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Abstract

We study multiple-unit, laboratory experimental call markets in which orders are

cleared by a single price at a scheduled “call”. The markets are independent trading

“days” with two calls each day preceded by continuous and public order flow. Markets

approach the competitive equilibrium over time. The price formation dynamics operate

through the flow of bids and asks configured as the “jaws” of the order book with

contract execution featuring elements of an underlying mathematical principle, the

Newton-Raphson method for solving systems of equations. Both excess demand and

its slope play a systematic role in call market price discovery.
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1 Introduction

This paper studies the principles governing price discovery and dynamics in call markets.

Call markets accumulate orders until a scheduled time at which a “call” takes place, a single

market-clearing price is determined, and all exchanges take place at that price. Accumulation

of orders over time creates “market depth”, which can conceivably lead to reducing the

price variability. By contrast, the widely used continuous double auctions are founded on a

different architecture in which order flow takes place continuously and the timing of contract

executions is endogenous and possibly at different prices.

The three broad research questions are: (i) Do the basic laws of supply and demand operate

as they are known to operate in continuous markets? (ii) What are the behavioral princi-

ples that guide the price dynamics? (iii) How do the institutions and rules together with

behavioral principles operate to guide market performance?

The call markets studied are organized as an exchange in which agents have multiple units.

The analysis is restricted to the “pure” case of price discovery that is not complicated by

agent uncertainty about the personal value of the traded item.1 The underlying flow of

incentives to trade arrives in a series of independent periods that include an unannounced

structural shift in the market parameters. A period is like a trading day in which two calls

occur, prices are determined and exchanges take place.

Our results demonstrate that in the two-call, multiple-unit auctions market prices and vol-

umes converge close but not perfectly to the competitive equilibrium derived from the un-

derlying incentives. Efficiency is relatively high, increases over time and converges to near

the competitive equilibrium level. Results are robust to the presence of a structural shift in

the market parameters.

The results provide insights about a long-standing mystery of how markets achieve an equi-

librium defined as a solution to the equations created by the underlying incentives. An

interpretation is that the market “discovers” the solutions to a system of equations that no

one in the market knows. The model describes the formation process as working within a pe-

riod through the multiple market “calls” to create a series of steps of information aggregation

1A long history of research exists on the relationship between information aggregation and institutions.
Experimental environments studied range from multiple states and multiple markets (Arrow-Debreu secu-
rities), and single markets (winner’s curse), to cascades and bubbles. The institutions range from various
forms of continuous double auctions, call markets, quote markets, dealer markets, auctions (sealed bid, as-
cending price, etc.) and special mechanisms designed explicitly for the purpose of information aggregation.
Our focus is on call markets with independent values about which there is no uncertainty. Even with the
focus so restricted a substantial range of institutions exist.
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and computation leading to price changes and then to ultimate convergence across periods.

The model begins with the order flow shaping “market jaws.” The price and time priority

of the orders placed in the open order book produce a graphical representation (jaws) that

approximates the slope of excess demand; and the difference between the number of buy and

sell orders arriving shortly before a call price announcement approximates the excess demand

at the price. Together, when operating in the multiple calls, the mechanisms exhibit features

of the Newton-Raphson method of finding the solutions to a system of equations as will be

discussed in detail later. To emphasize the combined model, we will refer to the model of the

price discovery process as “Newton-Jaws”. We feel compelled to warn the casual reader that

this model has nothing to do with the jaws of the outstanding mathematician and physicist,

Sir Isaac Newton, after whom the respective numerical method is named. We also need to

emphasize that relationships are confined to strong similarities and that differences do exist

between Newton-Jaws and the Newton method as used in numerical analysis.

Walrasian adjustment, the main alternative to Newton-Jaws, also finds support, but Newton-

Jaws performs better by comparison. Simulations with zero-intelligence agents in Appendix

B demonstrate that Newton-Jaws model has a solid foundation: it is a property of the

call market institution (together with underlying demand/supply parameters) rather than a

consequence of special or idiosyncratic features of traders’ strategic behavior.

The remainder of the paper is organized as follows. Section 2 provides a brief review of

the background literature. Section 3 describes the experimental economic environment.

Subsection 3.1 presents the call market institution we implemented in the lab. Subsections

3.2 and 3.3 describe our experimental procedures and the basic parameters, respectively.

Sections 4 and 5 describe models and theory behind their application to the actual data.

Section 6 presents our main results. Section 7 concludes. Appendices A and B contain

additional estimation details, while Appendix C contains experimental instructions.

2 Background and Related Literature

Call markets share institutional features with many other types of markets. The term “call

market” or “clearing house” is typically reserved for a complex class of institutions with

a designated time for tenders and simultaneous price discovery, operating in environments

with multiple buyers and sellers. This class of institutions is large. For example, auctions,

including any form of sealed bid, can be viewed as special cases of call markets with a single

seller (or buyer).
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Major institutional differences aside, the principles that govern the behavior of call markets

potentially have broad applications and motivate questions that run through several decades

of experimental research. Experimental attention was drawn to similar institutions by the

discovery2 that a posted price process exhibits different efficiency and price performance

than the continuous double auction. The subsequent, overarching literature represents a

meticulous exploration of blends of call markets and the continuous double auction that has

led us to the experiments and models developed here. Cason and Friedman (1997) nicely

summarize the issues: “The general question of price formation thus resolves into three

research questions. What are the relevant market institutions? What are the equilibrium

properties of such institutions? And to what extent do human traders come to approximate

the equilibrium outcomes?”

The experimental focus was first drawn to periodic call markets by Smith et al. (1982), who

observed that call market prices demonstrated a convergence process in a repetitive, sta-

tionary environment with multiple units. Price convergence was slow relative to continuous

markets; the ultimate efficiency was below but comparable to the continuous double auction.

McCabe, Rassenti and Smith (1993) studied performance of call markets with differing fea-

tures, including multiple units, open/closed book, freedom to modify or cancel (at a cost)

orders during bid tenders, different call and pricing rules and different order submission

rules.3 Similar to the earlier work, they observed convergence fell short of the competitive

equilibrium. Why convergence was slow and what changes might make it faster were open

questions that emerged from the work.

Guided by the theoretical development of Wilson (1987) and Satterthwaite and Williams

(1993), the experimental work of Friedman (1993), Cason and Friedman (1997), and Kagel

(2004) explored principles of call market price formation under very strong conditions that

allowed a test of the Bayes Nash Equilibrium model. Presumably, a better understanding of

the details of bidder behavior would produce insights about the behavior of the system.4 The

environment included a closed book during bid tenders, a one-unit restriction on individual

preferences, randomly changing costs and values, and price determination rules that provided

a clear view of individual strategies. Their experiments produced systematic deviations from

the Bayes Nash Equilibrium model and the patterns they observed motivated a conjecture

that a learning aspect was needed. Models based on exposed decision errors and missed

2See Plott and Smith (1978).
3Their research was motivated by the rule used in the Arizona stock exchange (1992–2001) and by an

interest in isolating procedures and rules that might enhance the performance of call markets.
4See also Friedman and Ostroy (1995) who investigated several equilibrium models in a quantity-only call

market they called CHQ.
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trades seemed promising. Such models were consistent with behavior observed in second

price auctions by Garvin and Kagel (1994), and also by Cason and Friedman (1999a).

Suggestion of a learning process in the randomly changing environment led naturally to a

question about whether having multiple calls in a single period would lead to the emer-

gence of price convergence and efficiency. Cason and Friedman (1999b, 2008) investigated

this possibility with a mechanism they called the Multiple Call Market. They explored the

question in a “thin” market environment, which classical theory suggests is extremely chal-

lenging, especially for the study of delicate strategic relationships. They observed substantial

inefficiencies that they attribute to the thin markets.

A natural question motivated by the Cason and Friedman experiments is whether or not

thicker markets with public (open) book, bid adjustment flexibility, and multiple calls will

enhance call market performance. The issue receives some support from the experiments of

Cason and Plott (1996) who study call markets in a replicating environment with individ-

ual bidder incentives determined at random. When viewed from one call to the next, the

replicating environment has coordination and information similarities to those of multiple

calls within a period. Cason and Plott observe both efficiency and price convergence to near

competitive equilibrium levels. More importantly, they also reported value revelation of ex-

tra marginal units, which is directly related to the role that value revelation of marginal and

extra marginal units can play in forming a process of convergence when market environments

are repeated across periods.

A connection between excess demand and price changes was established early (Smith, 1965).

A connection between prices and order flow as represented by excess bids (i.e., total buy

orders minus total sell orders) was established later (Smith, Suchanek and Williams, 1988),

leading to a long-standing challenge to understand the mechanisms at work. That work as

well as Selten and Neugebauer (2014) find substantial support for the excess bids model as a

predictor of prices. Their analysis leaves open the question of whether or not the excess bids

model is more accurate than the classical excess demand model or the Newton-Jaws model

developed below, and what might be the source of its accuracy in predicting price changes.

Studying the market adjustments in response to an unstable competitive equilibrium, Plott

and George (1992) demonstrated that a special type of call market with price changes re-

sponding to bids and asks through an explicit tâtonnement secant mechanism (a “smart”

market approximation of the Newton method) converges to the nearest Walrasian stable

competitive equilibrium.5 This discovery re-emphasizes the central role of excess demand,

5Gjerstad (2013) studied the price dynamics in a continuous double auction, and used a Hahn stochastic
process to estimate disequilibrium price adjustment within a period, which is an alternative approach to
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as well as its slopes, in determining price adjustment and discovery process, and thus the

importance of excluded bids and asks in approximating those slopes. The insight becomes

enhanced with the idea that the excluded bids and asks in the continuous double auction,

captured by the order book shape, perform the same function. The jaw-type structure of

the order flow recorded in the order book is related to the rules governing the order book for

continuous, multiple-unit double auctions.6 That possibility was formalized by Bossaerts and

Plott (2008) as the market “jaws”: a Newton adjustment process based on the jaw-shaped

order book could contribute to price convergence in the continuous double auction.7 Whether

a Newton-Jaws type adjustment operates in a discrete, multiple-call market environment has

not been investigated until now.

The call market exchange we explore in this paper incorporates several features shown to

be important in the literature. The exchange consists of multiple (two) calls in each of a

series of periods replicated under stationary market demand and supply schedules. The order

book is open so all participants can view the order flow and the tentative price, which is

continuously computed and displayed. Following the rules of the call market that has become

known as the uniform price double action (UPDA) as introduced by McCabe, Rassenti and

Smith (1993), bids and asks can be tendered, adjusted or cancelled at any time during the

order submission period. After a call, each participant sees the volume, own transactions,

and the untraded bids and asks, which remain in the book as is the case with the Cason and

Friedman rules. Markets are not thin in the sense of Cason and Friedman since agents have

multiple units and there are typically more than ten buyers and ten sellers. Given previous

experiments and theory, all of the features suggest that we should observe price discovery

and efficiency convergence. The experimental questions are whether convergences indeed

occur and if so, what dynamic model can approximate the process.

Our results demonstrate the existence of a price formation process that embodies the logic

of the Newton-Raphson method of solving systems of equations, building on and extending

the previous results. The information used in price formation exists in the order flow and

encompasses both the information contained in the excess demand and the information in the

excess bids (i.e., total buy orders minus total sell orders). However, additional information

modeling the dynamics.
6The definition and rules as first developed by Plott and Gray (1990) use price/time priority for listing

in the book. Subsequent computerized markets such as MUDA (Johnson, Lee and Plott, 1989) and the
more advanced Marketscape (for a 1997 animation illustrating the jaws dynamics of the order flow using
Marketscape visit http://eeps.caltech.edu/mov/jaws.html) made a graphical representation of the data
available to traders in real time.

7A Newton-based adjustment process was tested and rejected for the continuous double auction when
operating in an environment with unstable equilibria. See Hirota et al. (2005).
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about the separate slopes of the demand and supply functions is supplied by the “jaws”: the

values of the excluded bids and asks. This information is used by a Newton-like process of

price formation and discovery.

There is a growing interest in call markets applications inspired by the possibility that call

markets can be useful supplements to other forms of markets. While such possibilities raise

basic science challenges far beyond the questions posed here, introducing the respective con-

nections puts the research reported here in a broader context. Budish, Cramton and Shim

(2015) argue that call markets might avoid difficulties caused by high-frequency trading.

Brewer, Cvitanic and Plott (2013) suggest call markets as a tool to deal with flash crashes

that might occur in continuous markets. The Euronext and Xetra exchanges use call mar-

kets combined with other forms of markets to open and close trading based off the theory

that it improves price discovery.8 A completely different approach is taken by Selten and

Neugebauer (2014), who attempt to create phenomena reported in the finance literature as

“puzzles” in the laboratory. Notwithstanding the design differences, they also find support

for the predictive model of price formation based on excess bids. They argue that path de-

pendence between current and past excess bids, i.e., the adaptive model of price formation,

operates at the individual level, while in our experiment this mechanism is eliminated by

book clearing at the end of each period.9

What form a call market should take to meet these challenges, how they would perform or

what forms the theory might take to unravel the challenges presented by field observations

are beyond the scope of this paper.

3 Environment

In this section, we describe the experimental call markets implemented in the laboratory.

3.1 Institution, Rules, and Timing

The call market we study is based on a double auction design in which both bids to buy and

asks to sell are tendered. Unlike the continuous time double auction, trades only happen at

a call. Before the start of the experiment, the subjects are designated as buyers or as sellers,

8See van Bommel and Hoffmann (2011).
9See also Selten and Neugebauer (2015), who compare call markets and double auctions, and report the

call markets as less effective. They do not explore variations of the two institutions or isolate the principles
that seem to be operating.
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which they keep for the entire experimental session. Each session consists of several periods,

developed as follows.

Before the start of a period, costs and redemption values are induced. Costs are distributed

in terms of buy orders from the experimenter to the sellers (who would buy from the exper-

imenter and resell to buyers) and redemption values are distributed in terms of sell orders

from the experimenter to the buyers (who would buy from sellers and resell to the exper-

imenter). These incentive-based orders are placed in a private market accessible only by

the subject for whom they are intended. No inventories in terms of units or orders are car-

ried over from period to period. All values, costs, and prices were specified in experimental

currency called “francs.”

A public (trading) market opens at the beginning of each period. In this public market, two

calls are performed each period. The first call is 1.5 minutes into the period and the second is

4.5 minutes into the period (3 minutes later), leaving 1.5 minutes to redeem units purchased

or return unsold units to the experimenter when no more calls remain in the period.10

At any time during the period, sellers can place sell orders and buyers can place buy orders

to the public market. Orders are ranked (buy orders from high to low and sell orders from

low to high) according to the execution mechanism, should a call take place. The orders are

published on a screen so any trader can see everyone’s orders in the sequence of potential

executions. Orders are also displayed in the graphical form by means of demand and supply

curves based on the current order book. Orders can be cancelled and re-submitted at any

time before the call so the curves and prices can shift around before the call. No constraints

are placed on orders except by limiting the number of units to 6. Subjects are allowed to

tender potentially unprofitable offers. Thus, the technology allows subjects to attempt to

manipulate the price. The number of orders a subject can have simultaneously placed on

the public market at any given time is limited by the number of units made available by the

experimenter.

At each call, all buy and sell orders in the order book are simultaneously considered and a

market price is established. It is determined as follows:

1. Based on all orders in the book, the system sorts buy orders by their respective prices

per unit from high to low. Sell orders are sorted by their respective prices per unit

from low to high.

10The last 1.5 minutes of a period were unnecessary for the call market functioning, but allowed the
subjects to learn the outcome of the second call trade and manually convert their units on hand into francs
if they wished to do so. As a convenience feature, the software automatically converted all units on hand
into francs at the end of the period using traders’ true value and cost schedules.
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2. The system matches two sorted series selecting all pairs for which the purchase price

is greater than the sale price, and stops at the last pair for which this is true.

3. The market price is calculated midway between the last accepted (the lowest filled)

buy order and the last accepted (highest filled) sell order. Except for ties, all buy

orders with prices above the market price will trade at the market price. All sell orders

with prices below the market price will trade at the market price. All other orders will

remain unfilled.

Technically, the call price (the market clearing price announced at a call) must be computed

from discrete or integer valued bids and asks and is determined from submitted orders as

follows. Let z be an index of buy orders (bids) ordered from high to low and sell orders (asks),

ordered from low to high. Thus, z is an index of ordered pairs (b(z), a(z)), where b(z) is the

bid, a(z) is the ask of the z-th pair. Let z∗ be the smallest z for which b(z + 1) < a(z + 1).

Thus, z∗ is the index of the “last trade”, the last accepted bid and the last accepted ask. A

market clearing price is any p∗ > 0 such that

(i) for z ≤ z∗, b(z) ≥ p∗ and a(z) ≤ p∗; and

(ii) p∗ ∈ [max{b(z∗ + 1), a(z∗)},min{b(z∗), a(z∗ + 1)}].

The concept of a market clearing price is related to the concept of a competitive equilibrium

in the sense that the competitive equilibrium is a market clearing price but the competitive

equilibrium price is based on the concepts of market demand and supply and not just the

bids and asks that happened to have been submitted prior to a call. The distinctions will

be addressed in the Section 4 discussion about the dynamics of convergence in an ongoing

market system.

Participants have profits continuously updated. A history of all trades up to the current time

is always available. Remaining orders in private markets are always displayed. Untraded

units are returned to the experimenter at the private market price at the end of each period.

3.2 Experimental Procedures

Subjects were recruited from Caltech and Purdue University. In total, 123 subjects partic-

ipated. Upon sign-up for the experiment, subjects received an email with the hyperlink to

the actual experiment webpage, instructions, and the demo. We also recorded and uploaded

a short video describing the details of the experiment using the software interface.11 The

11The video is available at http://tinyurl.com/kcq6pmb.
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instructions are available in Appendix C. Subjects were paid after the end of the session by

checks mailed to the addresses they specified at the sign-up. In all sessions, subjects made

decisions via Internet using a web browser. Each session had 18 to 19 periods and lasted

about 2 hours. Subjects were not informed about the last period unless it was over.

The first three periods were practice periods using a specially designed set of parameters

that allowed low gains and low losses. Subjects were told that the first three periods were

designed to help them understand how the software worked. Subjects were instructed that

if they failed to make a profit in the first three periods to demonstrate their understanding

of the trading system, they would receive a show-up payment but would not be used in the

experiment. A frequent mistake was related to thinking that they should exercise all orders

found in their private order books, e.g., sell all units they could independently of profitability.

Subjects were randomly assigned as buyers and sellers, and their types were fixed during

the session. However, buyer redemption values and seller costs were changed once after the

practice and once after a parameter shift, as explained below. Buyers (sellers) could submit

buy (sell), multiple-unit orders in a public market and redeem their values (costs) from the

experimenter using their private values (costs) markets.

Table 1 presents the summary of the experimental sessions.

Table 1: All experimental sessions

Session no. Date Practice,
periods

Pre-shift,
periods

Post-shift,
periods

Initial
subjects

Paid
subjects

Average
payoff, $

Exchange
rate

1 2012-05-11 3 8 8 17 14 45.21 1f=3.5¢
2 2012-05-12 3 8 8 13 13 48.85 –
3 2012-12-01 4 7 7 15 15 36.13 –
4 2012-12-13 3 8 8 17 17 41.06 –
5 2013-02-23 3 8 8 21 19 34.79 1f=2.5¢
6 2013-03-02 3 8 8 21 21 37.38 –
7 2013-05-16 3 9 7 19 17 30.59 –

Notes. After end of practice and after shift, all types were rotated.

Subjects’ earnings in francs were exchanged into US dollars at the end of the experiment.

Average earnings were $19.57 per hour.

3.3 Basic Parameters

We chose the basic parameters in the experiment to satisfy a wide range of criteria implied

by our focus on convergence and market dynamics. In sessions 1-4, we used three types of

buyers and three types of sellers, where each subject’s type defines her private costs/values.

10



In sessions 5-7, we used five types of buyers and five types of sellers. Table 2 contains the

costs and values for all our setups.12 In all sessions, we also implemented a parameter shift

around period 9 after the end of practice. The shift increased all costs and values by the

specified amount of francs. Types were rotated after the parameter shift. Subjects were

assigned to types uniformly so that the market contained multiple traders of each type.

Table 2: Experimental parameters

Sessions Types Private values/costs per unit, francs Shift
unit 1 unit 2 unit 3 unit 4 unit 5 unit 6+

1-4 B1 210 195 190 155 150 120 75 added
B2 220 200 175 165 145 115 to each unit
B3 215 195 185 160 140 125
S1 120 150 155 175 195 205
S2 115 145 165 185 200 210
S3 125 140 160 180 190 215

5-7 B1 250 208 203 170 144 120 83 added
B2 246 213 199 165 140 118 to each unit
B3 242 218 195 160 133 115
B4 238 224 190 155 130 112
B5 234 230 186 150 125 110
S1 110 150 155 185 214 235
S2 115 146 160 190 218 240
S3 120 142 165 196 222 245
S4 122 137 170 204 226 250
S5 126 132 174 209 230 255

Notes. Types indicators correspond to (B)uyers and (S)ellers. All sessions included 3-period practice
with different test parameters. After end of practice and after shift, all types were rotated

Figure 1 illustrates the main features of the experimental call market. The left panel of

Figure 1 shows the time series of the call prices for each call in the experiment of 2013-03-02.

We see how call prices converge to the competitive equilibrium (dashed line) as determined

by the classical demand and supply model up to period 9, when the upshift of equilibrium

price by about 80 francs takes place, which resets the convergence anew. The right panel

of Figure 1 depicts the order book of the experiment (2013-03-02), period 11. The market

demand and supply are based on the induced values and costs used in that period, as well

as the revealed demand and supply based on the order flow, the buy orders (bids) and sell

orders (asks) in the book for the two calls. The patterns of the orders in the book resemble

a “hockey stick” with the handle appearing flat and near the market price and the blades

12 Multiple-unit demand and supply creates a possibility for strategic price manipulation by “withholding”
units to create shortages, which could, in turn, influence the speed and efficiency of market adjustments and
induce strategic behavior that game-theoretic models attempt to understand. Our choice of parameters
reflects our interest in price discovery and the fundamental principles of convergence and price dynamics
across calls in competitive markets. Researchers interested in the challenge posed by withholding strategies
could explore the incentives for withholding by tweaking our parameters near the equilibrium prices in order
to reduce the elasticity of demand and supply.
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Figure 1: Call price dynamics in the experiment on 2013-03-02. Call prices shown are the
actual prices from the experiment. Competitive equilibrium (CE) period prices, which can
differ from experiment to experiment due to different numbers of participants, are shown as
the dashed line, which is average of the CE price over the corresponding period across all
our experiments. After period 8, there is an exogenous shock (parameter shift). The market
jaws are formed each call by the excluded bids (lower jaw) and excluded asks (upper jaw)
that resemble an open mouth of a fish swimming to the right.

at angles reflecting and approximating the relative values of excluded units. The submitted

values of the marginal and extra-marginal units along the “blade” of the hockey stick, play

an important role in the price dynamics, as we demonstrate below. These values taken

together will be called the market “jaws” – an open mouth ready to bite as illustrated in

the figure.

4 Models

The price discovery model explored here is a process of convergence based on insights from

three sources, each of which suggests a separate element of the overall model. The first is

the classical theory of price adjustment that supplies the most basic of principles that price

changes are responsive to excess demand. The second is a more abstract literature that points

to the possible role of the slope of the excess demand. Both are introduced in Subsection

4.1. The third, introduced in Subsection 4.2, is the understanding provided by “market

jaws” that order flow as shaped by specific market making institutions is a fundamental
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source of the information and commitments required by an equilibration process. Together,

these principles operate with properties similar to the Newton method of finding zeroes of a

differentiable function as will be illustrated in Subsection 4.3. The connection with numerical

methods provides a framework for understanding how institutions coordinate decisions and

interact with decentralized information, and helps focus on where institutional changes might

improve market functioning.

4.1 The Classical Concepts of Demand, Supply, and Equilibration

The market demand function, D(p) and the market supply function, S(p), express the quan-

tity that buyers are willing to buy at price p and the quantity that sellers are willing to sell

at price p and are derived from respective utility and profit maximization with the assump-

tion that decision makers treat prices as constants. Excess demand at a market price, p, is

defined as ED(p) = D(p) − S(p). The classical concept of a competitive equilibrium price

is a price p∗ such that ED(p∗) = 0. Since the demand and supply functions are generally

not observable, the concept of “price discovery” has emerged over the decades in response

to the view that the equilibrium price is the solution to equations that no one in the market

knows.

Classical theory of price discovery works through an abstract adjustment process termed

“tâtonnement”. It is as if a price is announced (by a fictional agent sometimes called the

“Walrasian auctioneer”), the excess demand is observed and without trading taking place a

new adjusted price is announced based on the revealed excess demand quantity. The price

movement motivated by the model is summarized by the classical price adjustment equation:

dp

dt
= A[D(p)− S(p)], A > 0 (1)

Under appropriate conditions this adjustment will converge to p∗ : ED(p∗) = 0.13

A natural technical generalization of the classical model, that strengthens the conditions

under which price discovery can happen, is based on a Newton adjustment derived from the

Taylor expansion:
dp

dt
= − D(p)− S(p)

D′(p)− S ′(p)
(2)

This extension postulates that the constant, A, in the tâtonnement model is replaced by a

function of the excess demand derivative, −1/(D′(p) − S ′(p)). Thus, the process could be

13For the background and development of this class of models see McKenzie (2005).
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dependent on both ED(p) and ED′(p) as opposed to ED(p) alone, and as has been explored

by Saari and Simon (1978) and Saari (1985), the additional information has implications

for price discovery, i.e., convergence to a competitive equilibrium. However, the Walrasian

auctioneer would not have access to the additional information and the range of institutions

that might carry the information has remained an open question.

4.2 Market Jaws

Market institutions that have evolved over the decades are populated with additional in-

stitutional features that can be a source of information. For example, evidence exists that

suggests that such source could be the order flow of the continuous double auction (As-

parouhova, Bossaerts and Plott, 2003; Bossaerts and Plott, 2008; Barner, Feri and Plott,

2005). Bossaerts and Plott (2008) suggest that the information is in the market order

“book” and term the source “market jaws”. The question explored here is whether a similar

process and source of information might exist for call market institutions.

The structure of the data in the order book is sometimes described as an open mouth with an

upper jaw and a lower jaw, together with a tongue, which is a curve tracing the average of the

two. Market jaws provide a snapshot of commitments by potential traders that approximate

important features of observed market adjustments in continuous markets. Here, the model

is adapted for call markets institutions. When a call takes place, these commitments together

with market making rules define exchanges that are executed at the call.

The basic intuition is as follows. As order flow develops and bids and asks are submitted, the

shape of the order book changes in a self-organizing and specific way that reflects aggregate

demand and supply. In order to become “provisional traders” who would trade if a call took

place, traders can revise their bids and asks in an attempt to meet or beat the competition

in light of the offers tendered by the other side of the market. The tendency of bidders to

anticipate the bids of others is an established property of call markets (Cason and Friedman,

1997; Kagel, 2004). For the marginal and extra marginal units outside the expected set of

provisional trades, the possibility that price changes randomly can create incentives for value

revelation. Value revelation is encouraged by the possibility to trade in the case the market

“jumps” from expected price.

As a result, the order book is continuously updated as traders update their orders in light

of the orders of others. The orders of those traders whose true values are extra marginal at

the current price are pushed out. Bidders change their offers with increasing revelation of
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the marginal values in response. The shape of the book resembles jaws, hence the name.

To illustrate, consider Figure 2. Consider p1, the actual price at the end of the first call and

q1, the actual total volume at the end of the first call. We fit a line to the unfilled asks that

exist in the order book at the end of the first call. We only use the first τ unfilled asks in

order to avoid the extremely high asks which sometimes show up in the book, and also due

to the local nature of Newton approximation. We also restrict the fitted line to go through

the point (p1, q1), and denote xτ the price at which the line cuts through qτ = q1 + τ , the

corresponding quantity. Similarly, we fit a line to the unfilled bids in the book at the end of

the first call, denoting yτ the price at which the line cuts through qτ .

When the two fitted lines are imposed at the point (p1, q1), as illustrated in Figure 2, we

obtain a graphical representation of the market jaws: the “upper jaw” given by the line

connecting (p1, q1) to (xτ , qτ ), and the “lower jaw” given by the line connecting (p1, q1) to

(yτ , qτ ). We will refer to these lines as Ŝ1 and D̂1 respectively, and treat them as tangents

to a smoothed out model of the revealed supply and demand as represented by the unfilled

asks and bids in the order book.14 That is, we are going to use their slopes as an estimate

of the excess demand slope when evaluated at the price of the first call. The excess demand

slope is one of the two key features of the Newton adjustment, as explained below.

Figure 2: Theory behind the jaws, applied after the first call. The jaws are formed by the
fitted line segments of demand D̂1 and supply Ŝ1, remaining after the call.

14We fit D̂1 and Ŝ1 to the data by ordinary least squares in a non-trivial way as described in detail in
Appendix A.
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Now, define α, the angle between the upper jaw, Ŝ1, and price, p1, using the slope of Ŝ1:

tanα =
xτ − p1
qτ − q1︸ ︷︷ ︸

=τ

,

and define β, the angle between price p1 and the lower jaw, D̂1, via

tan β =
yτ − p1
qτ − q1︸ ︷︷ ︸

=τ

.

The true demand and supply curves (based on the private values and costs of the traders

present at both calls) in Figure 2 are given by D(·) and S(·), respectively. For the sake of

clarity, they are drawn as continuous curves, but in the actual experiment D(·) and S(·) are

discrete step-wise curves, just like the corresponding actual order book. The market level,

induced (true) demand/supply curves have the corresponding angles at price p1 being α∗

and β∗, respectively (see Figure 2.)

The jaws model of the order book dynamics postulates two important properties in the call

market environment.

First, excess demand slope revelation: the excluded traders’ orders accumulate according

to the ranking of their true values and costs, and therefore the book at the call reflects the

true slopes of aggregate demand and supply at the call price. Thus the first property says:

the slopes of both revealed jaws closely approximate the slopes of the true demand and

supply at price p1, or equivalently, α ≈ α∗ and β ≈ β∗.

Second, excess demand revelation: the number of bids in excess of the number of arriving

in a fixed period shortly before a call is proportional to excess demand at the call price. The

theoretical intuition behind the second property is that an approaching call motivates the

traders to actively submit and adjust their bids and asks. The rate of bids and asks depends

on the number of units desired and the number of buyers and sellers, and thus the excess

demand at the current price.

As we show below, these properties are crucial for interpreting the price dynamics across

calls as one step of the Newton-Raphson method of finding zeroes of a differentiable function.

Multiple steps involving multiple periods require additional abstraction. The two properties,

slope and excess demand revelation, also rely on the more fundamental feature of Marshallian

adjustment path.15

15The Marshallian path is an empirical property that buyers with high values and sellers with low costs are
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4.3 Newton and Walrasian Adjustment

In this section we operationalize the technical properties of Walras and Newton adjustment,

which are useful in testing and estimation. We begin by discretizing the tâtonnement equa-

tions (1) and (2) by replacing the derivative on the left hand side of the expressions by a

price difference, ∆p = pt+1−pt. This represents one step of an iterative process which starts

from an initial price p0 and converges to an equilibrium price p∗ that solves ED(p∗) = 0. In

a Newton-type process each successive root approximation at time t + 1 depends on both

the excess demand and the slope of the excess demand, and can be written formally as

pt+1 − pt = − D(pt)− S(pt)

D′(pt)− S ′(pt)
(3)

where pt is the market price at time t, D(·) and S(·) denote the true demand and supply

curves, and D′(·) and S ′(·) are their respective derivatives.

In the Newton numerical method of finding a root of a differentiable function, iterations in

(3) are repeated until the stopping criterion (e.g., the desired tolerance) is reached. Unlike

the traditional scheme, we take only one step of this scheme. Furthermore, the Newton

numerical process has all information about the functions when it starts while the market

price discovery process requires new information at each step and the new information is

based on the results of the previous step. From a bidder’s point of view, new bids at any

call are based on the previously announced price, a feature that suggests a need for theory.

The price difference on the left hand side of (3) can be taken either i) between prices realized

at two subsequent time moments (e.g., two calls within one period, producing the difference

(p2 − p1)), or ii) between a Walrasian theoretical market-clearing price and the price at a

given call. In other words, we could have replaced the second time period of our model with

the theoretical perfect-competition Walrasian market. If we did so, we would then be able

to test convergence to the Walrasian model. Thus, we can also use the equilibrium price p∗

instead of pt+1 in (3) for the purpose of alternative test of equilibration: asymptotically as

t grows large, the iterations should converge to the equilibrium point. This results in two

additional price differences: (p∗− p1) and (p∗− p2). We report these alongside the between-

call difference in Results 5, 6, and 7. Notice that if the price dynamics followed Newton and

we knew the excess demand and its derivative at time t, then we could use the price at time

those that first find their way to trade, and if they have multiple units, they trade their most profitable ones
first. This is the mysterious property predicted by the Wilson model, observed as part of BNE performance
by Cason and Friedman (1997), and Kagel (2004), and documented as a feature of the continuous double
auction by Plott, Roy and Tong (2013).
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t and (3) to predict price at time t+ 1.

A natural alternative to the Newton dynamics is Walrasian adjustment, where

pt+1 − pt = A [D(pt)− S(pt)] (4)

Thus, the difference of Walrasian adjustment from Newton is that the former does not utilize

the slopes of excess demand, assuming that the price change is proportional to the excess

demand with some positive constant factor A.16

The information about the excess demand and its slope can be related to the market jaws.

This relationship is based on two hypothesized properties of the jaws we described in Sub-

section 4.2. First, (slope revelation:) the slopes of revealed jaws will closely approximate

the slopes of the true demand and supply at price p1, i.e., in terms of Figure 2, α ≈ α∗ and

β ≈ β∗. Second, (excess demand revelation:) the pattern of jaws changing shortly before the

call will reflect excess demand at price p1, the second key property of the dynamic model,

via the relative excess of the number of bids over the number of asks.

Denote ÊD(p1) the revealed excess demand. Consider Figure 2 again. If the first property

of the jaws holds as a perfect equality,

Ŝ ′ = S ′(pt) = tan
(π

2
− α∗

)
= cotα∗

D̂′ = D′(pt) = tan
(π

2
+ β∗

)
= − cot β∗

If the second property holds perfectly, ÊD(pt) = D(pt) − S(pt). Then using (3), the price

dynamics across calls follows Newton if and only if

pt+1 − pt =
ÊD(pt)

Ŝ ′ − D̂′

The relationships summarize the main property of Newton-Jaws.

16 In some continuous time environments, in particular, in unstable environments of Scarf (1960), where
prices do not converge to the competitive equilibrium, Walrasian adjustment finds more support than Newton
(Hirota et al., 2005). Assured global convergence to the competitive equilibrium via an iterative procedure
in general environments cannot be guaranteed (Saari, 1985). However, the information about excess demand
and its slope suffices for local convergence (Saari and Simon, 1978), and is particularly relevant in our
environment with quasi-linear supply and demand, and no income effects. Hence one would expect that in
a particular environment like our experiment, with less stringent information requirements, the knowledge
of the first derivative of the excess demand should allow Newton to perform better than Walras.
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5 Statistical Models

5.1 Statistics of Convergence

We use a simple dynamic model to assess convergence to theoretical predictions, which in

our case is the competitive equilibrium. The basic idea is to establish whether the difference

between the data and the corresponding equilibrium goes to a common asymptote of zero

as periods in an experiment proceed. The model was developed by Noussair, Plott and

Riezman (1995).17

The original model is modified to account for a shift in parameters that occurs after the first

several periods. The model for price convergence is as follows.

pit − p∗it =

(
αt̃1δ1

t− t̃1 + 1
+
β1
t

)
d1 + . . .+

(
αt̃iδi

t− t̃i + 1
+
βi
t

)
di + . . .

+

(
αt̃KδK

t− t̃K + 1
+
βK
t

)
dK + γ

(
1− 1

t

)
+ εit, (5)

where i indexes experimental market sessions; t indexes periods in a session starting from 1;

pit is the average market price in period t of experimental market session i; p∗it is the equi-

librium market price in period t of the same session; K is the total number of experimental

sessions (we ran 7); di, i ∈ {1, . . . , K} is a dummy variable corresponding to experimental

session i; βi is the origin of the corresponding time series; t̃i indexes the period when the

parameter shift18 occurs in session i; αt̃i is a dummy variable that corresponds to the shift,

i.e., αt̃i = 0 for t < t̃i, and αt̃i = 1 for t ≥ t̃i; δi captures the “new origin” effect, created by

the shift; γ is the asymptote of the series common to all experimental sessions; and, finally,

εit is a random error.

The same equation with pit−p∗it replaced by qit− q∗it is used to estimate volume convergence.

The basic idea behind this dynamic model is as follows. In experimental market session i,

the difference between the data and the competitive equilibrium starts from some random

origin, captured by βi, and moves closer to the common asymptote γ as time (i.e., period

number) increases from 1 to the time of the parameter shift, if there is convergence. At the

time of the shift t = t̃i, the term
αt̃i

δi

t−t̃i+1
becomes non-zero if δi 6= 0, and so it serves as an

updated origin from which the difference on the left hand side of (5) starts to converge anew.

17 Noussair, Plott, and Riezman named it the AElG model after Orley Ashenfelter and Mahmoud El-Gamal
whose suggestions led to the development of the model.

18In our experiments most shifts occurred in the 9-th period following the practice period.
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In theory, as time increases towards infinity, the updated origin receives less and less weight

(and the initial origin even less), so the difference between the equilibrium of the model and

the data converges to the asymptote γ. Thus, if the estimate of γ is not significantly different

from zero, we conclude that the data series converges to the equilibrium prediction perfectly.

Since we have two calls per period, there exist alternative ways to define pit and p∗it, because

the model does not predict the dynamics within a period. We explicitly address this in

Subsection 4.3, where we describe the application of the Newton method to our data. For

our convergence results, we defined the observed market price in a period, pit, as the average

realized price across two calls, and the equilibrium market price in a period, p∗it, as the

competitive equilibrium price, based on the private values and costs of buyers and sellers

who were actively present19 in at least one of the two calls in the period. Since there was

no carry-over cost from call to call, the model predicts that the two calls should create the

same price and that the total volume should be distributed to maintain the equal prices.

The theoretical equilibrium price as well as volume could change in every period, depending

on the number of traders who are present. Thus, we defined the actual volume in a period

as the total number of units traded at both calls, and the equilibrium trading volume as the

volume that corresponds to the equilibrium price p∗it.

5.2 Market Efficiency

As a measure of efficiency in each period, we used the consumer plus producer surplus

expressed as a percentage of the maximum possible (Plott and Smith, 1978). We define it

as the difference between the total “consumption”, i.e., the franc redemption value of the

purchased units, and the total franc cost of those units, divided by the maximum possible

difference between total of redemption values and costs that can be achieved during a period.

The maximum is achieved at the competitive equilibrium allocation, which, if attained, is

100% efficient.

Let R = {r} be the set of all redemption values to all buyers that participated in one or more

of the two calls in period t. Let C = {c} be the set of all costs to all sellers that participated

19By “actively present” we mean those participants who submit public orders before a call, i.e., reveal
their wish to participate in trade. Note that it may happen that their orders do not trade at the call,
but such orders form a part of the market supply and demand at a given call, and hence are taken into
account. In experiments conducted with remotely located subjects, as opposed to all subjects confined to
the laboratory, a degree of experimental control is lost. Subjects can become distracted or simply quit
without warning. From one point of view, this phenomenon is a lack of control, but a bid or ask reveals
presence and parameters can be adjusted accordingly, so from another point of view the appearance or
disappearance of subjects illustrates the robustness of a model that works.
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in one or more of the two calls in period t. Order the elements of R from highest to lowest,

with ri being the i-th element. Order the elements of C from lowest to highest with ci being

the i-th element. Let R∗ and C∗ denote the sets of redemptions and costs that were actually

exercised during the period. Maximum Surplus is

MS = max
z

z∑
i=1

(ri − ci)

Realized Surplus is

RS =
∑
r∈R∗

r −
∑
c∈C∗

c

We define efficiency in period t as the ratio of the two quantities:

Efficiency =
Realized surplus

Maximum surplus
(6)

Notice that subjects can submit multiple-unit orders, and we explicitly account for this

possibility in the efficiency score.

6 Results

All results in this section are presented in the form of a “result” statement followed by the

“support.” The result statement summarizes the authors’ qualitative interpretation of the

data within the context of the abstract theory, and the support provides the precise rela-

tionships and technical details that justify the interpretation. We present several types of

results describing the market level properties (macro-properties) of the call markets (con-

vergence, efficiency, and price dynamics.) Subsection 6.1 addresses the traditional measures

of market performance such as convergence of prices, volumes, and efficiency relative to the

competitive equilibrium. Subsection 6.2 addresses the more detailed model of the nature of

price adjustment as suggested by the Newton dynamic.

6.1 Market Performance Relative to the Competitive Equilibrium

The section contains three results related to broad properties of the call markets. Together

the results say that market behavior is captured reasonably well by the competitive equilib-

rium model. Prices, volumes, and efficiencies all converge to near the quantities predicted
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by the model. Price and volume behave substantially as predicted when parameters change.

These are evident in Figures 3, 4, and 5 showing respectively, price convergence, volume

convergence, and efficiencies in response to a market with a stationary demand and supply

punctuated by a parameter shift in period 9, and then returning to a stationary level.

Result 1. In the two-call multiple-unit market, price and trading volume converge to near

the equilibrium levels of the competitive equilibrium model. Equilibrium price upward shift

affects price but not volume convergence, as predicted.

Support. Using data from 7 market experiments, we estimate a simple dynamic model of

convergence described in Subsection 5.1 for price (and volume) by Eq. (5).

We estimate the model in (5) using ordinary least squares with bootstrapped standard

errors.20 Since we have the order book cleared across the periods, we can treat periods as

independent observations.21 An estimate of the common asymptote, γ, close to zero implies

that the actual price/volume converges to the price/volume of the static theoretical model

as time proceeds. The results of our estimation are reported in Table 3.

As Table 3 shows, we reject perfect price (volume) convergence: the estimated value of the

asymptote γ, 7.643 (−1.785, resp.), is significantly different from zero, with its bootstrap

standard error of 2.472 (0.465, resp.) Nevertheless, the estimated asymptotic differences

are rather small: the equilibrium price in these experiments ranged from 165 to 280.5 francs

(against the error of 7.643 francs, or about 3% to 5% of the equilibrium), and the equilibrium

volume ranged from 17 to 32 units (against the error of 1.785 units, or about 6% to 11% of

the equilibrium.)

Figures 3-4 show graphically the price and volume dynamics across periods, averaged over

all experiments. The spike at period 9 corresponds to the shift in parameters. Figure 3 also

shows that for almost all periods, price at the second call is closer to equilibrium than price

20 We programmed the ordinary non-parametric bootstrap with bias correction in R. All data and code
are available from the authors upon request. Regression coefficient estimates in the tables are bias-corrected,

i.e., equal β̃ ≡ β̂− ˆBias = β̂−
(

1
B

∑B
b=1 β̂

∗
b − β̂

)
, where β̂ is an OLS estimate from the original data sample,

β̂∗b is an OLS estimate from b-th bootstrap sample, and B is the total number of bootstrap samples (we

use B = 10, 000.) Bootstrap standard error is s(β̂∗) =

√
1

B−1
∑B
b=1

(
β̂∗b −

1
B

∑B
b=1 β̂

∗
b

)2
. Notice that while

bootstrap standard errors can be used to test for significance of regression coefficients in a straightforward
way by plugging them into the usual t statistic, doing so does not fully utilize the advantage of the bootstrap.
A better test procedure we implemented (percentile-t bootstrap test) uses bootstrap to compute the critical
values from the finite sample distribution of the test statistic. Namely, to test hypothesis H0 : β = β0 versus

the two-sided alternative, we bootstrapped a symmetrical recentered t-statistic t̂∗b =
|β̂∗

b−β̂|
s(β̂∗

b )
to obtain the

1− α quantiles of the bootstrap distribution {t̂∗b}Bb=1, and compared them with the test statistic t̂ = |β̂−β0|
s(β̂)

.

Hypothesis is rejected at level α if t̂ > q∗1−α. See Horowitz (2001) for details.
21Allowing for autocorrelation does not noticeably change the results.
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Table 3: Estimation of Convergence: Price and Quantity

Regressor Dependent variable:
Price difference, pit − p∗it Volume difference, qit − q∗it

Asymptote (γ) 7.643∗∗ (2.472) −1.785∗∗∗ (0.465)
Origin (before shift) in

session 1 (β1) −17.390 (25.901) −1.814 (5.236)
— 2 (β2) −2.432 (12.215) −1.521 (2.268)
— 3 (β3) −22.616∗ (12.228) −10.560∗∗ (4.473)
— 4 (β4) −18.052∗∗ (12.681) −5.760∗ (4.089)
— 5 (β5) −64.243∗∗∗ (12.970) −1.433 (2.702)
— 6 (β6) −64.531∗∗∗ (23.390) −8.590∗∗ (3.369)
— 7 (β7) −22.606 (27.945) −3.940∗ (2.475)

Origin (after shift) in
session 1 (δ1) −42.382∗∗ (13.394) −2.497 (2.439)

— 2 (δ2) −53.154∗∗∗ (8.109) −5.620∗∗ (3.094)
— 3 (δ3) 1.697 (8.906) 3.734∗∗ (1.698)
— 4 (δ4) −10.334 (10.608) 1.534 (2.844)
— 5 (δ5) −51.431∗∗∗ (11.579) −1.286 (3.461)
— 6 (δ6) −67.122∗∗∗ (15.202) −1.441 (3.836)
— 7 (δ7) −38.202∗∗∗ (14.426) −0.752 (1.341)

N 94 94
R2

adj 0.732 0.638
F -stat 20.88 13.82

Notes. Bootstrap standard errors in parentheses. Estimates are bootstrap-corrected for bias.
Significance codes: ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

at the first one.

Notice also that the parameter shift effects are consistent with model predictions. In our

experiments, the shift increases the equilibrium price by a constant, but does not change the

equilibrium volume. The estimations in Table 3 display this feature: the updated origins

after the shift, δ1 − δ7 (except δ3 and δ4), are highly significant and large for the price

convergence equation, whereas for the volume convergence, only δ2 and δ3 are significant.

Taking together data from Table 3 and Figures 3-4, we argue that the price, and to a lesser

extent, volume, converge close to their equilibrium levels. �

Result 2. The average efficiency score increases over time as price and volume converge to

their equilibrium levels. The two-call market does not achieve full efficiency, but is about 83

percent efficient on average.

Support. We computed efficiency in each period of all experiments as the normalized total

surplus, defined in Subsection 5.2 by Eq. (6). The average efficiency score is 82.54%. This

is a bit less than levels typically reported in single-call market experiments (e.g., Cason

and Friedman (1997) report an efficiency score of 87.3%). However, the average efficiency

score increases over time, as price and volume converge to their equilibrium levels, with a

sharp drop after the parameter shift, which corresponds to the market adjustment. Figure
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Figure 3: Average price dynamics across periods. There is a parameter shift at period 9.

5 illustrates. It seems intuitive that the efficiency score should roughly correspond to how

well the total volume in a period matches the equilibrium volume, provided the actual price

is close to the equilibrium price.22 However, there is more to this than a simple comparison

of total volumes: since subjects can make multiple-unit orders, it is also matters that all

subjects do not over- or under-acquire their inventory. �

Result 3. The parameter shift of demand and supply upward by a constant only affects the

price, and not the volume of trading, as should be expected. There is no significant effect

on the observed efficiency.

Support. Table 4 presents the summary statistics of the data across periods, grouped by

the parameter shift. As expected, the period volume before and after the parameter shift

does not change much, since the shift only affected price, and not volume. The changes in

equilibrium volume are due to the varying number of traders. The changes in efficiency are

not significantly different (Mann-Whitney p = 0.172). �

22When the actual price is far from the equilibrium price, efficiency is low even if the volumes are matched
exactly. This is the case, for example in the first period after practice in the experiment of Session 5 in
Table 1: the equilibrium price was 188, the actual price was 117; subjects acquired 26 units (with 28 units
in equilibrium) and the efficiency score was the lowest: 28.28%.
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Figure 4: Average volume dynamics across periods. There is a parameter shift at period 9.

Table 4: Summary data statistics across periods

Variable Before shift After shift
Mean Range Mean Range

Total period volume, units 21.38 [13.00 .. 32.00] 20.43 [13.00 .. 29.00]
Equilibrium period volume, units 23.93 [17.00 .. 32.00] 23.00 [18.00 .. 32.00]
Average period price, francs 174.50 [121.50 .. 225.00] 248.30 [191.50 .. 288.50]
Equilibrium period price, francs 179.60 [165.00 .. 201.00] 256.70 [240.00 .. 280.50]
Efficiency, % 79.81 [28.28 .. 99.54] 85.32 [61.80 .. 99.21]

6.2 Principles and Models of Price Discovery: Newton-Jaws and

Alternatives

In this subsection we demonstrate that key elements of market jaws and the Newton method,

characterized in Subsections 4.2 and 4.3, are observed in the call markets. We organize the

Results into two parts, focusing first on structural and specification tests (i.e., how well the

models explain the data conditioned on known parameters) and next on parameter sensi-

tivity and prediction properties (i.e., relative model performance conditioned on estimated

parameters).
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Figure 5: Average efficiency score by period (average across periods: 82.6%, converges to
89.1%).

6.2.1 Structural approach

The next three results address three different models that ultimately become combined into

the Newton-Jaws model. Each has its own structure that can be tested separately. Result

4 addresses the market jaws model. Result 5 examines the Newton model and Result 6

examines the Walrasian model.

Result 4. The two main properties of the market jaws find limited support in the data. (i)

(Slope revelation). The excess demand slopes based on true parameters of the model are well

approximated by the slope estimates obtained from the jaws. (ii) (Excess demand revelation).

The jaws-based estimates of the excess demand converge to near the actual excess demand,

especially at call 2. At call 1, substantial variance precludes tight convergence.

Support. Consider (i), slope revelation. The slopes of the jaws imperfectly but robustly

reflect the true slopes of aggregate demand and supply at each call. The null hypothesis

says: both estimated jaw slopes closely approximate the slopes of the true demand and

supply at price p1, or equivalently, in terms of Figure 2, α ≈ α∗ and β ≈ β∗. To test that

this holds for demand and supply remaining after the first call, we use the algorithm that has

a resemblance to the two-stage least squares, and essentially compares S ′(p1) with cotα (or

D′(p1) with − cot β, respectively). The null hypothesis says that the jaws perfectly reveal

each slope (e.g., that in regression S ′(p1) = γ1 cotα + ε, γ1 = 1). The detailed description
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is provided in Appendix A.1. We report the more conservative estimates (with fixed τ , the

number of orders used to estimate the slopes from the data) in Table 5, and additional

estimates in Table 10 in Appendix A.

Table 5: Estimation of supply/demand slope revelation at each call by market jaws

Supply at call 1 Demand at call 1 Supply at call 2 Demand at call 2
Regressor Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)
Slope(γ1) 0.693∗∗∗ (0.065) 1.518∗∗∗ (0.203) 0.661∗∗∗ (0.045) 1.005∗∗∗ (0.104)

H0 : γ1 = 1 Rejected∗∗∗ Rejected∗ Rejected∗∗∗ Not Rejected
Notes. Bootstrap-corrected estimates of regression (11) terms (for jaws computed using fixed τ) and their
standard errors using 10,000 replications. The null of perfect revelation by jaws, H0 : γ1 = 1, is bootstrap-
tested. Significance codes: ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

After the first call, the slope of the revealed supply can be positively related to the slope of

the equilibrium supply, but the null of full supply revelation is rejected at < 0.1% significance

level. By contrast, the true demand revelation at call 1 is only marginally rejected. We also

checked revelation after the second call. The null hypothesis of perfect revelation by jaws

for demand is not rejected.

Overall, our results in Table 5 show that the slopes of the jaws can imperfectly but meaning-

fully approximate the slope of the excess demand even with substantially infrequent trade

opportunities, as in a call market.

Consider ii), excess demand revelation. The second hypothesized property of jaw ad-

justment is that arrivals of bids relative to asks shortly before a call is proportional to excess

demand at the call price. The intuition is that an approaching call motivates the traders to

actively submit and adjust their bids and asks, with adjustment rate depending on excess

demand at the current price.

We test this hypothesis by estimating a model of convergence of the excess demand estimated

using bid-ask relative difference23 to the actual excess demand at the call price.

We use the difference between (bid-ask based) excess demand and the actual excess demand

at the call as a dependent variable in regression (5) that was previously used to estimate

convergence to equilibrium price and volume. The resulting table is similar to Table 3 (see

Table 11 in Appendix A.) The null of perfect convergence is rejected at call 1, since the

estimate of the asymptote coefficient in regression (5) applied to the difference between the

bid-ask arrival excess demand and the actual excess demand at call 1 is 7.620, significantly

different from zero. However, we cannot reject convergence at call 2: the asymptote of

23To obtain this, we added up the bid-ask arrival differences over the last 30 seconds before each call. We
chose this time interval to capture the most intense period of trading activity shortly before a call.
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3.904 is insignificant. Figure 6 illustrates that revelation of excess demand via bid-ask ar-

rival differences improves over time approaching the actual excess demand, while substantial

variance in estimated excess demand at call 1 precludes tight convergence.24 �

(a) Call 1 (b) Call 2

Figure 6: Average difference between excess demand as revealed by jaws and the actual
excess demand after each call. In period 9 there is a parameter shift.

Result 5. The price movement towards the equilibrium can be described by the Newton

method of solving systems of equations. However, Newton does not capture well the price

change across the calls. The relation is significant and particularly strong for predicting the

equilibrium price given the actual induced parameters, excess demand and excess demand

slope evaluated at the call price.

Support. The theory behind this result is described in Subsection 4.3. There are several

ways to estimate Newton (3). The simplest one is to use the actual excess demand and

slope as dictated by parameters and the independent variables and directly estimate a linear

relation

pt+1 − pt = δ1
ED(pt)

ED′(pt)
+ ε (7)

where t = 1, 2 is the call number, ED(pt) is excess demand at price pt, ED
′(pt) is the slope

of excess demand at pt, and ε is the random error, and then test if δ1 = −1. Alternatively,

one can add the intercept:

pt+1 − pt = δ0 + δ1
ED(pt)

ED′(pt)
+ ε (8)

and test the joint hypothesis H0 : δ0 = 0, δ1 = −1.

24Spearman rank correlation between excess demand and bid-ask arrival differences is 0.141 at call 1, and
0.139 at call 2.
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There are also at least three choices for the time difference in (7) and (8). For t = 1, we

have a choice between setting pt+1 equal to the price at the second call and the equilibrium

price. For t = 2, we set pt+1 equal to the equilibrium price in the current period, since books

are cleared each period.

Table 6 presents the main estimation results for the Newton regression (7) using the actual

excess demand and its slope.

Table 6: Estimation of Newton at each call using actual excess demand and its slope

Call 1 Call 2
Regressor Dep. var.: p∗ − p1 Dep. var.: p2 − p1 Dep. var.: p∗ − p2
Newton part (δ1) −0.991∗∗∗ −0.441∗∗∗ −1.070∗∗∗

(0.090) (0.039) (0.049)
N 108 108 108
RMSE 6.142 5.904 3.171
Newton hypothesis Not Rejected Rejected∗∗∗ Not Rejected
Notes. Bootstrap-corrected estimates of regression (7) terms (using 10,000 replications) with their
standard errors in parentheses. The hypothesis H0 : δ1 = −1 is bootstrap-tested. Significance codes:
∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

The main insight from Table 6 is that there is a significant relation between the Newton

term and the price dynamics. More specifically, when regression (7) is estimated for the

difference between the equilibrium price and the price at either call, the null hypothesis of

perfect Newton dynamics is not rejected. When we estimate (7) for the difference between

the call prices, the null of perfect Newton is rejected, indicating that the price change across

calls is too large to approximate the instantaneous rate of change sufficiently well as required

by Newton.

Thus there is a strong evidence for a Newton structure. The price movement is to the equilib-

rium but not to the next call price (unless it is near the equilibrium), which emphasizes that

the Newton method is a theory of equilibration, not a theory of price movement independent

of its equilibration tendencies. In particular, the price change across calls in a period seems

to incorporate factors in addition to the Newton term, like, e.g., strategic considerations. �

Result 6. Walrasian model based on excess demand given by parameters at the call price

also explains price change in a period but less accurately than Newton.

Support. The simplest way to estimate Walrasian adjustment (4) is to directly estimate a

linear relation using the theoretical excess demand as dictated by parameters as the inde-

pendent variable

pt+1 − pt = γ1ED(pt) + ε (9)

and then test H0 : γ1 ≥ 0 vs. one-sided alternative γ1 < 0. Thus, the fundamental difference

from Newton adjustment is that (9) does not utilize the excess demand slope.
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Table 7 shows the results of the model estimation.

Table 7: Estimation of Walras at each call using actual excess demand and its slope

Call 1 Call 2
Regressor Dep. var.: p∗ − p1 Dep. var.: p2 − p1 Dep. var.: p∗ − p2
Walras part (γ1) 1.474∗∗∗ 0.558∗∗∗ 1.562∗∗∗

(0.085) (0.106) (0.067)
N 108 108 108
RMSE 5.162 7.205 3.550
Walras hypothesis Not Rejected Not Rejected Not Rejected
Notes. Bootstrap-corrected estimates of regression (9) terms (using 10,000 replications) with their
standard errors in parentheses. The null hypothesis H0 : γ1 ≥ 0 vs. alternative Ha : γ1 < 0 is
bootstrap-tested. Significance codes: ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

While we observe a significant and positive coefficient on the excess demand, γ1, as predicted

by Walras, the overall regression fit, as measured by the root-mean-square error (RMSE),

is worse than that produced by Newton (7) in Table 6 in two out of three cases, estimated

from the same data (RMSE is larger). The exception is the estimate of call 1 price in

which the RMSE is 5.162 for Walras and 6.142 for the Newton model. Thus Newton seems

to outperform Walras adjustment by utilizing the information about the slopes of excess

demand in price adjustment between calls and after the second call.

6.2.2 Parameter information sensitivity and relative model performance

When the structure of the Newton method of solving systems of equations is supplemented by

the behavioral features of Jaws a new, Newton-Jaws, model takes shape. The Newton-Jaws

model merges two variables known to be associated with price discovery, excess demand

and order flow. Results 4 and 5 together with the models from Subsections 4.2 and 4.3

demonstrated that these variables both can stand alone and provide the ingredients for useful

models of market movement. Each provides its own view of market adjustment. However,

a more powerful model emerges when the two types of variables become integrated into the

Newton-Jaws model. Result 4 and Result 5, together with (7) outline a precise way this can

be done.25

25Namely, Result 5 shows support for the Newton method of price adjustment across calls when the right
hand side of equation (7) is evaluated conditioned on known experimental parameters. Jaws provides a
way to recover the Newton part in (7) directly from the data, as we established in Result 4, and allow us
to estimate these quantities in various combinations. First, we can take both slopes and excess demand
estimated from the jaws. Second, we can take the jaws-estimated slopes and use the true excess demand.
Third, we can take the true slopes and use the jaws-estimated excess demand. Finally, for jaws-based slope
estimates, we can use either the fixed revealed jaws, or the best-fitted revealed jaws. All of these cases are
reported in Tables 12 and 13 in Appendix A, which include Table 6 as a special case.
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This seems particularly relevant for settings where the underlying supply and demand pa-

rameters are not observed by the econometrician, e.g., in the field. In the analysis that

follows, we investigate the relative performance of Newton-Jaws and its sensitivity to the

information about parameters. The model makes very precise predictions about the price

change, and so should be easy to reject in the data. Nevertheless, Result 7 below demon-

strates that Newton-Jaws is on par with less precise adjustment models, like Walras and

excess bids, that only make predictions about the sign of the price change.

Result 7. For predicting price change in a period the Newton-Jaws model fit is similar to

that of Walrasian and excess bids, and better in all three of our price change comparisons

when estimated conditioned on known excess demand and jaws-estimated excess demand

slope.

Support. The excess bids model is examined through the application of the same method-

ology as used to test the Newton-Jaws model and the Walrasian excess demand model. Let

XB(pt) be the total number of buy orders (bids) minus the total number of sell orders (asks)

existing in the market at time t. With t being the end of second call, we should note that

the excess bid measure includes all bids and asks at the call, including those untraded orders

that remained from the first call.

We estimate

pt+1 − pt = β1XB(pt) + ε (10)

Table 8 shows the results of the model estimation.

Table 8: Estimation of price dynamics using excess bids

Call 1 Call 2
Regressor Dep. var.: p∗ − p1 Dep. var.: p2 − p1 Dep. var.: p∗ − p2
Excess bid part (β1) 1.413∗∗∗ 0.576∗∗∗ 0.612∗

(0.340) (0.145) (0.247)
N 108 108 108
RMSE 19.368 10.042 13.954
Excess bid hypothesis Not Rejected Not Rejected Not Rejected
Notes. Bootstrap-corrected estimates of regression (10) terms (using 10,000 replications) with their
standard errors in parentheses. The null hypothesis H0 : β1 ≥ 0 vs. alternative Ha : β1 < 0 is
bootstrap-tested. Significance codes: ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

The results in Table 8 demonstrate that the model of price dynamics based on the number

of buy orders (bids) minus the number of sell orders (asks) cannot be rejected.

Both Walras and Newton show a better overall fit than excess bids when evaluated using

the true parameters, as indicated by uniformly lower RMSE in Tables 6 and 7 compared to

Table 8. Since excess bids do not rely on experiment parameters, it is important to check
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whether the better fit of Walras and Newton continues to hold when the true parameters

are unknown, as in the field. Therefore, we also compared the fit when these models are

evaluated conditioned on estimated measures of excess demand and its slope, so that all

three models are on an equal footing. This comparison is reported below (see Tables 12 and

14 in Appendix A for additional details).

Table 9: Fit of Newton-Jaws, Walras, and Excess bids using empirical measures of excess
demand (ED) and its slope

Call 1 Call 2
Model Dep. var.: p∗ − p1 Dep. var.: p2 − p1 Dep. var.: p∗ − p2
Excess bids 19.638 10.042 13.954
Walras 21.166 10.529 14.071
Newton-Jaws:
EDjaws, ED slopejaws 20.670 10.493 14.147
EDjaws, true ED slope 21.121 10.468 14.288
true ED, ED slopejaws 11.878 7.920 8.044

Notes. For each model in the first column, RMSE fit is reported in the corresponding cell. ‘jaws’
subscript indicates the quantity estimated from jaws as opposed to true parameters.

From Table 9, we determine that the Newton-Jaws model is more accurate than either Walras

or excess bids when jaws are used to estimate excess demand slopes (Newton RMSE of 11.877,

7.920, and 8.044 versus excess bids RMSE of 19.638, 10.042, and 13.954, respectively, and

Walras RMSE of 21.121, 10.468, and 14.288, respectively), and similar but slightly less

accurate when jaws are used to estimate excess demand. In the latter case, Newton-Jaws

is a bit more accurate than Walras (Newton RMSE is lower except at call 2.) Newton is

slightly worse than excess bids when both excess demand and its slope are jaws-estimated,

and slightly better than Walras except at call 2. Thus, Newton-Jaws fit is similar to both

of these alternatives.

In other words, the empirical variant of Newton performs at least as well as alternative

empirical models. Since at the same time, Newton predictions are much more precise than

those of the alternatives, Newton overall performance is strictly better. �

An explanation of the accuracy differences among the three models when comparably evalu-

ated can be provided by adding an assumption about the subjects’ bidding strategies. Given

the nature of bidding strategies as postulated by Jaws, the different measures bring different

information content to the model as follows.

Excess demand provides no direct information about the distance of the price from the

equilibrium price. The excess demand measure as contained in the parameters evaluated at

a price, contains only the qualitative information in the sign of the excess demand, which

suggests an upward or downward movement. By contrast, excess bids reflect behaviors and
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contain limited information about excess demand as well as some information about the

distance from the equilibrium price. However, the bids and asks order flow can also reflect

unrealistic expectations, attempted signals, and other complex phenomena, so the quality

of the information when aggregated can be poor. Under an assumption about the nature

of tenders, the excess bids can contain information about the sign of the excess demand as

well as limited information about the excess demand slope: if traders tend to restrict bids

and asks to those for which values reside within a common, fixed interval of the price, then

as predicted by the Jaws model, the total number of bids or asks placed will increase with

the inverse of the respective slopes. Thus, according to the model, the relative numbers of

bids over asks contain more information about limit values than just excess demand.

The difference of information about limit values differentiates the information content sup-

plied to a model by the two variables, excess bids and excess demand, and their integration

by the Newton-Jaws. The information in excess bids is indirect since it depends on the con-

sistency with which bidders submit bids and asks given their incentives and the excess bids

model does not have the information needed to produce a calculation. By contrast, in the

Newton-Jaws the information about limit values exists directly and separately to be used by

the model. Thus, the key information about both excess demand and slopes of the demand

and supply is contained in the Newton-Jaws model.26 Given the microstructure of the price

determination in the call markets the information is sufficient to provide a prediction of both

direction and magnitude of price movement towards the competitive equilibrium.

7 Conclusion

This paper initiates an investigation of principles of price adjustment in experimental multiple-

call, multiple-unit markets. As such it extends other research challenged by the possibility

that call markets might provide a tool that helps solve problems encountered in markets

operating in field environments. The challenge is made complex by wide ranging institu-

tional features that can be assembled in many different configurations to create alternative

call market architectures. The strategy is to experimentally probe theories of how selected

institutions work together.

We report evidence that multiple calls, the shape of the associated order book and a natural

profit-maximizing behavior of individual traders organize themselves to produce an underly-

26Table 9 shows how the goodness of fit of the Newton regression (7) changes as actual parameter values
are replaced with their data-driven estimates. See also Table 12 in Appendix A.
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ing price discovery process similar to one iterative step of a powerful tool for finding solutions

to systems of equations (the Newton-Raphson method).

More specifically, we ask two main general questions.

(1) Do call market exchanges converge to the classical demand and supply?

(2) Do major patterns of convergence follow those suggested by market jaws and Newton?

We provide positive answers to both questions. Market behavior is captured by the com-

petitive equilibrium model. The shape of the order book, captured by market jaws, reveals

useful information about the slope of excess demand, which becomes part of the price change

dynamics across calls. The change in the price towards equilibrium follows a single iteration

of the Newton method for solving equations remarkably closely and produces a Newton-Jaws

model. While the Walrasian adjustment, which does not include slopes of excess demand,

finds support in the data, structural tests of the two models demonstrate that the Newton-

Jaws model provides a better description of how the markets operate. At the same time, we

conduct non-structural tests of the models like those that might be possible in field applica-

tions and find that the performance of both models is similar. Interestingly the performance

of the two models in that testing environment is also similar to the excess bids model that has

price changes predicted by the difference between the total number of bids and asks. How-

ever, close examination of the excess bids model suggests that the reason for its predictive

power resides in its close proximity to excess demand and the market jaws.

Our results reveal a systemic compatibility between the self-organizing and coordinating

features that emerge from individual behavior and the institutional features that guide it.

The combination shows that a price discovery process can be related to the Newton method

based on the order flow approximated by the market jaws. The question suggested is whether

or not other market features can be combined with even more powerful tools to produce better

market performance. Are there methods better than Newton when put to this purpose?

What institutional modifications might be needed to establish compatibility?
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A Additional estimation details

This appendix supplies additional estimation details for the results in Section 6.

A.1 Algorithm for testing slope revelation by market jaws

For brevity, the description here focuses on supply only. Stages I and II address measurement
challenges created by the discrete nature of the data. Stage III tests whether the estimated slopes
reveal the true ones.

Stage I. For each data point i ∈ {1, . . . , N} corresponding to the first call in a period (subindex i is
suppressed below):

1) Estimate the slope of the revealed supply at p1, Ŝ1, by best fitting τ + 1 remaining (i.e.,
unfilled) asks in the book with a line that goes through the actual price-quantity point
at the first call, (p1, q1). That is, estimate a regression of the form

uk − q1 = θ̂(ak − p1)

where ak > p1 is the k-th remaining ask in the book, k ∈ {0, . . . , τ}, uk is the corre-
sponding k-th unit, and θ̂ = cot α̂ is the estimate of the slope of Ŝ1. Keep θ̂.

2) Estimate the slope of the true supply at p1, S(p1), by best fitting 2τ ′ private costs
around the true supply curve at p1 (i.e., those ck ∈ [p1−∆, p1 + ∆] for some ∆ > 0 and
each k ∈ {−τ ′, . . . , 0, . . . , τ ′}) with a line that goes through supply at the actual price
at the first call, (p1, S(p1)). That is, estimate a regression of the form

uk − S(p1) = θ̂∗(ck − p1)

where ck is the k-th component in the vector (c−τ ′ , . . . , c0, . . . , cτ ′) of costs for a fixed τ ′

around the true supply27 at p1, with c−τ ′ ≤ . . . ≤ c0 ≤ . . . ≤ cτ ′ ; uk is the corresponding
k-th unit around S(p1), and θ̂∗1 = cot α̂∗ is the estimate of the slope of S′(p1). Keep θ̂∗.

3) Record the pair (cot α̂∗i , cot α̂i) as one observation in the new dataset.

Stage II. Using the data constructed at stage I, estimate

cot α̂i = γ1 cot α̂∗i + εi (11)

where εi is the random error. We bootstrapped the regression in (11) using 10,000 replica-
tions.

Stage III. Test the null hypothesis H0 : γ1 = 1 versus the two-sided alternative. If the null is not
rejected, then the slope of the remaining supply after the first call perfectly reveals the
true supply slope. Alternatively, we can add an intercept γ0 in (11) and test the joint null
H0 : γ0 = 0 & γ1 = 1.28 If the null is rejected but γ1 is positive and significant, the slope
is revealed imperfectly, still providing some useful information about the underlying market
parameters.

27For example, if we take three true costs below p1 and three true costs above p1, then τ ′ = 3.
28We checked both specifications and found minimal differences.
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The coherence of true supply and revealed supply slopes after the second call, as well as coherence
of true demand and revealed demand after each call, can be estimated and tested in the same way.

The procedure above is silent about how τ and τ ′ are specified. For τ ′ this is not an issue, since the
equilibrium demand/supply at any price is recovered from our parameters, and is close to a linear
curve in all of our experimental sessions. To have a sufficiently smooth approximation, we chose
τ ′ = 7, thus estimating the equilibrium slopes on 14 points around the point where the equilibrium
curve intersects with the actual price.

To determine τ , we used two approaches. In the first one, we exogenously fixed τ at 3
4 of excluded

orders for each data point i ∈ {1, . . . , N}. This helps exclude the extreme orders that may have
large impact on linear estimates. In the second one, we repeated steps 1) − 2) of stage I above,
varying τ from 3 units29 up to the length of the book (in units) at the call in question, and then
picked the value that produced the best match (in terms of minimizing the absolute difference)
between the slopes of equilibrium demand/supply and the slopes of the actual data at that price,
estimated using τ units of remaining demand/supply. Thus, in this case we best-fitted the slopes
for individual data points of the regression at stage II. Note that this does not automatically imply
that regression (11) is trivial, since different data points may require different values of τ . This
approach nests the estimation technique from Asparouhova, Bossaerts and Plott (2003), who find
limited support for the jaws (in the form of correlation between the order book and excess demand)
using a small and exogenously set τ .

Table 10: Estimation of Supply/Demand slope revelation at each call by market jaws

S(p1) S(p2)
Variable τ = best-fit τ = fixed τ = best-fit τ = fixed
γ1 0.762∗∗∗ 0.693∗∗∗ 0.823∗∗∗ 0.661∗∗∗

(0.043) (0.065) (0.030) (0.045)
R2

adj 0.786 0.574 0.891 0.710
H0 Rejected∗∗∗ Rejected∗∗∗ Rejected∗∗∗ Rejected∗∗∗

N 101 101 101 101
D(p1) D(p2)

Variable τ = best-fit τ = fixed τ = best-fit τ = fixed
γ1 0.966∗∗∗ 1.518∗∗∗ 1.024∗∗∗ 1.005∗∗∗

(0.052) (0.203) (0.043) (0.104)
R2

adj 0.751 0.326 0.809 0.468
H0 Not Rejected Rejected∗ Not Rejected Not Rejected
N 101 101 101 101
Notes. Bootstrap-corrected estimates of regression (11) main terms and their standard errors
in parentheses, using 10,000 replications. The null hypothesis H0 : γ1 = 1 is bootstrap-tested.
Significance codes: ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

29We chose 3 as the minimal number of units that allows a non-singular OLS fit.
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Table 11: Estimation of excess demand revelation by jaws: convergence of bid-ask arrival
difference to the true excess demand at each call.

Regressor Dependent variable: excess demand difference
Call 1 Call 2

Asymptote (γ) 7.555∗∗∗ (2.086) 3.883∗∗ (1.492)
Origin (before shift) in

session 1 (β1) −24.013∗ (21.036) −10.993 (13.984)
— 2 (β2) 4.661 (7.066) 3.842 (9.944)
— 3 (β3) −36.091∗ (23.792) −14.199∗∗ (6.332)
— 4 (β4) −21.816∗∗ (10.822) −1.666 (7.335)
— 5 (β5) −48.882∗∗∗ (10.664) −37.351∗∗∗ (8.960)
— 6 (β6) −59.861∗∗ (26.377) −29.484 (18.563)
— 7 (β7) −2.616 (10.467) 5.470 (11.578)

Origin (after shift) in
session 1 (δ1) −35.522∗ (16.313) −4.510 (7.214)

— 2 (δ2) −40.565∗∗∗ (9.519) −25.600∗∗∗ (4.650)
— 3 (δ3) 11.767 (17.212) −6.184∗∗ (3.268)
— 4 (δ4) −2.134 (8.397) −6.213 (7.223)
— 5 (δ5) −16.124 (13.886) −12.023∗ (8.145)
— 6 (δ6) −52.884∗∗∗ (14.898) −28.367∗∗∗ (8.096)
— 7 (δ7) −25.708∗∗∗ (9.739) −12.985∗∗∗ (6.329)

N 94 94
R2

adj 0.614 0.547
F -stat 12.570 9.774

Notes. Bootstrap standard errors in parentheses. Estimates are bootstrap-corrected
for bias. Significance codes: ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05
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Table 12: Estimation of Newton (7) at each call

Call 1, Dependent Variable p∗ − p1
Regressor S, ED S, EDj Sfx

j , ED Sbf
j , ED Sfx

j , EDj Sbf
j , EDj

δ1 −0.991∗∗∗ −0.520∗∗ −0.784∗∗∗ −0.026 −0.140 −0.231∗∗∗

(0.090) (0.157) (0.096) (0.244) (0.079) (0.056)
R2

adj 0.922 0.073 0.707 0.343 0.008 0.112
RMSE 6.142 21.121 11.878 17.780 21.850 20.670
H0 Not Reject Reject∗∗ Reject∗ Reject∗∗∗ Reject∗∗∗ Reject∗∗∗

Call 1, Dependent Variable p2 − p1
Regressor S, ED S, EDj Sfx

j , ED Sbf
j , ED Sfx

j , EDj Sbf
j , EDj

δ1 −0.441∗∗∗ −0.257∗∗ −0.316∗∗∗ −0.008 −0.084∗ −0.090∗∗∗

(0.039) (0.090) (0.065) (0.105) (0.041) (0.030)
R2

adj 0.706 0.075 0.470 0.222 0.016 0.070
RMSE 5.904 10.468 7.920 9.599 10.791 10.493
H0 Reject∗∗∗ Reject∗∗∗ Reject∗∗∗ Reject∗∗∗ Reject∗∗∗ Reject∗∗∗

Call 2, Dependent Variable p∗ − p2
Regressor S, ED S, EDj Sfx

j , ED Sbf
j , ED Sfx

j , EDj Sbf
j , EDj

δ1 −1.070∗∗∗ −0.743∗ −0.630∗∗∗ −0.874∗∗∗ −0.377 −0.763∗

(0.049) (0.319) (0.105) (0.054) (0.224) (0.308)
R2

adj 0.955 0.079 0.708 0.909 0.029 0.097
RMSE 3.171 14.288 8.044 4.488 14.668 14.147
H0 Not reject Not reject Reject∗∗ Reject∗ Reject∗∗ Not reject
N 108 108 108 108 108 108
Notes. Bootstrap-corrected estimates of regression (7) terms with their standard errors using 10,000
replications in parentheses. Notation: S is true slope, ED is true excess demand, j subscript stands
for jaws-based, fx is using fixed book share for estimating jaws, bf is using best-fitted jaws. The null
of perfect Newton, H0 : δ1 = −1, is bootstrap-tested. Significance codes: ∗∗∗ < 0.001, ∗∗ < 0.01,
∗ < 0.05
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Table 13: Estimation of Newton (8) at each call

Call 1, Dependent Variable p∗ − p1
Regressor S, ED S, EDj Sfx

j , ED Sbf
j , ED Sfx

j , EDj Sbf
j , EDj

δ0 0.738 7.857∗∗∗ 2.210∗ 7.897 8.829∗∗∗ 8.018∗∗∗

(0.465) (1.858) (0.796) (2.831) (1.914) (1.860)
δ1 −0.976∗∗∗ −0.316∗ −0.748∗∗∗ 0.000 −0.096 −0.200∗∗∗

(0.095) (0.139) (0.093) (0.246) (0.064) (0.043)
R2

adj 0.907 0.024 0.657 0.298 0.000 0.088
H0 Not Reject Reject∗∗∗ Reject∗ Reject∗∗∗ Reject∗∗∗ Reject∗∗∗

Call 1, Dependent Variable p2 − p1
Regressor S, ED S, EDj Sfx

j , ED Sbf
j , ED Sfx

j , EDj Sbf
j , EDj

δ0 1.027 3.955∗∗∗ 1.966∗∗ 4.155∗ 4.406∗∗∗ 4.164∗∗∗

(0.621) (0.836) (0.582) (1.251) (0.932) (0.916)
δ1 −0.422∗∗∗ −0.155 −0.284∗∗∗ 0.002 −0.062 −0.073∗∗∗

(0.044) (0.080) (0.064) (0.100) (0.036) (0.025)
R2

adj 0.652 0.024 0.390 0.172 0.006 0.047
H0 Reject∗∗∗ Reject∗∗∗ Reject∗∗∗ Reject∗∗∗ Reject∗∗∗ Reject∗∗∗

Call 2, Dependent Variable p∗ − p2
Regressor S, ED S, EDj Sfx

j , ED Sbf
j , ED Sfx

j , EDj Sbf
j , EDj

δ0 0.113 3.632∗ 1.411∗ 0.148 4.098∗∗ 3.491∗

(0.220) (1.341) (0.609) (0.383) (1.340) (1.351)
δ1 −1.068∗∗∗ −0.579 −0.612∗∗∗ −0.872∗∗∗ −0.265 −0.619

(0.049) (0.310) (0.105) (0.055) (0.210) (0.310)
R2

adj 0.950 0.046 0.688 0.900 0.011 0.062
H0 Not reject Not reject Reject∗∗ Reject∗ Reject∗∗∗ Not reject
Notes. Bootstrap-corrected estimates of regression (8) terms with their standard errors using 10,000
replications in parentheses. Notation: S is true slope, ED is true excess demand, j subscript stands
for jaws-based, fx is using fixed book share for estimating jaws, bf is using best-fitted jaws. The
joint hypothesis of perfect Newton, H0 : δ0 = 0, δ1 = −1, is bootstrap-tested. Significance codes:
∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

Table 14: Estimation of price dynamics using excess bids from the last 30 seconds before
call

Call 1 Call 2
Regressor Dep. var.: p∗ − p1 Dep. var.: p2 − p1 Dep. var.: p∗ − p2
Excess bid part (β1) 0.864∗∗ 0.410∗∗ 1.471∗

(0.279) (0.132) (0.580)
N 108 108 108
RMSE 21.166 10.529 14.071
Excess bid hypothesis Not Rejected Not Rejected Not Rejected
Notes. Bootstrap-corrected estimates of regression (10) terms based on the bids and asks in the last
30 seconds before a call (using 10,000 replications) with their standard errors in parentheses. The
null hypothesis H0 : β1 ≥ 0 vs. alternative Ha : β1 < 0 is bootstrap-tested. Significance codes:
∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05
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B Robustness Check: Newton Applied to Zero-intelligence

Robots

In order to check the robustness of our main result, the Newton-like price dynamics across calls,
we also simulated artificial data using zero-intelligence robots (see, e.g., Gode and Sunder (1993),
Cason (1992)). From the analysis of zero-intelligence trades, described below, we conclude that
Newton is a property of institution rather than an outcome of strategic interaction, and is directly
related to convergence towards the competitive equilibrium.

The simulations were done as follows. We ran 512 replications of each of pre-shift and post-shift
experimental setting. In each replication period, there are 2 calls, and zero-intelligence buyers
and sellers make random bids and asks as follows. Buyer bids for each unit are uniform from
[110, unit value]. Seller asks for each unit are uniform from [unit cost, 250]. The unit values and
costs are exactly as used in Sessions 5−7 of the experiment (see Table 2). Each of 15 buyers (three
buyers for each of 5 buyer types) submits independent bids for all 6 units. Each of 15 sellers (three
sellers for each of 5 seller types) submits independent asks for all 6 units.30 At the first call, price
and trade volume are determined based on the orders in the book as in the experiment. Then
buyers and sellers make random bids and asks for the remaining units. At the second call, price
and trade volume are determined based on the orders in the book, and the replication period ends.

Since bidding is completely random, only the price dynamics across calls are studied. The random-
ness also precludes the use of the difference between the number of bids and asks as a measure of
revealed excess demand. Table 15 contains the main results based on the actual excess demand
and its slope. Results using jaws-based slope estimates are reported in Table 16.

Table 15: Estimation of Newton at each call, Zero-Intelligence data

Call 1 Call 2
Regressor Dep. var.: p∗ − p1 Dep. var.: p2 − p1 Dep. var.: p∗ − p2
Intercept (δ0) 0.245∗ 6.979∗∗∗ −1.045∗∗∗

(0.114) (0.288) (0.131)
Newton part (δ1) −1.068∗∗∗ −1.154∗∗∗ −0.889∗∗∗

(0.016) (0.044) (0.012)
H0 : δ0 = 0, δ1 = −1 Rejected∗∗∗ Rejected∗∗∗ Rejected∗∗∗

Notes. Table lists OLS estimates of regression (8) terms for ZI data (N = 1024), shift fixed effects
included, with standard errors in parentheses. The joint hypothesis H0 : δ0 = 0, δ1 = −1 is tested.
Significance codes: ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

Table 15 demonstrates Newton predictions are robust even when applied to agent bids produced by
zero intelligence. In all of the estimations the coefficient at the Newton term in (8), δ1, has correct
negative sign. At the same time, we reject the null hypothesis of full consistency with Newton: the
constant term δ0 is significantly different from zero. This seems to be due to the fact that tight
convergence to competitive equilibrium (a necessary assumption for Newton adjustment to work)
is lacking under random bidding. Nevertheless, note that price at the first call points towards
equilibrium price from below (δ0 > 0), while price at the second call overshoots and points towards
equilibrium from above (δ0 < 0). Importantly, the price movement indication (the Newton part) is
towards equilibrium price in both cases.

30An equivalent representation is to assume that each buyer or seller only has 1 unit, and there are 90
buyers and 90 sellers.
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Table 16: Estimation of Newton at each call, ZI data

Call 1, Dependent Variable p∗ − p1
Regressor S, ED Sfx

j , ED Sbf
j , ED

δ0 0.245∗ 0.185 0.197
(0.114) (0.118) (0.118)

δ1 −1.068∗∗∗ −2.210∗∗∗ −1.211∗∗∗

(0.016) (0.042) (0.027)
H0 Reject∗∗∗ Reject∗∗∗ Reject∗∗∗

Call 1, Dependent Variable p2 − p1
Regressor S, ED Sfx

j , ED Sbf
j , ED

δ0 6.979∗∗∗ 6.915∗∗∗ 6.928∗∗∗

(0.288) (0.288) (0.288)
δ1 −1.154∗∗∗ −2.392∗∗∗ −1.312∗∗∗

(0.044) (0.094) (0.054)
H0 Reject∗∗∗ Reject∗∗∗ Reject∗∗∗

Call 2, Dependent Variable p∗ − p2
Regressor S, ED Sfx

j , ED Sbf
j , ED

δ0 −1.045∗∗∗ −1.642∗∗∗ −1.168∗∗∗

(0.131) (0.129) (0.132)
δ1 −0.889∗∗∗ −1.213∗∗∗ −0.885∗∗∗

(0.012) (0.016) (0.012)
H0 Reject∗∗∗ Reject∗∗∗ Reject∗∗∗

Notes. Table lists OLS estimates of regression (8) terms for ZI data (N =
1024), shift fixed effects included, with standard errors in parentheses.
Notation: S is true slope, ED is true excess demand, j subscript stands
for jaws-based, fx is using fixed book share for estimating jaws, bf is using
best-fitted jaws. The joint hypothesis H0 : δ0 = 0, δ1 = −1 is tested.
Significance codes: ∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

45



C Instructions emailed to the participants

Experiment Overview

There are two types of participants on the public market (labeled ’Market X’): public buyers and
public sellers. The public buyers place orders to buy and public sellers place orders to sell in the
public X market. Public buyers have odd IDs and public sellers have even IDs.

The experiment uses a currency called “francs”. The exchange rate between francs and real money
that you get paid is fixed and will be announced at the start of the experiment.

The experiment consists of several 6-minute periods. Periods are independent from each other,
and your payment is based on your total earnings in all periods. This means that you should try
making profit in each period, but if you make a mistake and lose in some periods, you’ll have a
chance to recover in future periods.

Before the actual experiment begins, there will be three low-paid practice rounds. If you are
consistently losing money during the practice rounds, you will be declared bankrupt and the system
will block you from further participation.

You have been guaranteed a minimum, but you will receive it only if you participate for the full
duration of the experiment.

Prices and Calls

All prices are determined at (and only at) the time of market calls. In each period, there are two
market calls. One is at 1.5 minutes after a period begins and one is at 4.5 minutes. During the
period, the order book of the public X market accumulates buy and sell orders from public buyers
and public sellers, but trade in the public X market can only happen at a market call. If you trade,
it will happen at the market price, not the price that you state in your orders.

At each call, all buy and sell orders in the order book are simultaneously considered and a market
price is established. It is determined as follows:

1. Based on all orders in the book, the system sorts buy orders by their respective prices per
unit from high to low. Sell orders are sorted by their respective prices per unit from low to
high.

2. The system matches the two sorted series selecting all pairs for which the purchase price is
greater than the sale price, and stops at the last pair for which this is true.

3. The market price is calculated midway between the last accepted (the lowest filled) buy order
and the last accepted (highest filled) sell order. Except for ties, all buy orders with prices
above the market price will trade at the market price. All sell orders with prices below the
market price will trade at the market price. All other orders will remain unfilled.

This means that if your buy order has a price below the market price, it won’t trade. Similarly, if
your sell order has a price above the market price, it won’t trade. However, your order may change
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the expected market price, if, once inserted in the sorted series, it changes the intersection point
(the last pair of matched orders where the purchase price is greater than the sale price).

Ties happen when there are several orders at the same price per unit in the order book and the
total quantity demanded at the market price does not match the total quantity supplied at that
price. In this case, the orders at the market price are filled in the first come first served manner as
long as there is a match.

If all this sounds too technical, just remember that the market price is based on all orders present
in the book at the time of the call, and trade only happens at the call.

You can always see the current market price if it exists (based on the orders currently present in
the book) in the Best Buy/Best Sell Offer columns. The number before the symbol indicates the
total number of units available at the corresponding Best Buy/Best Sell price.

The first period will have an additional 5 minutes before the first call so you have time to figure out
what to do. The end of the experiment will be announced without warning after the last period.

Information for Buyers

If you are a PUBLIC BUYER (an odd ID number): you will buy units in the public X market and
collect the values in your Value Opportunities List, just like a middleman buying in one and selling
in the other.

Profit on unit = Value Opportunity of unit - Price paid for unit in the public X market.

You can lose money if you pay a price in the X market that is higher than your value for the
unit, so make sure to look up your Value Opportunities List before you buy. You can also miss an
opportunity to make money if you do not buy enough in the public X market when it is profitable
to you. Notice that if you submit a multi-unit order, your profit will likely be different for each
consecutive unit, so you can lose if the total profit from a multi-unit order is negative.

You cannot buy more than six units in each call, and if you run out of Values in your Value
Opportunities List, all units in excess will be redeemed by the system at the end of the period at
the worst possible price to you.

Values in your Value Opportunities List can change and do expire (each has a time tag). Refresh
the frame to see an updated time tag (no automatic update). You do not need to collect all of the
values in your list just because they are there. Some can be bad deals, depending on the public X
market so that they can cause you to lose money.

At the end of the period your inventory is worthless. That is, if you simply spend money and
accumulate units of X in your inventory at the end of a period, you will lose what you have spent.
Neither francs nor inventory will store across periods, only your profits.

Information for Sellers

If you are a PUBLIC SELLER (an even ID number): You will short sell units in the public X
market that you afterwards procure at a cost from your Cost Opportunities List. You are just like
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a middleman who short sells in one market, and then, after figuring out how much to deliver, buys
back in the other market.

Profit on unit = Price received for unit in the X market - cost of unit from your Cost Opportunities
List.

Your optimal strategy may seem a bit tricky, because it involves short selling. You should sell units
in the public market before you actually have them. Of course, your inventory will go negative
until you procure the units needed to cover your sales. Once you trade in the public X market,
you should procure the units using your Cost Opportunities List to cover what you have sold. This
strategy allows you to avoid the risk from trade, because if you did otherwise, i.e. first paid the
cost of the units and then tried selling them in the public X market, you would be likely to lose
money, as the market price might happen to be less than your cost and your units won’t sell.

You can lose money if you sell in the X market at a price that is lower than your cost, so make
sure to look up your Cost Opportunities List before your sell. You can also miss an opportunity to
make money if you do not sell enough in the public X market when it is profitable to you. Notice
that if you submit a multi-unit order, your profit will likely be different for each consecutive unit,
so you can lose if the total profit from a multi-unit order is negative.

You cannot short sell more than six units in each call, and if you run out of Costs in your Cost
Opportunities List, all remaining standing units will be covered by the system at the end of the
period at the worst possible price to you.

Costs in the Cost Opportunities List can change and do expire (each has a time tag). Refresh the
frame to see an updated time tag (no automatic update). You do not need to use all of the costs in
your list just because they are there. Some can be bad deals, depending on the public X market.

At the end of the period your inventory is worthless. That is, if you accumulate debt (i.e., negative
inventory) at the end of a period, your cash on hand will be spent to cover it, so you will lose what
you have earned in that period. Neither francs nor inventory will store across periods, only your
profits.

Practice and Demo

Instructions for the trading technology and practice are available at URL

It is in your best interest to understand how this program works.

Do not confuse the experiment and the demo. You cannot participate in the experiment from the
demo page.

It is possible that your computer will not be able to load the demo. If your computer can load the
demo, then it can load the experiment.

If you have any further questions, please email us at EMAIL
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