL SETTINGS

Parameter Value Parameter Value
TNUM 15 MAX DG 3
EXH 5 RNUM 5
MAX RCST 3 NUM SoD 4
NUM BoD 4 P 480
TEMP 20%

we call it a hit. We record the proportion of the workflow in-
stances for which the authorization decisions made by SGAA
hit, which we call the hit ratio. Finally, we employ EAF to
process these workflow instances and record its hit ratio. A
better authorization method should have a higher hit ratio.

In the experiments, the workflow is randomly generated.
Each workflow containing TNUM tasks and each task in
a workflow having the maximum of MAX DG children.
RNUM roles are assume to exist in the system. The tasks’
role constraints (i.e., the set of roles that a task can assume)
are set in the following fashion. The simulation sets a max-
imum number of roles that any task can assume in the role
constraints, denoted as MAX RCST , which represents the
level of restrictions imposed on the role assignment for tasks.
When setting the role constraint for task ti, the number of roles
that can run ti is randomly selected from [1, MAX RCST],
and then that number of roles are randomly selected from the
role set.
NUM SoD and NUM BoD denote the number of tasks

that are associated with SoD and BoD constraints, respectively.
Duty constraints were set as follows. Each time, two tasks are
randomly selected from the workflow to establish the BoD
constraint between them until NUM BoD tasks are covered.
And then the same procedure is applied to establish the SoD
constraints among tasks. In this process, the method presented
in Section III is used to make sure that the designated
duty constraints on these selected tasks can be satisfied. We
assume that the tasks execution times follow an exponential
distribution. The average execution time of the tasks is the
EX H time units. In order to examine the delay caused
by the authorization constraints, a workflow instance is only
issued after the previous instance has been completed in the
experiments. Unless otherwise stated, the value of dt or rt
depicted in the figure is the value averaged over all workflow
instances issued within the period of the temporal constraints,
which are set below.

The temporal constraints on roles are set in the following
way. For each role, a time duration is selected from a period of
P time units. The selected time duration occupies the specified
percentage of the P time units, which is denoted as TEMP. The
starting time of the selected duration is chosen randomly from
the range of [0, P × (1 − TEMP)]. For example, if P=100
and TEMP=10%, the starting point is randomly selected from
0 to 90%× 100.

Unless otherwise stated, the parameters are set to be the
values shown in Table VII.

10 % 20 % 30 % 40 %
0

50

100

150

TEMP

td

GAA

EAF

Fig. 5. td under different TEMP

10 % 20 % 30 % 40 %
0

100

200

300

400

TEMP

rt

GAA

EAF

Fig. 6. rt under different TEMP

A. Temporal constraints

Fig. 5 shows the change of td as the temporal constraints
(TEMP) changes. It can be seen from this figure that in all
cases the GAA method achieves smaller td than EAF. For
example, when TEMP is 10%, td is 0 under GAA while
it is about 10 under EAF. The discrepancy becomes even
bigger when TEMP increases. These results verify that the
authorization method indeed matters and the GAA method is
superior to the intuitive EAF method.

Fig. 6 compares rt achieved by GAA and EAF under
different TEMP. It can be seen that GAA achieves the shorter
rt than EAF in all cases. This is because GAA causes less
delay and therefore achieves less response time than that under
EAF.

B. Arrival times of workflows

The work in this paper presents the method to determine
the duration of the time for workflow arrivals within which the
authorization constraints will not have negative performance
impact. This shows that the arrival time of a workflow has
impact on workflow performance. Fig. 7 shows the value of
td for different workflow arrival times under GAA and EAF. In
these experiments, we set the period of all roles (i.e., P) as 480
time units, and then issue the workflow instances at the time
points from 0 to 300 time units with increment of 60. It can be
seen that once again, GAA incurs less tdthan EAF in all cases,
except when the arrival time is 300 (whose will be explained
later). Further, when the workflows arrive after 120, the GAA
method does not cause any delay on workflow executions.
These results verify that there indeed exist the durations for
the workflow arrivals when the authorization constraints will
not delay the workflow executions. The method proposed in
this paper is able to theoretically calculate such durations. A
point to note is that when the arrival time is 300, no delay is

0 60 120 180 240 300
0

50

100

150

Workflow Arrival Time

td

EAF

GAA

Fig. 7. td under different workflow arrival times

0 60 120 180 240 300
0

100

200

300

400

Workflow Arrival Time

rt

EAF

GAA

Fig. 8. rt under different workflow arrival times

caused under the EAF method either. This is because the time
point 300 happens to be within the intersection of EAk(t0)
of all feasible authorization solutions. Therefore, the system
can always find an activated role for any task to enable its
execution.

Fig. 8 shows that rt of the workflows with different arrival
times. Again, GAA outperforms EAF in all cases. The rt trend
is consistent with the td trend shown in Fig. 7.

C. Execution times of the workflow tasks

Obviously, increasing the execution times of the tasks in a
workflow will increase the schedule length of the workflow.
But do the execution times affect the authorization-related
delay? Fig.9 shows the impact of the average execution time
of the tasks in a workflow on the coverage of the temporal
constraints (CTC), i.e.,

⋃
Ak∈AEAk(t0). As can be seen from

this figure, CTC decreases as the average execution time
increases. A reasonable explanation for this is that given a
set of temporal constraints, the bigger the execution time
of the tasks in a workflow is, the less likely the duration
of the workflow execution fits into the temporal constraints.
Therefore, CTC may become shorter. This result suggests that
given a set of temporal constraints, a workflow with longer
tasks may be more likely to be delayed by the temporal
constraints that a workflow with shorter tasks, which can be
verified by the results presented in Fig. 10.

Fig. 10 demonstrates td under different average execution
time of workflow tasks. Again, GAA causes less delay than
EAF in all cases. It can also be observed from this figure
that td increases as the average execution time of workflow
tasks increases. The results coincides with the results in Fig.9.
Indeed, When the execution times increases, CTC decreases.
Then more workflow instances issued in the period of the
temporal constraints will experience td. Consequently, td,

5 15 25 35
200

220

240

260

280

300

Average Execution Time of Workflow Tasks

C
T

C

Fig. 9. rt under different average execution times of workflow tasks

5 15 25 35
0

50

100

150

Average Execution Time of Workflow Tasks

td

EAF
GAA

Fig. 10. The coverage of temporal constraints (CTC) under different average
execution times of workflow tasks

which is the delay averaged over all workflow instances issued,
is bigger.

Fig. 11 shows rt generated by the GAA and the EAF method
under different average execution time of workflow tasks. As
can be observed, the GAA method generates shorter rt than
EAF in all cases. This again verifies GAA causes less delay
than EAF.

D. Hit ratio

In this subsection, we first generate 1000 instances of the
workflow in Fig. 1 with the tasks’ execution times following
the normal distribution. The values of the mean and standard
deviation of the distribution for each workflow task are listed
in Table VI.

Fig. 12 shows the comparison between SGAA and EAF
in terms of the hit ratio. Although The hit ratio curves show
the similar trend for the two method, SGAA produces much
higher hit count than EAF and in some places (i.e., in the time
interval of [217, 316]) the hit counts of SGAA is nearly 100%.
This result indicates that there are much higher proportion of
authorization decisions made by SGAA that are the same as
those made by GAA, compared with EAF. As can be seen

5 15 25 35
0

100

200

300

Average Execution Time of Workflow Tasks

rt

EAF
GAA

Fig. 11. rt under different average execution times of workflow tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 80 160 240 320 400 480

H
it
 R

a
ti
o

Time

SGAA

EAF

Fig. 12. Comparing the hit ratio between SGAA and EAF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10% 20% 30% 40%

M
e
a
n
 H

it
 R

a
ti
o

TEMP

SGAA

EAF

Fig. 13. The hit ratio comparison under different TEMP

from the figure, the hit count of EAF becomes unstable in
some places (the dip in the EAF curve) and lower than other
places. This may be because of the local optimum nature of
the EAF method. Namely, some authorization solutions may
enter the wrong “branches” of the workflow (e.g., t1 as shown
in our experimental records). In contrast, the performance of
SGAA is almost always stable. These experimental results
also show that IEP and the optimal interval are effective
metrics for measuring the impacts of authorization constraints
on workflow executions.

We then change the temporal constraints using the way
presented at the beginning of this section. Fig. 13 shows the
mean hit ratio achieved by SGAA and EAF under different
TEMP . It can be seen again that SGAA achieves the higher
hit ratio than EAF in all cases. This is because SGAA takes
into account the situation of the entire workflow and seek
for global optimization and therefore is able to make better
decisions than EAF.

VII. CONCLUSIONS

This paper investigates the issue of feasibility checking for
authorization constraints deployed in workflow management
systems. In this paper, the feasibility checking problem is
modelled as a constraint satisfaction problem. Further, this
paper presents the method to determine the time durations
when the deployed temporal constraints do not have negative
impact on performance of workflow executions. Moreover,

an optimal method is proposed to authorize a workflow, so
that the delay caused by the authorization constraints for
the workflow executions is minimized. The proposed analysis
methods are further extended for the stochastic workflows.
The simulation experiments show that the effectiveness of the
proposed authorization methods.

VIII. ACKNOWLEDGEMENT

The preliminary version of this work has been published
in the 20th International Conference on High Performance
Computing (HiPC-2013) [28]. This work is partially supported
by the Priority Academic Program Development of Jiangsu
Higer Education Institutions (PAPD), Jiangsu Collaborative
Innovation Center on Atmospheric Environment and Equip-
ment Technology (CICAEET), the Natural Science Foundation
of China (NSFC) under Grant Nos. 61472370 and 61672469,
and the open project of State Key Laboratory of virtual reality
technology and system under Grant No. BUAA-VR-16KF-07.

REFERENCES

[1] D. Chakraborty, V. Mankar, and A. Nanavati, “Enabling runtime adapta-
tion ofworkflows to external events in enterprise environments,” in Web
Services, 2007. ICWS 2007. IEEE International Conference on, july
2007, pp. 1112 –1119.

[2] E. Deelman, D. Gannon, M. Shields, and I. Taylor,
“Workflows and e-science: An overview of workflow system
features and capabilities,” Future Generation Computer Systems,
vol. 25, no. 5, pp. 528 – 540, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X08000861

[3] A. Sfrent and F. Pop, “Asymptotic scheduling for many task
computing in big data platforms,” Information Sciences, vol. 319,
pp. 71 – 91, 2015, energy Efficient Data, Services and Memory
Management in Big Data Information Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025515002182

[4] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, and J. Koodziej,
“Resource-aware hybrid scheduling algorithm in heterogeneous
distributed computing,” Future Generation Computer Systems,
vol. 51, pp. 61 – 71, 2015, special Section: A Note
on New Trends in Data-Aware Scheduling and Resource
Provisioning in Modern {HPC} Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X14002532

[5] G.-J. Ahn and R. Sandhu, “Role-based authorization constraints speci-
fication,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 4, pp. 207–226, Nov.
2000. [Online]. Available: http://doi.acm.org/10.1145/382912.382913

[6] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized
temporal role-based access control model,” IEEE Trans. on Knowl. and
Data Eng., vol. 17, no. 1, pp. 4–23, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2005.1

[7] D. Zou, L. He, H. Jin, and X. Chen, “Crbac: Imposing multi-
grained constraints on the rbac model in the multi-application
environment,” Journal of Network and Computer Applications,
vol. 32, no. 2, pp. 402 – 411, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804508000520

[8] V. Atluri and W. kuang Huang, “A petri net based safety analysis of
workflow authorization models,” 1999.

[9] M. Stuit, H. Wortmann, N. Szirbik, and J. Roodenburg, “Multi-
view interaction modelling of human collaboration processes:
A business process study of head and neck cancer care
in a dutch academic hospital,” J. of Biomedical Informatics,
vol. 44, no. 6, pp. 1039–1055, Dec. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.jbi.2011.08.007

[10] T. Hara, T. Arai, Y. Shimomura, and T. Sakao, “Service cad system to
integrate product and human activity for total value,” CIRP Journal of
Manufacturing Science and Technology, vol. 1, no. 4, pp. 262 – 271,
2009, ¡ce:title¿Life Cycle Engineering¡/ce:title¿. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1755581709000078

[11] J. Y. Choi and S. Reveliotis, “A generalized stochastic petri net model
for performance analysis and control of capacitated reentrant lines,”
Robotics and Automation, IEEE Transactions on, vol. 19, no. 3, pp.
474 – 480, june 2003.

[12] D. R. dos Santos, S. E. Ponta, and S. Ranise, “Modular synthesis
of enforcement mechanisms for the workflow satisfiability problem:
Scalability and reusability,” in Proceedings of the 21st ACM on
Symposium on Access Control Models and Technologies, ser. SACMAT
’16. New York, NY, USA: ACM, 2016, pp. 89–99. [Online]. Available:
http://doi.acm.org/10.1145/2914642.2914649

[13] C. Bertolissi, D. R. dos Santos, and S. Ranise, “Automated synthesis
of run-time monitors to enforce authorization policies in business
processes,” in Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ser. ASIA CCS ’15. New
York, NY, USA: ACM, 2015, pp. 297–308. [Online]. Available:
http://doi.acm.org/10.1145/2714576.2714633

[14] J. Crampton, G. Gutin, and D. Karapetyan, “Valued workflow
satisfiability problem,” in Proceedings of the 20th ACM Symposium
on Access Control Models and Technologies, ser. SACMAT ’15.
New York, NY, USA: ACM, 2015, pp. 3–13. [Online]. Available:
http://doi.acm.org/10.1145/2752952.2752961

[15] J. Crampton, “A reference monitor for workflow systems with
constrained task execution,” in Proceedings of the tenth ACM
symposium on Access control models and technologies, ser. SACMAT
’05. New York, NY, USA: ACM, 2005, pp. 38–47. [Online]. Available:
http://doi.acm.org/10.1145/1063979.1063986

[16] Q. Wang and N. Li, “Satisfiability and resiliency in workflow
authorization systems,” ACM Trans. Inf. Syst. Secur., vol. 13,
no. 4, pp. 40:1–40:35, Dec. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1880022.1880034

[17] Y. Lu, L. Zhang, and J. Sun, “Using colored petri nets to model
and analyze workflow with separation of duty constraints,” The
International Journal of Advanced Manufacturing Technology, vol. 40,
pp. 179–192, 2009, 10.1007/s00170-007-1316-1. [Online]. Available:
http://dx.doi.org/10.1007/s00170-007-1316-1

[18] L. He, C. Huang, K. Duan, K. Li, H. Chen, J. Sun,
and S. A. Jarvis, “Modeling and analyzing the impact of
authorization on workflow executions,” Future Gener. Comput.
Syst., vol. 28, no. 8, pp. 1177–1193, Oct. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2012.03.003

[19] L. He, N. Chaudhary, S. Jarvis, and K. Li, “Allocating resources for
workflows running under authorization control,” in Grid Computing
(GRID), 2012 ACM/IEEE 13th International Conference on, 2012, pp.
58–65.

[20] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured petri nets and
cpn tools for modelling and validation of concurrent systems,” Int. J.
Softw. Tools Technol. Transf., vol. 9, no. 3, pp. 213–254, May 2007.
[Online]. Available: http://dx.doi.org/10.1007/s10009-007-0038-x

[21] S. C. Brailsford, C. N. Potts, and B. M. Smith,
“Constraint satisfaction problems: Algorithms and applica-
tions,” European Journal of Operational Research, vol.
119, no. 3, pp. 557 – 581, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221798003646

[22] R. H. Möhring, A. S. Schulz, and M. Uetz, “Approximation in
stochastic scheduling: The power of lp-based priority policies,” J.
ACM, vol. 46, no. 6, pp. 924–942, Nov. 1999. [Online]. Available:
http://doi.acm.org/10.1145/331524.331530

[23] X. Tang, K. Li, G. Liao, K. Fang, and F. Wu, “A stochastic scheduling
algorithm for precedence constrained tasks on grid,” Future Gener.
Comput. Syst., vol. 27, no. 8, pp. 1083–1091, Oct. 2011. [Online].
Available: http://dx.doi.org/10.1016/j.future.2011.04.007

[24] J. Gu, X. Gu, and M. Gu, “A novel parallel quantum genetic algorithm
for stochastic job shop scheduling.” Journal of Mathematical Analysis
and Applications, vol. 355, no. 1, pp. 63–81, 2009.

[25] S. C. Sarin, B. Nagarajan, and L. Liao, Stochastic scheduling.
Expectation-variance analysis of a schedule. Cambridge: Cambridge
University Press, 2010.

[26] V. J. Duko Leti, “The distribution of time for clark flow and risk
assessment for the activities of pert network structure,” The Yugoslav
Journal of Operations Research, no. 37, pp. 195–207, 2009. [Online].
Available: http://eudml.org/doc/261518

[27] C. E. Clark, “The Greatest of a Finite Set of Random Variables,”
Operations Research, vol. 9, pp. 145–162, 1961.

[28] N. Chaudhary and L. He, “Analyzing the performance impact of
authorization constraints and optimizing the authorization methods for
workflows,” in Proceedings of the 20th International Conference on
High Performance Computing, ser. HiPC 2013, Bangalore, India, 2013.

