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Abstract 15 

Modern gene therapies aim to prevent the inheritance of mutant mitochondrial DNA 16 

(mtDNA) from mother to offspring by using a third­party mtDNA background. 17 

Technological limitations mean that these therapies may result in a small amount 18 

of maternal mtDNA admixed with a majority of third­party mtDNA. This situation is 19 

unstable if the mother's mtDNA experiences a proliferative advantage over the 20 

third­party mtDNA, in which case the efficacy of the therapy may be undermined. 21 
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Animal models suggest that the likelihood of such a proliferative advantage 22 

increases with increasing genetic distance between mother and third­party mtDNA, 23 

but in real therapeutic contexts the genetic distance, and so the importance of this 24 

effect, remains unclear. Here we harness a large volume of available human 25 

mtDNA data to model random sampling of mother and third­party mtDNAs from 26 

real human populations. We show that even within the same haplogroup, genetic 27 

differences around 20­80 SNPs are common between mtDNAs. These values are 28 

sufficient to lead to substantial segregation in murine models, over an organismal 29 

lifetime, even given low starting heteroplasmy, inducing increases from 5% to 35% 30 

over one year. Randomly pairing mothers and third­party women in clinical 31 

contexts thus runs the risk that substantial mtDNA segregation will compromise the 32 

beneficial effects of the therapy. We suggest that choices of ‘mtDNA donors’ be 33 

based on recent shared maternal ancestry, or, preferentially, explicit haplotype 34 

matching, in order to reduce the potential for problems in the implementation of 35 

these therapies. 36 

 37 

Introduction  38 

Mitochondria are small organelles within eukaryotic cells that are vital for the 39 

normal aerobic production of ATP, the ‘universal’ biochemical energy carrier. Each 40 

mitochondrion, of which there are many in any given cell, carries at least one copy 41 

of its own, small genome (mitochondrial or mtDNA), distinct from the large genome 42 

stored in the nucleus. While there are good reasons for retaining some genes in 43 
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the mitochondrion (Johnston and Williams, 2016), a challenging biochemical 44 

environment and comparative lack of efficient DNA repair mechanisms allows a 45 

higher mutation rate there than in the nucleus (Alexeyev et al. , 2013).  46 

 47 

Differences in the sequence of mitochondrial DNA can arise at the level of 48 

individuals (population diversity) or different mitochondria in the same cell 49 

(heteroplasmy – see below). In humans, mtDNA is inherited uniparentally, via the 50 

mother's egg cell; recombination is usually negligible between human mtDNAs 51 

(Hagelberg, 2003, Hagstrom et al. , 2014). Given the non­recombining nature of 52 

the mitochondrial genome, such polymorphisms as exist can be expressed in 53 

terms of a straightforward phylogenetic tree (see Fig. 1A). The sum of 54 

polymorphisms in an mtDNA sequence is known as a haplotype, and any 55 

hierarchical clade of haplotypes is a haplogroup. Since inheritance is uniparental, 56 

mtDNA haplogroups are strongly susceptible to genetic drift, and this has given 57 

rise to pronounced haplogroup pattern differences between geographical areas, 58 

especially on a continental scale (see Fig. 1B). 59 

 60 

Mitochondrial diversity in humans is often neutral or near­neutral (Chinnery and 61 

Hudson, 2013), although an increasing volume of research in animal models and 62 

humans suggests that non-pathogenic mtDNA variants can be associated with 63 

some phenotypic effects, from livestock fertility to longevity and disease 64 



 4 

susceptibility (Dowling, 2014, Latorre-Pellicer et al. , 2016, St John, 2016, Tsai and 65 

St John, 2016, Wallace, 2015, Wallace and Chalkia, 2013). We note that, while 66 

evidence exists for a range of phenotypic effects, flawed analyses have in some 67 

cases led to several statistically unsupported claims of mtDNA links to disease 68 

(Johnston, 2015).  69 

 70 

While the phenotypic effects of some mtDNA variants are relatively mild, certain 71 

mtDNA mutations in humans have dramatic phenotypic consequences, causing 72 

fatal, incurable diseases (for example, mt3243A>G, causing the inherited disease 73 

MELAS), which often manifest when the proportion of mutated mtDNA molecules 74 

in a cellular population exceeds a threshold (Taylor and Turnbull, 2005, Wallace 75 

and Chalkia, 2013). Clinical approaches to prevent the inheritance of diseases 76 

resulting from damaging mutations in mtDNA are a focus of current medical 77 

research. Cutting­edge therapies including pronuclear transfer and chromosomal 78 

spindle transfer attempt to address the inheritance of mutant mtDNA from a 79 

maternal carrier by transferring the nuclear genome (either as the pair of pronuclei 80 

or the chromosomal spindle) into a third-party, enucleated oocyte or zygote with 81 

non­pathogenic mtDNA (Brown et al. , 2006, Burgstaller et al. , 2015, Craven et al. 82 

, 2010, Tachibana et al. , 2009) (Fig. 2). These therapies thus aim to place parental 83 

nuclear DNA on a healthy mitochondrial background with no mtDNA from the 84 

mother present. However, technological limitations currently mean that carryover is 85 

possible, whereby some of the mother's mtDNA may be carried into the third­party 86 
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cell with the transferred nuclear genetic material. These therapies can thus lead to 87 

the coexistence of several distinct sequences within cellular mtDNA populations. 88 

First, the non­pathogenic mtDNA from the third­party oocyte donor is present. 89 

Second, due to carryover, non­pathogenic mtDNA from the mother may be 90 

present. Third, due to carryover, pathogenic (mutant) mtDNA from the mother may 91 

be present (Fig. 2). The resulting complex system may give rise to phenotypic 92 

effects due to differences between admixed mtDNA types (Burgstaller et al., 2015) 93 

and references therein, and between the nucleus and different mtDNA types 94 

(reviewed in (Reinhardt et al. , 2013)), highlighted by very recent work in mouse 95 

model (Latorre-Pellicer et al., 2016). Previous work has reviewed the potential 96 

implications of these effects on gene therapies (Morrow et al. , 2015, Reinhardt et 97 

al., 2013). In this article we will focus on the possibility, and implications, of 98 

proliferative differences between different mtDNA types.  99 

The above admixture of mtDNA types is stable if mother and oocyte donor mtDNA 100 

experience no proliferative differences (Fig. 2, centre), and if the oocyte donor 101 

haplotype experiences a proliferative advantage then carried-over mtDNA will 102 

generally be reduced over time (Fig. 2 left). However, a general proliferative 103 

advantage of the mother's haplotype can in principle lead to the amplification of the 104 

associated pathological mutation, working against the desired effect of the therapy 105 

to remove this mutation (Fig. 2 right). This amplification can in principle occur even 106 

if the pathological mutation itself experiences a selective disadvantage – if this 107 
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disadvantage is of lower magnitude than the proliferative difference between 108 

haplotypes, the latter effect will still dominate. 109 

In a wide selection of mammalian species, such proliferative differences between 110 

mtDNA haplotypes have been shown to exist (St John et al. , 2010). Pronounced 111 

differences have been shown in various mouse models e.g. (Burgstaller et al. , 112 

2014, Sharpley et al. , 2012), pigs (Takeda et al. , 2006), mini-pigs (Cagnone et al. 113 

, 2016), and cattle (Ferreira et al. , 2010). Sets of models and studies exhibiting 114 

this behaviour are reviewed in (Burgstaller et al., 2015, St John, 2012). Recent 115 

work in human cell lines (Yamada et al. , 2016) has illustrated that pronounced 116 

changes in the balance of mtDNA haplotypes in cellular populations can occur over 117 

time, with an initially small population of one haplotype (H1) becoming dramatically 118 

amplified and subsequently reduced through cell passages when admixed with a 119 

distantly-related human haplotype (L3). Recent results from a human stem cell line 120 

ultimately derived from an instance of pronuclear transfer explicitly demonstrate 121 

that amplification of carried-over mtDNA can occur after therapy implementations, 122 

in some instances from 4% to >40% of the cellular population over 10 passages, 123 

even with genetically similar (same haplogroup) mtDNA sequences (Hyslop et al. , 124 

2016). 125 

While the direction and tissue­dependence of differential proliferation are currently 126 

difficult to predict for a given system, the expected magnitude of the difference 127 

depends on the genetic distance between haplotypes (Burgstaller et al., 2014) (Fig. 128 
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3). An important question to consider in gene therapies is thus, given the mtDNA 129 

diversity in human populations, what genetic distances are likely to arise in nuclear 130 

mother-oocyte donor pairings in therapeutic contexts, and what is the magnitude of 131 

the proliferative differences (Fig. 2) these distances will produce? 132 

 133 

 134 

If ∏𝑖𝑗 is the number of non­identical bases between two mtDNA genomes, i and j, 135 

then, intuitively, identical mtDNAs (∏𝑖𝑗 = 0) would be expected to behave 136 

identically, but the more different the mtDNAs (∏𝑖𝑗 > 0), the larger is the 137 

proliferative difference generally expected between the two. We define 138 

heteroplasmy, h, as the proportion of one ‘foreign’ mtDNA haplotype in a cellular 139 

admixture: hence, if a cell contains H0 mtDNAs of its ‘native’ haplotype and H1 140 

mtDNAs of a ‘foreign’ haplotype, ℎ = 𝐻1/(𝐻0 +  𝐻1). 141 

Proliferative differences between haplotypes can be measured as a quantity 𝛽, a 142 

rate of proliferation of one mtDNA over another, overcoming the limitations inherent 143 

in considering absolute differences in heteroplasmy percentages (see SI for a 144 

formal definition). For example, proliferative differences of average magnitude 145 

|𝛽| ≃ 0.008 per day have been measured between two mtDNA types of ∏𝑖𝑗 ≃ 100 146 

in the livers of mice; this value of 𝛽 corresponds to an amplification of h from 0.05 147 

(5% of one haplotype) to 0.49 (49% of that same haplotype) over one year 148 

(Burgstaller et al., 2014). This pronounced rate of change is supported by results in 149 
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a range of other mammalian models (including rapid fixation of an initial limited 150 

mtDNA haplotype in cattle (Koehler et al. , 1991) and the aforementioned results 151 

from human cell lines where changes from <10% to >40% occur over a small 152 

number of cell passages (Hyslop et al., 2016). 153 

A subset of recent evidence for proliferative differences between mtDNA 154 

haplotypes in mice is shown in Fig. 3. Fig. 3A shows inferred values of |𝛽|, and the 155 

magnitude of proliferative differences between mtDNAs, in a variety of tissues for 156 

three mtDNA pairs (where ∏𝑖𝑗 = 18, 86, and 107). Fig. 3B shows the predictions 157 

that this behaviour of 𝛽 makes about absolute changes in heteroplasmy, for two 158 

putative admixtures beginning with 5% and 20% of a ‘foreign’ haplotype. For 159 

example, a haplotype differing from the ‘native’ type by ∏𝑖𝑗 ≃ 100 may readily 160 

experience amplification from 5% to 50% over one year. 161 

For simplicity, these plots are limited to the behaviour over one year, but the trends 162 

are observed to continue throughout organismal lifetimes. For example, one 163 

observation in (Burgstaller et al., 2014) showed heteroplasmy in liver tissue rising 164 

from 5.9% to 81.8% over 680 days for a particular mtDNA pairing where ∏𝑖𝑗 =165 

 108. There is thus evidence that, in mice, nucleotide differences around ∏𝑖𝑗 ∼ 100 166 

are associated with proliferative differences capable of amplifying an admixed 167 

haplotype from a 5% minority to a pronounced cellular majority over the course of 168 

an organismal lifetime. But what are standard values of ∏𝑖𝑗 in actual human 169 

populations? And is this magnitude of genetic diversity expected to give rise to 170 

clinically relevant mtDNA behaviour, given that a mutant mtDNA load of 40-60% is 171 
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often sufficient to cause morbidity, and it still poorly known what ‘safe’ levels may 172 

be in most cases (Wallace and Chalkia, 2013)? 173 

Existing studies have characterised the nucleotide differences in contemporary 174 

human populations, finding typical differences of dozens of nucleotides across 175 

modern Europeans (Fu et al. , 2012), greater diversity in Africa than in Europe 176 

(Briggs et al. , 2009), and results confirming and expanding these observations 177 

across a broader geographical range (Lippold et al. , 2014). A modern workflow 178 

has been developed to address related evolutionary questions (Blanco et al. , 179 

2011). However, to our knowledge, the interpretation of these statistics in terms of 180 

mtDNA segregation possibility and implications for disease is currently absent, as 181 

is an attempt to characterise the expected diversity in modern populations 182 

combining social (census) and biological (sequence) data. 183 

 184 

Materials and Methods 185 

Materials – None. 186 

Methods – We took a data­driven approach, harnessing the large numbers of 187 

human mtDNA sequence data now available through the NCBI database, as well 188 

as haplogroup data in the literature. mtDNA molecules may be categorised, via the 189 

presence or absence of diagnostic SNPs, into haplogroups, which are typically 190 

designated by an alphanumeric code and follow a moderately complex hierarchy. 191 

For example, at the coarsest level, all human mtDNAs so far recorded fall into 192 

haplogroup L. Subsets of L include N (which in turn includes R, containing H and 193 
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V, etc.) and W, X, Y and others. A simplified tree of haplogroups is shown in Fig. 194 

1A and illustrative geographical distributions are shown in Fig. 1B. 195 

Data on the haplogroup makeup of ‘pre­colonial populations’, i.e. before early 196 

modern population mixing, from different geographical regions is available via 197 

MitoMAP (Lott et al. , 2013). These data can be used to estimate the probability 198 

that an individual with maternal ancestry from a given region belongs to a given 199 

haplogroup. 200 

Many specific mtDNA sequences corresponding to individual humans belonging to 201 

a given haplogroup are available via NCBI. Using these data, we sought to identify 202 

the expected genetic differences between pairs of individual, real human mtDNAs. 203 

To estimate these expected differences, we first characterised the expected 204 

differences between specific mtDNA samples within and between different 205 

haplogroups.  206 

We obtained the > 30𝑘 mtDNA sequences available from NCBI Nucleotide 207 

database (NCBI, 2015). Of these sequences ∼ 7.6𝑘 had straightforwardly 208 

interpretable haplogroup information, where the initial letter of the /haplogroup field 209 

was taken to be the haplogroup label. We categorised these records by this initial 210 

letter, then employed the following sampling protocol. Given a pair of haplogroups 211 

{ℋ1, ℋ2}, we picked at random a sequence belonging to ℋ1 and picked at random 212 

a sequence belonging to ℋ2 (ensuring that the two sequences were not the same 213 

sample if ℋ1 = ℋ2,). We used BLAST to record the number of sequence 214 

differences between these specific sampled sequences. For the purposes of this 215 
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report we recorded the number of non­identical bases as the nucleotide difference 216 

∏𝑖𝑗; we also note that indels commonly exist between sampled mtDNA sequences, 217 

further contributing to mtDNA diversity. We then built up a distribution of sequence 218 

differences over many (n=1000) sampled pairs of specific human mtDNAs from the 219 

given pair of haplogroups. 220 

To connect more explicitly with medical policy, we next changed the scale of our 221 

analysis from haplogroups per se to the estimated haplogroup profiles of real 222 

human populations. First, we employed heuristic data from the MitoMAP project 223 

(Lott et al., 2013) estimating the haplogroup makeup of pre­colonial populations 224 

from different regions of the world, while noting that the actual census populations 225 

will usually have a very different makeup, especially in New World countries that 226 

experienced extensive overseas colonization. For each region, we randomly chose 227 

two haplogroups, each with a probability corresponding to that haplogroup's 228 

representation in the region of interest. We then randomly chose two specific 229 

mtDNA sequences from those two haplogroups. As above, we then used BLAST to 230 

determine the genetic difference between those specific sequences. We repeated 231 

this process many times to build up an expected distribution of the genetic 232 

differences between two randomly chosen members of the human population from 233 

that region. 234 

As the UK is on the cusp of implementing gene therapies based on nuclear 235 

transfer, we then performed a more rigorous, population­based analysis for Britain. 236 

In order to estimate the probable levels of nucleotide diversity (∏𝑖𝑗) in mtDNA 237 
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between two randomly selected British women, and hence the likely magnitude of 238 

proliferative differences between their mtDNA, a haplogroup profile of Britain was 239 

assembled, based on over 4,600 individuals. The majority of the UK samples 240 

represent ethnic Britons. To account for the fact that the modern UK population 241 

consists of many ethnicities, approximations of mtDNA haplogroup distributions for 242 

the two largest cities in the UK (London and Birmingham) were also constructed. 243 

These distributions are estimates, based on data from the 2011 census, 244 

immigration data, and published mtDNA haplogroup data for areas from which 245 

there has been mass immigration into the UK (see SI for details). 246 

For each ethnic census category, an estimate of probable haplogroup composition 247 

was created (see SI for details on calculations), and the frequency values scaled 248 

by the numerical census data to yield expected haplogroup frequencies in London 249 

and Birmingham.  For simplicity, the single letter level of nomenclature is used, 250 

with the exception of superhaplogroup L, for which its subgroups L0­3 are included. 251 

 252 

Results 253 

 Fig. 4A shows the resulting statistics on differences between sampled mtDNA 254 

sequences between haplogroup pairs. Several intuitive features are immediately 255 

observable. First, haplogroup L displays noticeably more intra­haplogroup 256 

differences than any other haplogroup. L haplogroups constitute the majority of 257 

African haplogroups (and have very deep branching times relative to non­African 258 

haplogroups) and are thus expected to include the most genetic diversity (Behar et 259 
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al. , 2008). Second, with the exception of L, diagonal elements (i.e. samples from a 260 

haplogroup compared to samples from the same haplogroup) show less diversity 261 

than off­diagonal elements (i.e. samples from one haplogroup compared to 262 

samples from a different haplogroup). Third, haplogroup pairings which are 263 

expected to be similar (for example, sister clades H and V) show decreased 264 

genetic diversity. The inset shows a breakdown of the L haplogroup into its 265 

immediate subgroups. 266 

A notable result from this analysis is that between haplogroups, differences of ∼50 267 

SNPs are common, and, even within haplogroups, differences of ∼20 SNPs are 268 

not uncommon. This level of diversity may not seem substantial when compared to 269 

the ∼16 kilobases of total human mtDNA, but we draw attention to our previous 270 

observations that differences of ∼20 SNPs were enough to induce significant 271 

proliferative differences between haplotypes in mice, who also have a ∼16kb 272 

mtDNA genome (Burgstaller et al., 2014). As shown in parentheses in Fig. 4A, the 273 

magnitudes of ∏ that likely emerge from pairwise haplotype samples match those 274 

responsible for dramatic mtDNA heteroplasmy changes in mouse models. 275 

Fig. 4A also provides a means of identifying a ‘partner’ for a given haplogroup that 276 

minimizes ∏ and hence the likelihood of damaging segregation. For example, 277 

given a mother with haplogroup B and a choice between donors from C, V, and L, 278 

Fig.4A shows that the B-V pairing minimizes maximum ∏, and thus affords the 279 

lowest risk of high segregation (see Discussion).  280 
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Table 1 gives the estimated haplogroup makeup of the UK and two major cities, 281 

based on a combination of census and immigration data and a survey of worldwide 282 

mtDNA sequences (see Methods and SI). We underline that these quantities are 283 

principled estimates, but the summary statistics that arise from these estimates are 284 

robust to variation in the exact population frequencies, and is consistent with the 285 

behaviour expected from an ethnically mixed population based on more direct 286 

estimates (see below).  287 

Fig. 4B illustrates the distribution of nucleotide differences between individuals 288 

sampled from geographical regions, and rural vs. urban UK based on estimates in 289 

Table 1, in this manner. It is immediately noticeable that pairs of individuals from 290 

Africa generally exhibit more diversity than pairs chosen from other regions, but it 291 

is striking that the expected genetic difference in many geographic regions is 292 

around ∏𝑖𝑗 ∼ 40­50 SNPs, often with a range between 10-100 SNPs. The 293 

substantial diversity expected in the UK and its cities is of a consistent magnitude 294 

with that expected from its population history, involving admixtures of African and 295 

Asian immigrants in addition to its original European state. Again, parenthesized 296 

numbers in Fig. 4B illustrate that these magnitudes of ∏ are readily able to induce 297 

pronounced heteroplasmy shifts in mice. Taken together, these results 298 

demonstrate that expected levels of mtDNA diversity in modern human populations 299 

are of comparable magnitude to those responsible for substantial segregation bias 300 

in existing mammalian models, and so therapies that randomly pair women from 301 
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these populations may engender potentially detrimental heteroplasmy changes 302 

over time. 303 

 304 

Discussion 305 

Our analysis clearly shows that, even within a geographical region restricted to the 306 

point of being dominated by a single mtDNA haplogroup, a ∏𝑖𝑗 = 10 − 100 is 307 

expected between randomly sampled individuals from that region. On a continental 308 

scale, expected differences are highest in Africa, as predicted from our knowledge 309 

of human population history, and comparably lower elsewhere. Comparably high, 310 

however, are the differences in the largest urban populations of the UK, where 311 

oocyte donor therapies will be implemented. 312 

In mice, proliferative differences between haplogroups with ∏𝑖𝑗 ∼ 100 were 313 

sufficient in some tissues to cause amplification of one mtDNA type from 0.05 to 314 

0.64 (i.e. a small representation to a notable majority) over an organismal lifetime 315 

(Fig. 2B). There remains a wide range of questions involving the mapping from the 316 

murine model to the human system. One criticism of our argument may be that 317 

mtDNA segregation in humans may progress more slowly than in mice, reducing 318 

the magnitude of the effects we consider. However, segregation in humans has 319 

been observed to occur more rapidly than in mice (Wallace and Chalkia, 2013). 320 

Furthermore, evidence exists for pronounced segregation of a pathological 321 

mutation over very short times during embryo-fetal development (Monnot et al. , 322 

2011), suggesting the presence of mechanisms in humans that support fast 323 
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segregation, and which could in principle also act on non­pathological mutations. 324 

Recent results in human cell lines (Hyslop et al., 2016, Yamada et al., 2016) 325 

showing fast changes in mtDNA population structure over passages support the 326 

possibility of fast segregation. These rapid mtDNA dynamics are supported by 327 

evidence from other large mammalian models, including the rapid fixation of 328 

mtDNA haplotypes in cattle (Burgstaller et al., 2015, Koehler et al., 1991) Even in a 329 

conservative case where mtDNA turnover rates are scaled by organismal lifetimes, 330 

amplification over the (longer) human lifetime will still be anticipated by analogy 331 

with the murine system. An important clinical example of the potentially high 332 

mtDNA segregation in human disease (again involving a pathological mutation) is 333 

described in Ref.(Mitalipov et al. , 2014), in which an embryo selected for its low 334 

(12%) load of the 3243 mutation (Treff et al. , 2012) developed into an infant with 335 

>40% loads in blood and urine at six weeks of age, presenting with a range of 336 

(possibly unrelated) metabolic pathologies.  337 

It is worth noting that, in addition to the unpredictability of segregation direction, the 338 

rate at which mtDNA segregation occurs is not simple and constant – rather, it can 339 

depend on tissue type, organismal age and developmental stage (Burgstaller et al., 340 

2014), and complicating processes including the mtDNA bottleneck (Johnston et al. 341 

, 2015). In addition, increasing evidence that mtDNA variants may influence fertility 342 

and development (St John, 2012, St John et al., 2010) suggests further potential 343 

complications as mtDNA populations both influence and are influenced by 344 

developmental dynamics. Given these complications, it is not unreasonable to think 345 
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that the ‘averaged’ rates reported here may be underestimates for a particular time 346 

period. We therefore highlight that, even from a conservative calculation of 347 

segregation rates, the likely genetic differences between humans randomly 348 

sampled from a population may well allow substantial amplification of a 349 

disease­carrying mtDNA haplotype over the timescale of a human lifetime. 350 

 351 

We must also consider whether randomly sampling NCBI sequences is a good 352 

model for the mtDNA pairings likely to be involved in gene therapies. The counter-353 

example of this would be a population consisting of many individuals with identical 354 

mtDNA sequences and a small number of individuals with different sequences. The 355 

NCBI, which assigns records to unique sequences, will likely have one record for 356 

the common sequence and one each for the rare different sequences. In this case, 357 

uniformly sampling NCBI would underestimate the population fraction with the 358 

common sequence, and thus tend to overestimate mtDNA diversity. However, the 359 

ubiquity of many­SNP differences between records (see Fig.4) suggests that this 360 

problematic population structure is unlikely, and indeed, several contemporary 361 

studies have observed differences between each individual sample (Fu et al., 362 

2012, Lippold et al., 2014). Additionally, socio-economic factors will give rise to 363 

structure in the pairings in clinical applications (which may either decrease or 364 

increase the expected ∏𝑖𝑗). Despite these complications, we consider our 365 

approximations appropriate for considering first-order bounds of likely behaviour in 366 

these populations exhibiting realistic human diversity. 367 
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The danger of pathological mutations ‘hitchhiking’ on favoured haplotype 368 

backgrounds and being amplified along with the haplotype is described in the 369 

introduction and has been discussed previously (Burgstaller et al., 2014, 370 

Burgstaller et al., 2015). An additional danger is the amplification of an initially rare 371 

mtDNA haplotype to the point where it competes with the dominant mtDNA type in 372 

a cell and causes pathologies through mismatched mitochondrially encoded 373 

protein subunits or other mechanisms (Burgstaller et al., 2015). The co-occurrence 374 

in a cell of two different, but both separately non-pathogenic, mtDNAs has been 375 

observed to result in adverse physiological changes (Sharpley et al., 2012), and 376 

so-called mito-nuclear incompatibilities between nuclear and 'foreign' mtDNA 377 

content can induce phenotypic effects (Latorre-Pellicer et al., 2016) –  resulting in 378 

potential implications for gene therapies that have been reviewed elsewhere 379 

(Morrow et al., 2015, Reinhardt et al., 2013). Segregation between mtDNA 380 

haplotypes, allowing an initially rare haplotype to proliferate and become amplified 381 

within a cell, has the potential to manifest and exacerbate all of these potential 382 

issues. 383 

To diminish the likelihood of potentially harmful mtDNA segregation, which we 384 

argue is likely given the mtDNA diversity in the modern UK population, we urge 385 

experts involved in the implementation of these therapies to consider ‘haplotype 386 

matching’, i.e. choosing an oocyte donor with mtDNA as similar as possible to the 387 

mother's in clinical approaches. Methods to match haplotypes (minimise ∏𝑖𝑗) could 388 
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include choosing maternal relatives of the mother with low or zero proportions of 389 

the pathological mutation under consideration, or choosing donors from a 390 

haplogroup as similar as possible to the mother’s. To illustrate this latter strategy, 391 

Fig. 5 shows the range of expected ∏ values that could arise when a third-party 392 

donor is paired with a mother from haplogroup H1a. If no haplotype matching is 393 

employed, and the third-party donor is randomly sampled from our estimated 394 

London population, a maximum ∏ around 100 is possible (due to the pronounced 395 

population diversity illustrated in Fig. 4B). Choosing a donor from haplogroup H 396 

decreases this maximum value to around 36 (that is, the maximal within-H 397 

diversity, shown on the diagonal of Fig. 4A). More detailed matching, specifically 398 

choosing another H1a woman as the third-party, further limits the maximum ∏ to 399 

approximately 17. These lower values achieved through haplotype matching 400 

dramatically decrease the expected potential heteroplasmy changes (for example, 401 

in mice (Fig 2), from a maximum of 5% → 49% over one year for ∏ = 100 to 5% → 402 

8% over one year for ∏ = 17), thus immediately limiting the potential for 403 

detrimental segregation.  Our results, and future findings from more detailed 404 

studies, can help provide a strategy for this matching process – given a mother of 405 

known mtDNA haplogroup, choose from available oocyte donors so as to minimise 406 

the maximum genetic distance given in Fig. 4. Such haplotype matching, which is 407 

in principle technically straightforward and economically marginal, decreases the 408 

risk of inadvertently choosing an mtDNA pairing which experiences substantial 409 
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proliferative differences, and thus decreases the risk of manifestation of the 410 

disease the therapy was implemented to prevent. 411 

 412 

Table 1. Estimated haplogroup frequencies in the British population UK – 413 

majority ethnic Britons, exclusive of large urban areas, London, Birmingham –414 

census and immigration data based estimates (see SI). 415 

HG UK % London % Birmingham 

% 

A 0.0% 0.6% 0.5% 

B 0.0% 1.1% 0.7% 

C 0.0% 0.3% 0.2% 

D 0.0% 0.8% 0.5% 

F 0.0% 1.1% 0.8% 

G 0.0% 0.2% 0.2% 

H 45.2% 30.4% 29.9% 

I 4.1% 2.6% 2.6% 

J 12.4% 7.8% 8.2% 

K 8.3% 5.1% 5.3% 

L0 0.0% 1.3% 0.8% 

L1 0.0% 2.4% 1.9% 

L2 0.0% 4.9% 3.8% 

L3 0.1% 4.5% 3.5% 

M 0.0% 10.4% 12.7% 

N 0.0% 0.1% 0.2% 

O 0.0% 0.0% 0.0% 

P 0.0% 0.0% 0.0% 

R 0.1% 2.7% 3.6% 

S 0.0% 0.0% 0.0% 

T 10.5% 6.8% 6.9% 

U 12.6% 11.5% 12.6% 

V 3.2% 1.6% 1.8% 

W 1.5% 1.2% 1.6% 
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X 1.8% 1.2% 1.1% 

other 0.3% 1.3% 0.6% 

 416 
 417 

Figure 1. A) Relationship between human mtDNA haplogroups. Haplogroup 418 

labels and tree structure for human mtDNA groups; MRCA is most recent common 419 

ancestor. B) Typical haplogroups in pre­colonial human populations by 420 

approximate geography. We have omitted higher-order haplogroups of which 421 

many sub-groups are presented (e.g. N & R). Based on data from MitoMAP (Lott et 422 

al., 2013) and references therein. 423 

 424 

Figure 2. mtDNA segregation and gene therapies. A mother may possess two 425 

similar haplotypes, one wild type (blue) and one mutant (blue with red star). 426 

Therapies attempt to use a third­party with a potentially different mtDNA haplotype 427 

(yellow) to provide a healthy mtDNA background. Carryover in these therapies may 428 

result in an admixture of wildtype mother, mutant mother, and wildtype third­party 429 

mtDNA in a cell. If the two haplotypes (blue and yellow) proliferate differently, the 430 

offspring may evolve a predominance of third­party (lower left) or mother (lower 431 

right) mtDNA with time. In the latter case, if mutated mtDNA proliferates at a similar 432 

rate to its ‘carrier’ haplotype, the damaging mutation may be amplified to harmful 433 

levels in cells. 434 

 435 
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Figure 3. mtDNA segregation and genetic differences in mice. A) Magnitudes 436 

of segregation (proliferative differences between mtDNA types) in different tissues 437 

(points) in four different mtDNA pairings from (Burgstaller et al., 2014). More 438 

pronounced segregation is observed in those pairings with the greatest genetic 439 

distance. Red line shows the mean trend of segregation with number of nucleotide 440 

differences; blue line shows the approximate maximum segregation strength 441 

across all tissues for mtDNA pairings with < 100 nucleotide differences. B) Ranges 442 

of expected heteroplasmy in mice after 1 year, given different initial heteroplasmies 443 

(h0) and the mean (lower) and maximal (higher) segregation magnitude observed 444 

in mice. For example, the darker red curve shows that for an mtDNA pairing with 445 

75 nucleotide differences, a maximal increase from ℎ = 0.05 to ℎ ≃ 0.3 is expected. 446 

 447 

Figure 4. A) MtDNA differences between haplogroups. The maximum (outer 448 

halo) and minimum (inner halo) nucleotide differences expected between a pair of 449 

randomly sampled mtDNA sequences (horizontal and vertical axes). The diagonal 450 

corresponds to pairs within the same haplogroup; off­diagonal elements 451 

correspond to pairs of mtDNAs from different haplogroups. Dataset size for each 452 

haplogroup is given in brackets; n=1000 samples were used for each pairing. Max 453 

h change shows, for a given magnitude of genetic diversity, the maximum 454 

expected change in heteroplasmy over one year starting at 5%, based on mouse 455 

models (Fig 3). As described in the text, haplotype labels denote sequences that 456 

fall within a given category and not within any named subcategories of that 457 
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category. Inset shows subgroups of the most­diverse L haplogroup. Red circles 458 

give the magnitudes of genetic differences between the “background” C57BL/6N 459 

mtDNA and the different mtDNA types in the mouse models in Fig. 3. B) MtDNA 460 

differences between geographical regions. In blue, genetic differences between 461 

a pair of individuals randomly sampled from sets modelling populations within a 462 

given region of the world, using the MitoMAP (Lott et al., 2013) estimation of the 463 

(pre­colonial) haplogroup profile of different geographical regions. In black, 464 

expected differences in the general the modern non­urban UK population, and 465 

populations of London and Birmingham. Candlesticks show minimum, mean ± s.d., 466 

and maximum nucleotide differences between simulated pairs sampled from 467 

geographical regions. Explicit sample distributions are given in in lighter colours; 468 

max h change gives maximum expected change in heteroplasmy as in (A). SE 469 

Asia (in grey) has poorly characterised MitoMAP estimates. Red marks, as in (A), 470 

give the magnitudes of genetic differences in the mouse models in Fig. 3. 471 

 472 

Figure 5. MtDNA differences expected with different haplotype matching 473 

strategies for a mother with haplogroup H1a. Distributions of nucleotide 474 

differences (min, mean +- sd, max) expected when pairing mtDNA from haplogroup 475 

H1a with randomly sampled mtDNA from our estimated London population, with 476 

randomly sampled mtDNA from haplogroup H, and with randomly sampled mtDNA 477 

from haplogroup H1a.   478 
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