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Introduction
The quantitative tact afforded by computational neuroscience is most distinguished from 
classical neurobiology by an explicit investigative focus on how the nervous system 
computes (Feng, 2003). In this study, we employ this approach to advance our 
understanding of the cerebellum. 

The hindbrain's cerebellum region is a beautifully two-dimensional and convolved 
structure with close to 80% of the neurons in the nervous system (Kandel et al, 2000). It 
is primarily a motor/sensory integration system, pivotal to motor coordination and motor 
learning, but it is also implicated in “higher” cognition e.g. the processing of language 
and music. We hope that an understanding of the cerebellum’s computations can prime 
clinical solutions to its pathologies and improve the quality of life for millions of patients 
worldwide. 

In contrast to the complexity of other brain regions, the cerebellum has a single repeating 
connectivity motif (Ito, 1984). This motif consists of parallel, climbing, basket and 
stellate inputs feeding into a central Purkinje cell, which transforms these inputs into an 
output. The relative simplicity of the cerebellar motif makes it a good focal point for 
trying to understand how a brain circuit actually computes. Ultimately its computation 
collapses to one question, how does the Purkinje cell compute? In particular, how does its 
morphology and conductances transform/encode its inputs into an output? 

Summary
Although others have reported and characterised different patterns of Purkinje firing 
(Womack and Khodakhah, 2002, 2003, 2004; McKay and Turner, 2005) this thesis is the 
first study that moves beyond their description and investigates the actual basis of their 
generation. Purkinje cells can intrinsically fire action potentials in a repeating trimodal or 
bimodal pattern. The trimodal pattern consists of tonic spiking, bursting and quiescence. 
The bimodal pattern consists of tonic spiking and quiescence. How these firing patterns 
are generated, and what ascertains which firing pattern is selected, has not been 
determined to date. We have constructed a detailed biophysical Purkinje cell model that 
can replicate these patterns and which shows that Na+/K+ pump activity sets the model’s 
operating mode. We propose that Na+/K+ pump modulation switches the Purkinje cell 
between different firing modes in a physiological setting and so innovatively hypothesise 
the Na+/K+ pump to be a computational element in Purkinje information coding. We 
present supporting in vitro Purkinje cell recordings in the presence of ouabain, which 
irreversibly blocks the Na+/K+ pump.

Climbing fiber (CF) input has been shown experimentally to toggle a Purkinje cell 
between an up (firing) and down (quiescent) state and set the gain of its response to 
parallel fiber (PF) input (Mckay et al., 2007). Our Purkinje cell model captures these 
toggle and gain computations with a novel intracellular calcium computation that we 
hypothesise to be applicable in real Purkinje cells. So notably, our Purkinje cell model 
can compute, and importantly, relates biophysics to biological information processing.

Our Purkinje cell model is biophysically detailed and as a result is very computationally 
intensive. This means that, whilst it is appropriate for studying properties of the 
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individual Purkinje cell (e.g. relating channel densities to firing properties), it is 
unsuitable for incorporation into network simulations. We have overcome this by 
deploying mathematical transforms to produce a simpler, surrogate version of our model 
that has the same electrical properties, but a lower computational overhead. Our hope is 
that this model, of intermediate biological fidelity and medium computational complexity, 
will be used in the future to bridge cellular and network studies and identify how 
distinctive Purkinje behaviours are important to network and system function.

                                                     Chapter 1
                                          Background

The highest activities of consciousness have their origins in physical occurrences of the 
brain, just as the loveliest melodies are not too sublime to be expressed by notes.                                             
                                                                                                     W. Somerset Maugham

1.1   The cerebellum
1.1.1   History
Around the beginning of the 19th century, Gall and Spurzheim noticed that the size of the 
cerebellum is large in bulls and so concluded that it must have a sexual function (Thach, 
1996; Glickstein, 1997; Barlow, 2002). This is poor rationale of course and is now 
considered incorrect. Thomas Willis was much closer to the mark when, in the 17th 
century, he proposed that the cerebellum presides over the body s movements. Indeed, 
lesion studies in the 19th century by Rolando, Fluorens and Luciani, clearly indicated that 
the cerebellum was involved in the control of posture and the coordination of movements. 
Later studies (early 20th century) of human cerebellar ablation by Babinsky and by 
Holmes confirmed these observations (Holmes, 1939; Thach, 1996; Glickstein, 1997; 
Barlow, 2002).

The notion that the cerebellum might be more than just a motor organ goes back to the 
studies of Sherrington (1857-1952), Jelgersma (1859-1942) and Lewandowsky (1880-
1953) (Walker et al., 2000). Although largely forgotten during the latter half of the 20th 
century, this hypothesis has been resurrected in more contemporary times with the 
deployment of new imaging technologies. For example, recent fMRI studies suggest that 
that the cerebellum is involved in the discrimination of sensory data (Bower, 1997; 
Blakemore et al., 1998; Devor, 2000). Imaging studies have also shown a marked 
increase of cerebellar activity during various cognitive tasks and, coupled with the fact 
that cerebellar patients often suffer various cognitive deficits, there is growing evidence 
that the cerebellum is involved in some higher brain functions (Thach, 1996; 
Schmahmann and Sherman, 1998).

1.1.2   Anatomy
(Eccles et al., 1967; Palay and Chan-Palay, 1982; Nauta and Feirtag, 1986; Kandel et al., 
2000)
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Figure 1.1 shows the position of the cerebellum in the brain. In humans the cerebellum 
makes up approximately 10% of the brain volume and contains the majority of its 
neurons. 

The cerebellum has an outer surface of grey matter, called the cerebellar cortex, and 
underneath it is the white matter (figure 1.2). The cerebellar cortex contains 5 different 
cell types (Purkinje, Golgi, granule, stellate, basket) and the white matter contains all 
their afferent/efferent fibers and the deep cerebellar nuclei (DCN). The 5 cell types of the 
cerebellar cortex are arranged in 3 different layers (figure 1.3). The number of granule 
cells in the granular layer is estimated to be in the order of 1011, more than the total 
number of neurons in the whole cerebral cortex.

The cerebellum is a very special part of the brain because, in contrast to the complexity of 
other brain regions, its neurons are organised in an extremely regular and repetitive way. 
Its architecture is effectively just repeats of an anatomically well defined connectivity 
motif. This motif consists of parallel, climbing, basket and stellate inputs feeding into a 
central Purkinje cell, which integrates them into an output that is then relayed to the deep 
cerebellar nuclei (DCN) (figure 1.4). The DCN projects out of the cerebellum to other 
brain regions. 

Parallel and climbing fiber inputs are excitatory (glutamatergic); basket and stellate 
inputs are inhibitory (GABAergic). The Purkinje cell therefore has two excitatory inputs 
and two inhibitory inputs. The Purkinje cell output is inhibitory to the DCN. 

In striking contrast, each Purkinje cell is innervated by over 105 parallel fibers but only a 
single climbing fiber axon. Although this single climbing fiber axon branches to make 
hundreds/thousands of synaptic contacts upon this single Purkinje cell. 

The regularity of the cerebellar structure contrasts with other brain regions, for instance 
the cerebral cortex, where the circuit structure is still unclear and, indeed, it is uncertain if 
it even has a canonical circuit (Nauta & Feirtag, 1986). The cerebellum’s regularity, 
which founds its crystalline histology, makes it perhaps the best point of study for 
deciphering basic neural principles.

1.1.3   Structure to function
The beautiful, crystalline structure of the cerebellum is the basis for a number of theories 
of its function. For example, Braitenberg and Atwood (1958) weaved the structure into 
their theory of the cerebellar cortex as a timing device, and Eccles et al. (1967) used it to 
describe the cerebellum as a computer-like structure and proposed the beam theory of 
parallel fibre effects. Later on, the seminal Marr (1969) and Albus (1971) theory of motor 
learning was founded upon the cerebellum’s crystalline form. So influential is the Marr-
Albus theory that subsequent concepts of motor learning have tended to be simply 
developments of it (for example, Gilbert, 1974, 1975; Ito, 1984). 
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However, these theories have considered the cerebellum’s component neurons to be 
linear summing devices (integrate and fire), ignoring their complexity, nonlinearity and 
computations. This is perhaps too abstractive because there is evidence that the richness 
of biophysical properties on the single neuron scale can supply mechanisms that serve as 
building blocks for network dynamics (Getting, 1989).

1.1.4   Synaptic plasticity in the cerebellum
Activity dependent synaptic modifications represent a mechanism for storing information 
in the brain (Hebb, 1949). In the Marr-Albus theory of motor learning, information is 
stored in the long-term depression (LTD) of synapses between parallel fibers (PFs) and 
Purkinje cells (Marr, 1969; Albus, 1971). And indeed, this has now been experimentally 
shown: PF LTD can be induced by repeated coincident PF and climbing fiber (CF) input 
to the Purkinje cell (Ito et al., 1982; Ito et al., 2001). Thus, a PF activity pattern that is 
paired repeatedly with CF input will lead to LTD of the PF synapses activated by the 
pattern. This results in reduced firing in the Purkinje cell when the PF activity pattern is 
presented again and thus leads to reduced inhibitory input to neurons in the deep 
cerebellar nuclei (DCN) and increased output from the cerebellum (Ito, 1984; Ito, 1989; 
Ito et al., 2001). 

1.2   The Purkinje cell
A striking feature of the cerebellar cortex is that the Purkinje neuron is the only cell type 
with an axon projecting out of the cortex. It follows that all computations taking place in 
the cerebellar cortex must be represented in the firing pattern of the Purkinje neurons - 
Purkinje neurons are the final integrator of cerebellar cortical activity. Thus, if we are to 
fathom the cerebellum, it is absolutely imperative that we acquire an understanding of the 
Purkinje cell. We must understand how the Purkinje cell computes - how its morphology 
and conductances transform/encode its inputs into an output. We hope to further the 
understanding of this process with the research we present in this thesis. 

1.2.1   Purkinje cell morphology
The cerebellar Purkinje cell is large and complex with an intricately elaborate, isoplanar, 
spine studded dendritic arbour. It has the most branched dendritic tree in the central 
nervous system and the fact that its morphological characteristics are highly conserved 
across species suggests them to have strong functional significance (Vetter et al., 2001).

The Purkinje cell soma can fire sodium spikes and its dendrites, by contrast, can fire 
calcium spikes (Llinas and Sugimori, 1980a, 1980b).

1.2.2   Purkinje cell activity in vivo 
Purkinje cells can spontaneously fire single action potentials (simple spikes) in the 
absence of synaptic innervation but this firing can also be driven/modulated by parallel 
fiber input. A parallel fiber input is weak; approximately 50 parallel fibers are required to 
generate a simple spike in a Purkinje cell (Barbour, 1993). By contrast, the single 
climbing fiber input is very strong and it can induce a burst of several spikes in a row (a 
complex spike). In vivo, inferior olivary neurons (the origin of climbing fibers) are 
spontaneously active, at a frequency of 1-2 Hz, and so Purkinje cells fire complex spikes 
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at a frequency of 1-2 Hz. These complex spikes punctuate the Purkinje cell firing of 
simple spikes, which Purkinje cells can perform intrinsically and/or with 
drive/modulation from parallel fibers (which originate from spontaneously active granule 
cells). 

It has been shown in vivo shown that climbing fiber activation of the Purkinje cell (which 
induces a complex spike) can shift its activity from a quiescent “down” state to a 
spontaneously active “up” state (in which it fires simple spikes), and vice-versa, serving 
as a type of toggle switch (Lowenstein et al., 2005) (Figure 1.5). These findings have 
been challenged by a study suggesting that such toggling by climbing fiber inputs occurs 
predominantly in anaesthetized animals, and that Purkinje cells in awake behaving 
animals, in general, operate almost continuously in the up state (Schonewille et al., 2006). 
However, this challenge has been aggressively refuted (Loewenstein et al., 2006).  

1.2.3   Purkinje cell activity in vitro 
Given the slicing plane of parasagittal cerebellar slices, climbing fiber and parallel fiber 
inputs tend to be cut and so very little excitatory input remains. By contrast, much of the 
inhibitory connectivity to the Purkinje cells (stellate and basket connections) is 
maintained (Daniel Press and Mark Wall, personal communication).

Purkinje cells can fire spontaneously and so they can be active within parasagittal 
cerebellar slices, despite their lack of excitatory input in this context. Indeed, a number of 
spontaneous Purkinje cell firing patterns have been observed in vitro. Some report a 
repeating trimodal pattern that consists of tonic spiking, bursting and quiescence 
(Womack and Khodakhah, 2002, 2003, 2004; McKay and Turner, 2005) (figure 1.6). The 
repeat length of the trimodal pattern is fixed for a single Purkinje cell but can vary among 
different Purkinje cells, in a range from 20 seconds to 20 minutes (Womack and 
Khodakhah, 2002). This trimodal firing pattern has been observed in slices with no 
pharmacological application, but it is more commonly observed after the inhibitory 
connections (GABA) are blocked (Womack and Khodakhah, 2002). As far as we know, 
the trimodal firing pattern has not been observed in vivo. For the in vitro Purkinje cell, 
others have reported a repeating bimodal pattern of tonic firing and quiescence (McKay 
et al., 2005), continuous tonic firing (Hausser and Clark, 1997) or continuous quiescence 
(Llinas and Sugimori, 1980a). Although, in our interpretation, the latter two might not be 
operating modes in their own right, but rather components of the trimodal or bimodal 
patterns and the recording period was not of sufficient duration to show this.  

In summary, previous work has reported and characterised different patterns of Purkinje 
activity (in vivo and in vitro). This thesis is the first study that moves beyond description 
and tries to ascertain the mechanisms of Purkinje activity generation. To do this we 
employ a modelling methodology. 

1.3   Computational modelling of neurons
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1.3.1   The membrane potential equation
At the heart of many neuron models lies the membrane potential equation, which is 
derived by treating the neuron as an electrical circuit comprising: 

1) A resistor - The resistance of the membrane to current flow (R)
2) A capacitor – The capacitance of the membrane (C)
3) A current source – The current source can be:

a) Current through channels in the membrane. ionicI
b) Current through channels located at a synapse (which have their opening and             

closing controlled by another neuron) synI
c) An external current injected by the experimenter extI

                         
These components are in parallel. From Kirchoff’s first law (conservation of electric 
charge) we obtain the fundamental equation of neural membranes:

                                                                                      (1.1)                                      extsynionic III
dt
dVC −−−=

Where V is the membrane potential and t is time. 

Hodgkin and Huxley (1952) described how  can be ruled by voltage, detailing how ionicI
neurons can contain voltage-dependent currents that are opened and closed by the 
membrane potential. And just as Hodgkin and Huxley have provided a model for , ionicI
there are also models for . synI

A neuron that contains no voltage-dependent components can have its spatiotemporal 
distribution of membrane potential described by linear cable theory. This theory can be 
coupled with the Hodgkin-Huxley model to yield nonlinear cable theory.  

1.3.2   The Hodgkin-Huxley (H-H) model
Hodgkin and Huxley (1952) revolutionised electrophysiology with their quantitative 
characterisation of how ionic currents are driven by voltage, and how this dependence 
can account for action potential generation. They ingeniously deployed the voltage clamp 
technique (Cole, 1939) to dissect the excitability of the squid giant axon. Two voltage 
dependent currents, depolarising sodium and repolarising potassium, are the basis for 
squid giant axon action potentials. 

The starting point of the Hodgkin-Huxley model is that the membrane current  is the )( mI
sum of the ionic and capacitive currents:)( ionicI ))/(( dtdVCm

                                                                                                      (1.2)Ionicm I
dt
dVC −=

Where  is the membrane capacitance, V is the membrane potential and t is time.mC
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The ionic current in turn can be subdivided into the sodium current , the potassium )( NaI
current  and the leak current . The latter is due to chloride and other ions.)( KI )( leakI
  

    (1.3)              ionic Na K leakI I I I= + +

Ohm’s law linearly relates these currents to the driving potential. For example, for the 
potassium current:
                                                                          (1.4)( )K K KI g V E= −

 is related to the potassium permeability of the membrane and has units of Kg
conductance per unit area.  is the equilibrium potential for potassium. The equilibrium KE
potential (reversal potential) of an ion across a membrane follows the Nernst formulation. 
For example, for potassium:

   (1.5)
[ ]ln
[ ]

O
K

I

KRTE
zF K

=

Where R is the gas constant, T is the absolute temperature, F is the Faraday constant, z is 
the valence of potassium (1), and  are the potassium concentrations outside and OK ][ IK ][
inside the cell respectively.

The information embodied in the above equations can be represented as a membrane 
circuit diagram (Figure 1.7) and can be summarised in the H-H membrane equation, 
which describes a capacitance and three ionic currents in an isopotential patch of 
membrane:

                        (1.6)( ) ( ) ( )m m L L Na Na K K
dVI C g V E g V E g V E
dt

= + − + − + −

  
The potassium and sodium conductances ( and ) are voltage-dependent:  Kg Nag

(1.7)4
K Kg g n=

  (1.8)3
Na Nag g m h=

Where  and  are constants (with dimensions of conductance per unit area of Kg Nag
membrane) and n, m, h are dimensionless variables that obey first order kinetics, with 
voltage-dependent forward (α) and backward (β) rate constants. Hodgkin and Huxley 
estimated these by fitting empirical functions of voltage to the experimental data. 
Hodgkin and Huxley’s α and β functions for the n, m and h variables are displayed in Box 
1. 
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A first order kinetic scheme is described by a corresponding first order differential 
equation. For example, for the n variable:

              (1.9)( )(1 ) ( )n n
dn V n V n
dt

α β= − −

An alternative to using the rate constants,  and , is to use the derived voltage nα nβ
dependent time constant  and steady state value nτ ∞n

(1.10)
1

n
n n

τ
α β

=
+

(1.11)n

n n

n α
α β∞ =

+

With these new definitions, we can rewrite equation 1.9:

    (1.12)
( )

( )n

n V ndn
dt Vτ

∞ −
=

The solution of this equation predicts that when the membrane potential is stepped to a 
new value, and held there, n relaxes exponentially, at a rate , to its new value , where nτ ∞n

is the value of n at t = 0.0n

(1.13)0( ) ( )exp( )
m

tn t n n n
τ∞ ∞= − − −

To summarize, the membrane HH model, for the squid giant axon:

             (1.14)3 4( ) ( ) ( )m L L Na KNa K
dVC g V E g m h V E g n V E
dt

= − − − − − −

                                (1.15)( ( ) ) / ( )m
dm m V m V
dt

τ∞= −

                                 (1.16)( ( ) ) / ( )n
dn n V n V
dt

τ∞= −

                                 (1.17)( ( ) ) / ( )h
dh h V h V
dt

τ∞= −
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This four dimensional system of differential equations constitutes the H-H model for a 
small membrane patch, where spatial differential in voltage along the axon length is not 
significant. This model reproduces the stereotyped sequence of membrane events that 
give rise to the initiation and propagation of all-or-none action potentials.
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Box 1: Rate constants estimated by Hodgkin-Huxley for the squid giant axon at 
6oC. V and represent the membrane potential and resting membrane potential rV
respectively, in mV, as dimensionless quantities.   

1.3.3   The Hodgkin-Huxley model is a generic paradigm 
The Hodgkin-Huxley model describes the electro-activity of the squid giant axon, which 
has just two voltage-dependent conductances (sodium and potassium). Other neurons can 
have other voltage-dependent sodium and potassium conductances (differing in their 
voltage and time dependence) and can have conductances for other ions e.g. calcium. In 
fact, other neurons can be much more complex than the squid giant axon, with dozens of 
different voltage-dependent conductances. However, in remarkable testimony to the 
power of the Hodgkin-Huxley approach, it can accurately describe the majority of these 
conductances. 

Some conductances have been found that are not gated by voltage, but by the intracellular 
calcium concentration. And the Hodgkin-Huxley method can describe these with α and β 
terms that are empirical functions of the intracellular calcium concentration as opposed to 
voltage.     

1.3.4   Markov models
An alternative to Hodgkin-Huxley descriptions are Markov models of currents.  

Voltage gated currents flow through voltage-gated ion channels, which are 
transmembrane protein complexes containing a pore permeable to one or more ions, 
gated in an all-or-none fashion, according to the membrane potential (Hille, 1992; Kandel 
et al, 2000; Alberts et al, 1994; Koch 1999; Johnston and Wu, 1995). A voltage-gated ion 
channel, like other proteins, can exist in an infinite number of conformations, only a 
subset of which are stable. During channel opening, the S4 segments of the voltage-gated 
channel move and induce wider conformational changes that result in pore opening 
(Keynes and Elinder, 1999; Bezanilla 2000; Jiang et al., 2003). Probabilistic Markov 
models capture the conformations moved through in a finite number of model states 
(Patlak, 1991; Vandenberg and Bezanilla, 1991; Hille, 1992; Destexhe and Huguenard, 
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2000; Irvine et al, 1999). They assume that the transition probability between states 
depends only on the present state. Consider the state diagram:

                                                                                                (1.18)nSSS ⇔⇔ 21

Where represent distinct conformational states of the ion channel. Defining nSS ...1

as the probability of being in state at time t, and , as the transition ),( tSP i iS )( ji SSP →

probability from state  to state , allows a master equation depicting the time iS JS
evolution of to be built ),( tSP i

                                                                                   (1.19)
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On the left is a ‘source’ term detailing all transitions entering state . On the right is a iS
‘sink’ term detailing all transitions leaving state . The time evolution depends only on iS
the current state and is defined completely by the transition probabilities.

In the giga seal experimental preparation (Sakmann and Neher, 1995), single voltage-
gated channels can be observed opening and closing stochastically, with their probability 
of opening being dictated by the membrane potential (Johnston and Wu, 1995; Koch 
1999). Probabilistic Markov models are adept at reproducing such behaviour (Meunier 
and Segev, 2002). Markov models tend to be more accurate and powerful than Hodgkin-
Huxley models, although it is much more difficult to derive their parameters from 
experimental data (Destexhe and Huguenard, 2000). Also, given their added complexity, 
they tend to be more computationally intensive. 

In the modelling research of this thesis, our general approach is to model membrane 
currents with Hodgkin-Huxley descriptions (as detailed in Appendices A1 & A2). 
However, in one case – with the Purkinje cell’s resurgent sodium current – we employ a 
Markov description to capture its distinctive “resurgent” character (reactivation during 
repolarisation from positive potentials; Khaliq et al., 2003) (Appendix A2).  

1.3.5   Models of synaptic current
With a synapse, transmitter released from presynaptic terminals binds to postsynaptic 
receptors and temporarily opens a conductance for one or more ions. The synaptic current 
(i) flowing through this conductance (g) is given by:

                                                                                                           (1.21))( EVgi −=

Where V is the voltage, E is the reversal potential of the synaptic current. The value of E 
depends on what ions the conductance passes. For instance, if it passes 
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only/predominantly potassium ions then E will be EK (the reversal potential for potassium) 
at -80 mV. In this case the synapse is inhibitory because it opens a hyperpolarising 
current. 

The change in conductance (g) can be represented mathematically by an alpha function 
(Rall, 1967). 

                         For                            (1.22)⎟
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Where  is the maximal conductance, t is time, is the time that the change in maxg onsett
postsynaptic conductance begins and is the time constant of the synapse (the time taken τ
for g to change to ). maxg

Alternatively, the change in conductance (g) can be represented mathematically by a 
double exponential function: 
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Where g is the conductance, k is a normalisation coefficient,  is the maximal maxg
conductance, t is time, is the time that the change in postsynaptic conductance begins, onsett

 is the decay time constant, is the rise time constant and < .Dτ Rτ Rτ Dτ

The alpha and double exponential formalisms can approximate most synaptic currents 
with a small number of parameters, at low computation and storage requirements 
(Destexhe et al., 1995). However, the disadvantage of these approaches is that they lack 
correspondence to the biophysics of synapses. A more fundamental way to model 
synaptic currents would be based on the kinetic properties of the underlying synaptic ion 
channels (Destexhe et al., 1995). However, this is of course much more computationally 
expensive and not a methodology that we, ourselves, have used.  

1.3.6   Neuronal cable theory
In 1855, Lord Kelvin theoretically described the attenuation of signals in the submerged, 
transatlantic telephone cable – cable theory. A nerve fibre is quite similar to an undersea 
cable – both have a conducting core, covered with an insulating sheath, surrounded by 
salty water. And as the insulation is not perfect, there will be a finite leakage through the 
insulation. Cable theory can be, in a modified form, applied to neural processes (Rall, 
1989; Segev et al., 1995).   

The cable equation, describing the spatiotemporal distribution of membrane potential 
along a passive neural cylinder is:
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Where t is time, x is the distance along the cylinder, Vm is the voltage across the 
membrane and:

                                     The space constant                                             (1.25)
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                                   The time constant                                               (1.26)mmm CR=τ

Where Ri is the specific intracellular resistance, Rm is the specific membrane resistance 
and Cm is the specific membrane capacitance. 

Note that this description only holds if the membrane is passive/linear i.e. if its 
resistance/conductance is voltage-independent. In addition, this description has other 
sizable assumptions. Please refer to Rall (1989) and/or Segev et al. (1995) for a 
discussion of these. 

The cable formula is a partial differential equation, first order in time and second order in 
space. Interestingly, this type of parabolic differential equation is quite similar to the heat 
and diffusion equations. 

Starting in the late 1950s and early 1960s, the linear cable equation was solved by Rall 
and others to study the dynamics of the membrane potential and synaptic integration in 
passive, branching dendritic trees (Rall, 1989; Segev et al., 1995). This work considered 
active, voltage-dependent membrane conductances to be confined to the soma. However, 
what has subsequently emerged is that most, if not all, dendritic trees contain substantial 
voltage-dependent, nonlinear components (Koch and Segev, 1998). Despite this, Rall’s 
work is still very important because before we can understand active trees we should 
probably have an understanding of passive trees. Furthermore, under certain conditions 
(e.g. for small synaptic inputs), voltage-dependent nonlinearities do not come into play 
and dendrites act as if they are passive (Koch and Segev, 1998). 

When linear cable theory is coupled with formalisms for voltage-dependent nonlinearity 
(such as the Hodgkin-Huxley model) we have nonlinear cable theory. This is what we use 
in this work to model the cerebellar Purkinje cell. And we use it within the framework of 
compartmental modelling. 

1.3.7   Compartmental modelling
In compartmental modelling, instead of solving the continuous partial differential cable 
equation (linear or nonlinear) it is discretized into a system of ordinary differential 
equations that correspond to small patches of neuronal membrane which are isopotential 
(Koch and Segev, 1998). These “compartments” are then coupled by sparse matrices. 
This is discretization in space. There is also discretization in time. 
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This is a numerical method and a fundamental aim of any numerical method is that its 
solution should be as close to the exact solution as possible. This requirement places 
constraints on how sparsely space and time can be discretized in order to arrive at an – 
approximately – correct solution. Compartments must not be too few and the time step 
must not be too large. 

1.3.8   NEURON
We built our Purkinje cell model in the NEURON simulation environment, which is a 
suite specifically designed for the modelling of individual neurons and networks of 
neurons (Hines and Carnevale, 1997). NEURON programming is done with hoc, an 
interpreted language with C-like syntax, and with NMODL, a high-level programming 
language for expressing kinetic schemes and sets of simultaneous algebraic and/or 
differential equations. NEURON offers several different numerical integration methods 
and its computational engine achieves high efficiency by employing special algorithms 
that take advantage of the structure of the equations that describe neuronal properties. We 
used the NEURON suite, as opposed to the others available (e.g. GENESIS; Wilson et al., 
1989; for review of options see De Schutter, 1992) because it is the most active in 
development (new standard releases appear about twice a year, supplemented by bug 
fixes as needed) and in use (hundreds of scientific papers have been published using it as 
a research methodology). 

NEURON can import morphology files created in Neurolucida (mbf bioscience), which 
is a program that can trace a real neuron and assemble a computational representation of 
its anatomy. NEURON splits morphologies into isopotential compartments. The number 
of compartments determines the spatial resolution of the model.  If the number of 
compartments is too low, simulation results will be inaccurate.  If the number is too high, 
simulations will take longer than is necessary. The optimal number of compartments is 
empirical and found by trial and error. 

1.4   Previous Purkinje cell models
There are a number of previously published Purkinje cell models. The principal 
attainments/conclusions of these different models are:

1) The model of De Schutter and Bower (1994a), as with real Purkinje cells, can generate 
two different types of spiking behaviour. With small current injections, its soma fires Na+ 
spikes. With larger current injections, its dendrites fire Ca2+ spikes. This model has been 
seminal and it is the basis of all subsequent models, including our own. And it is still in 
use today, as De Schutter and Bower (among others) have been publishing papers from 
1994 to date exploring this model’s emergent properties. In De Schutter and Bower 
(1994b) they showed that the model could fire somatic Na+ spikes in response to 
simulated parallel fiber input and could fire complex spikes in response to simulated 
climbing fiber input. They showed that asynchronous inhibitory inputs could block 
dendritic Ca2+ spikes and added noise to the Purkinje firing response. In De Schutter and 
Bower (1994c) they used the model to show that dendritic calcium channels amplify 
small, synchronous synaptic inputs; that distal inputs get amplified more than proximal 
ones, resulting in a similar amplitude of the somatic response. Staub et al. (1994) used the 
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model to show that voltage attenuation from soma to dendrites increased under conditions 
where membrane conductance is increased by depolarization or by activation of 
inhibitory inputs, respectively. Jaeger et al. (1997) used the model to show that intrinsic 
dendritic currents strongly influenced the time course of the dendritic membrane potential 
and as a consequence, the timing of somatic spikes did not reflect the timing of particular 
synaptic inputs. De Schutter (1998) used the model to study the interaction between 
dendritic channels and synaptic background input, showing that they increase the somatic 
membrane potential fluctuations generated by the background input. Santamaria et al. 
(2002) used the model to show that background inputs from parallel fibers and molecular 
layer interneurons can have a substantial effect on the response of Purkinje cells to the 
ascending segment of granule cell axons. A temporal rank order code uses the temporal 
order of spikes, disregarding their precise timing, and Steuber and De Schutter (2002) 
used the model to show that Purkinje cells can implement rank order decoding of 
temporal parallel fiber input patterns. Solinas et al. (2006) used the model to show that 
voltage-gated ion channels in the dendrites amplify inhibitory postsynaptic potentials 
(IPSPs) so that their recorded amplitude and time course at the soma is not as dependent 
on the synaptic distance from the soma as predicted by passive cable theory. Steuber et al. 
(2007) used the model to investigate how Purkinje cells may learn to recognise parallel 
fiber activity patterns. 

2) The Purkinje cell model of Miyasho et al. (2001), which is a development of the De 
Schutter and Bower model (1994a), shows that the D-type K+ channel and the class-E 
Ca2+ channel regulate the onset of depolarization-induced Ca2+ spikes in Purkinje neurons. 

3) The Purkinje cell model of Chono et al. (2003), which is a development of the 
Miyasho et al. model (2001), suggested that the opening of Ca2+-dependent K+ channels 
by Ca2+ influx through voltage-gated Ca2+ channels hyperpolarizes the membrane 
potential and deactivates these Ca2+ channels in a negative feedback manner, resulting in 
local, weak Ca2+ responses in spiny dendrites of Purkinje cells.

None of these models however can reproduce the aforementioned spontaneous firing 
patterns (trimodal, bimodal). In fact, these models are intrinsically quiescent and cannot 
fire without external stimulation. The validity of these models must be questioned if they 
cannot replicate one of the most distinctive, and perhaps most important, 
electrophysiological features of purkinje cells. They also cannot replicate one of the most 
interesting behaviours of the Purkinje cell - the aforementioned “toggling” by climbing 
fiber input, which is a computation thought integral to cerebellar function.   
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Figure 1.1 A human brain with the cerebellum highlighted in purple. 
(Figure presented with permission, courtesy of the National Institute of Health, NIH) 

Figure 1.2 Photographs (and a drawing, b) of midsagittal sections taken through the 
cerebellum of 3 species. The outer surface of the cerebellum is a thin sheet of repeatedly 
folded grey matter, called the cerebellar cortex. Underneath this grey matter lies the white 
matter. There are a number of deep fissures which divide the cerebellum into ten lobes 
(labelled I to X in panel a). (Figure presented with permission, courtesy of David Wylie at 
the University of Alberta)
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Figure 1.3 The cell bodies of the 5 different cell types of the cerebellar cortex are 
arranged in 3 different layers: 

Molecular layer (stellate cells, basket cells) 
Purkinje cell layer (Purkinje cells)
Granule cell layer (Golgi cells, granule cells)

The molecular layer is the outermost; the granule cell layer is the innermost. (Figure 
presented with permission, courtesy of Tom Deerinck and Mark Ellisman at the National 
Center for Microscopy and Imaging Research, NCMIR)
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Figure 1.4 The cerebellar connectivity motif.  The Purkinje cell (P) receives inhibitory 
input from stellate (S) and basket cells (BC); excitatory input from parallel fibers (which 
originate from granule cells, G) and climbing fibers. The Purkinje cell integrates and 
computes with these inputs to form an output, which it then relays to the deep cerebellar 
nuclei (DCN). This Purkinje cell output is inhibitory to the DCN. (Figure presented with 
permission, courtesy of Peer Wulff at the University of Aberdeen)

Figure 1.4 Further/Supplementary detail to the figure. Climbing fiber inputs originate 
outside the cerebellum, in the inferior olivary nucleus of the medulla (in the brainstem). 
Parallel fiber inputs originate from granule cells in the cerebellar cortex. Mossy fibers 
excite these granule cells. Mossy fibers originate from outside the cerebellum, in many 
nuclei throughout the brainstem (such as the pontine nucleus).

The figure shows the Purkinje cell to have just four inputs: stellate, basket, parallel, 
climbing. However, two others have been found: 1) Inhibitory input from recurrent 
collaterals of the Purkinje cell axons. 2) Excitatory input from the ascending portion of 
the granule cell axons.

The cerebellar circuit also has golgi cells, not shown in the figure, which are inhibitory 
interneurons to the granule cells. They receive excitatory input from parallel fibers, 
mossy fibers, climbing fibers and are inhibited by axon collaterals from Purkinje cells.
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The synapses between mossy fibres and granule cells are located in the cerebellar
glomeruli, isolated structures that also contain two other types of synapses: excitatory
synapses between mossy fibres and Golgi cells, and inhibitory synapses between
Golgi cells and granule cells.

Basket cells receive input from parallel fibers, climbing fibers and Purkinje cell axon 
collaterals. Stellate cells receive input from parallel fibers. The DCN receives input from 
mossy fibers and climbing fibers. 

The DCN consists of the dentate, the fastigial and the interpositus nuclei. Each of the 
three nuclei sends projections to different brain areas.

In addition, the cerebellar cortex contains glial cells (not shown), which are not 
conventionally thought of as circuit components but as support elements (Kandel et al., 
2000) 

Parallel fibers connect to the most terminal dendrites of the Purkinje cell; the climbing 
fiber connects to the more proximal, main dendrites of the Purkinje cell. Basket cells 
project to the Purkinje cell bodies and stellate cells to the Purkinje dendrites.    

Parallel fibers pass through the cerebellar cortex orthogonal to the plane of Purkinje cell 
dendrites and a single parallel fiber will make a synaptic contact onto one in every 3-5 
Purkinje cells it passes. Parallel fibers tend to run for several mm. They also contact the 
four other cell types in the cortex – granule, golgi, stellate, basket.    
  
Stellate and basket cells are activated in a feed-forward manner by parallel fibres making 
direct contact with the Purkinje cell being recorded from (known as “onbeam” inhibition) 
as well as by parallel fibres adjacent to the Purkinje cell (“offbeam” inhibition (Eccles et 
al. 1967).
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Figure 1.5 (in vivo data from Lowenstein et al., 2005; presented with permission) An air 
puff (40 ms) to the ipsilateral vibrissae (in the figure, this is “Stim”) activates a climbing 
fiber and evokes a complex spike (marked by the filled circle) in this Purkinje cell. 

Sensory evoked complex spikes can toggle the Purkinje cell from up to down (upper 
panel) or down to up (lower panel)
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Figure 1.6 The trimodal firing pattern consists of tonic, burst and quiescent modes. 
Panels A and B show the trimodal firing pattern for two different Purkinje cells. 

(Panel A from McKay and Turner, 2005; Panel B from McKay et al., 2007. Both 
presented with permission)
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Figure 1.7 (Figure presented with permission, courtesy of David Sterrat at the University 
of Edinburgh) The membrane circuit is modelled with four parallel branches: 1) the 
capacitance, Cm; 2) the leak conductance, , which chloride ions (mostly) are driven Lg
through by ; 3) the sodium conductance, , which sodium ions are driven )( LEV − Nag
through by ; 4) the potassium conductance, , which potassium ions are )( NaEV − Kg
driven through by . The arrows for,  and , denote the voltage )( KEV − Nag Kg
dependence of these conductances.

28

                                              Chapter 2
The sodium-potassium pump controls the spontaneous firing 

of the cerebellar Purkinje neuron

2.1   Introduction
The cerebellum coordinates the execution and adaptation of motor behaviours (Ito, 1984). 
Cerebellar architecture is based on repeats of a well defined connectivity motif, at the 
centre of which is the Purkinje cell. Physiologically, the intrinsic firing of Purkinje cells 
is modulated by synaptic inputs but to understand the cerebellar circuit it is important to 
first understand the properties of each component in isolation. In this chapter we 
investigate the isolated cerebellar Purkinje cell.

Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal 
pattern. The trimodal pattern consists of tonic spiking, bursting and quiescence (Womack 
and Khodakhah, 2002, 2003, 2004; McKay and Turner, 2005). The bimodal pattern 
consists of tonic spiking and quiescence (McKay et al., 2005). It is unclear how these 
firing patterns are generated and what determines which firing pattern is selected. We 
have constructed a detailed biophysical Purkinje cell model that can replicate these 
patterns and which shows that Na+/K+ pump activity sets the model’s operating mode. 
This model has experimental validation in its ability to replicate presented in vitro 
Purkinje cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ 
pump.

The Na+/K+ pump is an enzyme that uses the energy of one ATP molecule to exchange 
three intracellular Na+ ions for two extracellular K+ ions (Glitsch, 2001). Thus the pump 
is electrogenic, extruding one net charge per cycle to hyperpolarize the membrane 
potential. 

The repeat length of the trimodal pattern is fixed for a single Purkinje cell but can vary 
among different Purkinje cells, in a range from 20 seconds to 20 minutes (Womack and 
Khodakhah, 2002). This second to minute duration of the trimodal behaviour is 
problematic to account for with the Hodgkin-Huxley paradigm because it is decoupled 
from the millisecond timeframe of ion channel kinetics (Hille, 2001). However, changes 
in intra-and-extra-cellular ion concentrations can span seconds to minutes (Frohlich et al., 
2006) and thus could drive the transition of modes in the trimodal pattern. Our 
biophysically detailed Purkinje cell model is a test of this hypothesis. In the model, the 
Na+/K+ pump controls the transition from tonic to burst firing by regulating the 
extracellular K+ concentration ([K+]o), which controls a Kv1.2 K+ channel “gate” to 
bursting. And the Na+/K+ pump’s electrogenicity generates the quiescent mode, upon 
regulation by the intracellular Na+ concentration ([Na+]i). During quiescence the ionic 
concentrations reset and the trimodal cycle starts again from the tonic phase. The Na+/K+ 
pump’s affinity for external K+ (KK) sets the duration of tonic firing and its affinity for 
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internal Na+ (KNa) sets the total duration of firing (tonic + bursting). If these affinities are 
modulated to make the total firing duration shorter than the tonic, then the model cell 
fires in the experimentally observed bimodal pattern repeat of tonic spiking and 
quiescence (McKay et al., 2005). If KNa is set equal to (or lower than) the basal [Na+]i, 
then the model cell becomes locked in quiescence (a behaviour reported for Purkinje cells; 
Llinas and Sugimori, 1980a; De Schutter and Bower, 1994a). 

Motor coordination is achieved with precise timing signals for augmentation and 
inhibition of appropriate agonist and antagonist muscles, and this timing information is 
believed to be encoded in the rate of firing and pattern of activity of cerebellar Purkinje 
cells (Ito, 1984). In this chapter, we show that the  Na+/K+ pump controls intrinsic 
Purkinje firing and propose that signalling cascades, which have been shown to modulate 
KNa and KK (Therien and Blostein, 2000), switch the Purkinje cell between different 
operating modes in the physiological setting. On this basis, we hypothesise that the 
Na+/K+ pump is a computational element in Purkinje information coding.

2.2   Materials and Methods
Numerical simulations. Simulations were performed with the NEURON 5.6 simulator 
(Hines and Carnevale, 1997), using its backward Euler integration method and 25 μs time 
steps. The model’s morphology is a detailed reconstruction of a Golgi-stained Purkinje 
cell (Fig. 2.1a), sourced from an adult rat (Shelton, 1985) and discretized into 1089 
compartments (soma: 1 compartment, smooth dendrites: 85 compartments, and spiny 
dendrites: 1003 compartments). A specific membrane capacitance of 0.8 μF/cm2 was 
used for the soma and smooth dendrites whilst 1.5 μF/cm2 was used for the spiny 
dendrites (Miyasho et al., 2001). Specific intracellular resistivity was set to 250 Ω/cm 
(Miyasho et al., 2001). The model was also run with a different experimentally 
reconstructed Purkinje cell morphology from guinea pig (Fig. 2.1b) (Rapp et al., 1994). 
This morphology was discretized into 946 compartments (soma: 1 compartment, 
dendrites: 945 compartments) and no distinction was made in regard to smooth and spiny 
dendrites. Global specific membrane capacitance was 0.8 μF/cm2 and global specific 
intracellular resistivity was 200 Ω/cm (Rapp et al., 1994).

The model incorporates twenty-one gated ion channels with descriptions established from 
the literature (descriptions reproduced in Appendix A.2). The soma has highly TEA 
sensitive (IK_fast), moderately TEA sensitive (IK_mid) and TEA insensitive (IK_slow) voltage-
gated K+ currents, a BK voltage-and-Ca2+-gated K+ current (IBK), a resurgent Na+ current 
(INa-R), a P-type Ca2+ current (ICaP) , a hyperpolarisation activated cation current (IH), a 
leak current (IL) and an intracellular Ca2+ dynamics abstraction - all sourced from Khaliq 
et al. (2003). In addition, the soma has an SK Ca2+-gated K+ current (ISK) (Komendantov 
et al., 2004). The dendrites have T-type (ICaT),  E-type (ICaE) and P-type (ICaP) voltage-
gated Ca2+ currents; a leak current (IL); A-type (IKA), D-type (IKD), M-type (IKM), and 
delayed rectifier (IDR) voltage-gated K+ currents; BK (IBK) and K2 (IK2) type voltage-and-
Ca2+-gated K+ currents and an intracellular Ca2+ dynamics abstraction - all sourced from 

30

Miyasho et al. (2001). In addition, the dendrites have a hyperpolarisation activated cation 
current (IH) (Saraga et al., 2003) and a Kv1 voltage-gated K+ current (IKv1) (Akemann and 
Knopfel, 2006). The latter is incorporated as a Kv1.2 description because it replicates 
Kv1.2 kinetic data from a Purkinje neuron (McKay et al., 2005). The model currents have 
equations and kinetic parameters as described in their source literature, but with the 
modification of current density values to those shown in table 2.1. Current densities were 
assumed to be uniform over the dendrites (as in many other modelling studies e.g.  De 
Schutter and Bower, 1994; Miyasho et al., 2001; Chono et al., 2003) because there are 
not data to suggest otherwise and in this absence we were ruled by parsimony. This 
assumption makes for a smaller and more manageable number of model parameters. The 
simulations were all run with a model temperature of 36 °C. 

The somatic Na+/K+ pump (density = ds
pump, 1 mA/cm2) transports 3 Na+ out 

for every 2 K+ in (Glitsch, 2001). It has a fixed voltage dependency )( _
s

Napumpi )( _
s

Kpumpi
(Lindblad et al., 1996) and an exponential relation (Baccus, 1998) to intracellular Na+ 
concentration ([Na+]i). The Na+ affinity constant (KNa) is 40 mM (Glitsch, 2001) and 
[Na]is is 1 mM (Baccus, 1998). V represents the membrane potential in mV as a 
dimensionless quantity.
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The dendritic Na+/K+ pump (density = dd
pump, 0.001 mA/cm2) has the same 3Na+:2K+ 

stoichiometry but no voltage dependency and a hyperbolic relation to extracellular K+ 
concentration ([K+]o) (Courtemanche et al., 1998). The K+ affinity constant (KK) is 2.245 
mM (Glitsch, 2001).
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Somatic intracellular Na+ concentration ([Na+]i) is initiated at 10 mM (Baccus, 1998) and 
then changes in time t according to the relationship:

                                    (Canavier, 1999)                                (2.3)
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Where  and are Na+/K+ pump Na+ currents at the soma, set by eq. [2.1] s
Napumpi _

s
NapumpI _

and eq. [2.16] respectively.  is the  voltage-gated Resurgent Na+ current (description RNaI −

in Appendix A.2), is the Na+/Ca2+ exchanger Na+ current (set by eq. [2.15]), F is s
NaexI _

the Faraday constant and d is the somatic diameter. INa_net (eq. [2.4]) is the difference 
between Na+ current flowing into the soma (INa_in; eq. [2.5]) (Na+ ions flowing through 
the voltage-gated Resurgent Na+ conductance and the Na+/Ca2+ exchanger) and Na+ 
current pumped out of the soma by the Na+/K+ pump (INa_out; eq. [2.6]), lagged by 
parameter τ = 5s. Tau (τ) is a factor that we have introduced and is not found in the 
original Canavier (1999) description. Intracellular Na+ stimulates the Na+/K+ pump and 
this empirical lag τ accounts for the duration of sodium's diffusion from channels to 
pumps. It aligns with the concept of a “fuzzy space” under the pump where the Na+ 
concentration differs from other parts of the cell (Semb and Sejersted, 1996; for a further 
justification refer to section 2.4, the Discussion component of this chapter). The model 
represents Na+ diffusion empirically, with this τ parameter, because a more explicit 
account would be ill constrained by the literature and too computationally expensive; 
intracellular diffusion processes have a much shorter spatial scale than electrical 
signalling and so their modelling requires a higher nseg value (the number of internal 
points at which NEURON computes solutions in each compartment; Hines and Carnevale, 
1997) to attain spatial accuracy.

Extracellular K+ concentration ([K+]o) to the dendritic compartments is initiated at 2 mM 
and then changes in time t according to the relationship:
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Where F is the Faraday constant, wid is the thickness of an extracellular region around 
the compartment that K+ accumulates in (70*10-3 μm), Q is a K+ accumulation factor 
(0.143) and IK_net (eq. [2.8]) is the difference between K+ current flowing out of the 
compartment [IK_out] (through gated K+ conductances, eq. [2.9]) and K+ current pumped 
into the compartment [IK_in] (by the Na+/K+ pump, eq. [2.10]). K+ ions flow out of the 
model dendrites through the D-type (IKD), A-type (IKA), M-type (IKM), delayer rectifier 
(IDR), BK (IBK), K2 (IK2) and Kv1 (IKv1) K+ currents (current descriptions in Appendix 
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A.2). The Na+/K+ pump K+ current in the dendrites: is set by eq. [2.2] and  d
Kpumpi _

d
KpumpI _

is set by eq. [2.13].

A “ceiling” for extracellular K+ accumulation is set physiologically by the glial buffer 
system (Heinemann and Lux, 1977; Kager et al., 2007) and accordingly the model [K+]o 
is not permitted to exceed 3.03 mM (Bazhenov et al., 2004) through code of the form: if ( 
[K+]o>3.03 ) [ [K+]o= 3.03 ].

Formula [2.7] is a modification of the extracellular K+ accumulation equation employed 
by Durstewitz et al. (2000) which is reproduced below: 

                                                                  (2.11)
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Their wid setting is the same (70*10-3 μm) but Durstewitz et al. (2000) utilise a Q value 
of 2 as opposed to our employed 0.143. We adjusted Q as a free parameter in our model 
tuning because this arbitrary factor is not constrained by the experimental literature. 
Durstewitz et al. (2000) have no Na+/K+ pump mechanism in their model and hence no 
IK_in parameter, only having an IK_out parameter. Their formulation has an additional term 
on the right hand side (RHS), setting a decay to the extracellular K+ accumulation, where 
[K+]eq is the equilibrium/resting value of [K+]o and τK is the time constant with which it 
approaches this resting value. This term is an abstractive capture of cellular processes 
acting against extracellular K+ accumulation, primarily the action of the Na+/K+ pump 
(IK_in). In our work, we model the Na+/K+ pump explicitly and so this term is redundant 
and dropped from our description of extracellular K+ dynamics. 

The model dendrites have two different Na+/K+ pump mechanisms. One has already been 
described (eq. [2.2]). The other is more abstractive (eq. [2.13]). It is included in the model 
to capture our hypothesis (which is founded in the experimental work of Genet and Kado, 
1997; refer section 2.3.7 of this Chapter) that the hyperpolarising Na+/K+ pump current 
electrically balances a depolarising Na+/Ca2+ exchange current. A simple Na+/Ca2+ 
exchanger mechanism is included in the model dendrites (eq. [2.12]). The use of an 
additional, simple Na+/K+ pump formalism, to offset the inclusion of a simple Na+/Ca2+ 
exchanger formalism, facilitated tuning the model such that the Na+/Ca2+ exchanger 
current was fully counter-balanced.

Convention permits inward (depolarising) currents to be denoted negative and outward 
(repolarising) currents to be denoted positive (Johnston and Wu, 1995). The Na+/Ca2+ 
exchanger current ( ; eq. [2.12]) is net depolarising (-1), inwardly passing 3 singly d

netexI _

positive Na+ ions (3*[+1]) for the extrusion of every doubly positive Ca2+ ion (1*[+2]) 
(Philipson, 1985). By contrast, the Na+/K+ pump current ( ; eq. [2.13]) is net d

netpumpI _

hyperpolarising (+1) in its transport of 3 Na+ out (3*[+1]) for every 2 K+ in (2*[+1]).
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ex and gd

pump are Na+/Ca2+ exchanger and  Na+/K+ pump membrane current densities 
(respectively) in the dendrites and their equality at 0.0021 mA/cm2 ensures an electrical 
counterbalance So, the model dendrites have a Na+/Ca2+ exchanger current and an 
electrically counterbalancing Na+/K+ pump current:
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The model’s soma compartment also has a simple Na+/Ca2+ exchanger mechanism (eq. 
[2.15]; exchanger density = gs

ex) and a counterbalancing, simple Na+/K+ pump 
mechanism (eq. [2.16]; pump density = gs

pump). Thus, the soma compartment, like those 
of the dendrites, has both a detailed Na+/K+ pump description (eq. [2.1]) and a simpler 
Na+/K+ pump description (eq. [2.16]) in parallel. 
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In the soma compartment, the Na+/K+ pump current of equation [2.16] largely, but 
incompletely, counterbalances the Na+/Ca2+ exchanger current of equation [2.15] – there 
is a slight mismatch [gs

ex = 0.511 mA/cm2, gs
pump = 0.5 mA/cm2] (eq. [2.17]) which 

permits a small net influx of Na+ ions and a continued Na+ influx into the soma when the 
Resurgent Na+ conductance is removed to simulate TTX block of voltage-gated Na+ 
currents; this mismatch permits the model to replicate the Purkinje cell behaviour 
observed upon TTX application (refer section 2.3.5 of this Chapter). 
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The Purkinje cell model has four Na+/K+ pump equations ([2.1], [2.2], [2.13], [2.16]) and 
so four Na+/K+ pump densities  which we can represent as ),g,d,(d d

pump
d
pump

s
pump

s
pumpg

where superscript [s] denotes a density at the soma and superscript )ds,x;g,(d x
pump

x
pump =

[d] denotes a density in the dendrites. represents the density of a detailed Na+/K+ pumpd

pump formalism (eq. [2.1], [2.2]) as opposed to , which represents the density of a pumpg
more simplified Na+/K+ pump description (eq. [2.13], [2.16]). So, the soma has a detailed 
and simplified Na+/K+ pump formalism (with densities  and  respectively) ][ds

pump ][gs
pump

and the dendrites have a detailed and simplified Na+/K+ pump formalism (with densities 
 and  respectively).][dd

pump ][gd
pump

The model’s four different Na+/K+ pump equations are each valid and founded in 
previously published Na+/K+ pump descriptions. They capture different aspects of Na+/K+ 
pumping. The first captures [Na+]i and voltage dependency (eq. [2.1]), the second 
captures [K+]o dependency (eq. [2.2]), the third and fourth (eq. [2.13], [2.16]) are 
essentially equivalent and capture the electrical counterbalance to the Na+/Ca2+ exchanger 
current. It would be preferable to have these pump aspects in a single formalism. 
However, this would have greatly increased the complexity of tuning the model, which 
was methodologically unacceptable. 

Ouabain irreversibly blocks the Na+/K+ pump (Glitsch, 2001). An increasing proportion 
of Na+/K+ pump molecules being blocked by ouabain is replicated in the model by 
decreasing the model's four Na+/K+ pump densities (dx

pump,. gx
pump, x = s,d ) by empirical 

functions of time t (in seconds):  

(Ouabain simulation is arbitrarily initiated at t = 3 s)
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Where x=s,d; Y=0.1 mA cm-2 s-1; c1
s=0.002 mA cm-2 s-1; c1

d=0.01 mA cm-2 s-1; M=0.1 
mA cm-2 s-1; c2

s=0.011 mA cm-2 s-1; c2
d=0.055 mA cm-2 s-1                                    (2.18)

Catch coding, which is code of the form: if (x<0) [x=0], is used to prevent negative 
values of (dx

pump,. gx
pump, x = s,d ) from occurring. 
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To illustrate the sensitivity of the model to the KNa, KK and τ parameters a variant of the 
model was constructed in which they were modified. KNa was changed from 40 mM to 
10.5mM, KK from 2.245 mM to 50 mM and τ from 5s to 1s. 

GABAergic Stellate inputs make inhibitory synaptic contacts upon the model dendrites; 
two inputs to every smooth dendrite compartment and one input to every spiny dendrite 
compartment (De Schutter and Bower, 1994b). They fire asynchronously, following a 
Poisson distribution around a mean frequency of input (1 Hz). Their reversal potential is -
80mV, with a synaptic weight of 0.001 μS and their amplitude upon activation follows a 
dual exponential time course (τ1 = 0.9 ms; τ2 = 26.5 ms) (De Schutter and Bower, 1994b). 
These model inputs can be removed to simulate pharmacological blocking of GABAergic 
synapses.

All parameters were established by prior literature (as referenced) except the twenty-one 
current densities, the Na+/K+ pump and Na+/Ca2+ exchanger densities, the synaptic weight, 
Q, τ  and the functions of Na+/K+ pump density decline used in the simulation of ouabain 
application. These were all ill constrained by the literature and tuned manually.

Preparation of cerebellar slices. Parasagittal slices of cerebellum (250 μm) were 
prepared from male Wistar rats, at postnatal days 28-35 (P28-35), with methods based on 
(Llinas and  Sugimori, 1980).  As described previously (Wall and Usowicz, 1997) and in 
accordance with the U.K. Animals (Scientific Procedures) Act (1986), male rats were 
killed by cervical dislocation and decapitated.  The cerebellum was rapidly removed and 
slices were cut on a Microm HM 650V microslicer in cold (2-4ºC) high Mg2+, low Ca2+ 
aCSF, composed of (mM): 127 NaCl, 1.9 KCl, 7 MgCl2, 0.5 CaCl2, 1.2 KH2PO4, 26 
NaHCO3, 10 D-glucose (pH 7.4 when bubbled with 95% O2 and 5% CO2).  Slices were 
stored in normal aCSF (1.3 mM MgCl2, 2.4 mM CaCl2) at room temperature for 1-6 
hours before recording.

Electrophysiological recording. Individual slices were viewed on a Zeiss FS Axioskop 
microscope with a 40× water immersion objective and Nomarski differential interference 
optics, at a total magnification of 640×.  Slices were maintained at 30-32°C and 
continuously perfused (1-5 ml min-1) with aCSF, which was bubbled with 95% O2 and 5% 
CO2.  Whole-cell patch-clamp recordings were made from visualized Purkinje cells using 
an EPC 8 amplifier (Heka, Digitimer, Welwyn Garden City, UK) controlled via a 
Digidata 1322a interface (Axon Instruments INC, Foster City CA, USA) using Clampex 
(v 9, Axon Instruments).  Patch-pipettes (thick-walled borosilicate glass, Harvard 
Apparatus, Edenbridge, UK) were fire-polished, and had resistances of 1.5-4 MΩ when 
filled with an intracellular solution containing (mM): 135 K gluconate, 7 NaCl, 10 
HEPES, 0.5 EGTA, 2 Na2-ATP 0.3 Na2-GTP and 10 mM Na phosphocreatine (adjusted 
to pH 7.2 with KOH and osmolarity adjusted to 300 mOSM with sucrose).  Aliquots of 
intracellular solution were stored frozen at -20ºC and thawed on the day of recording.  
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Drugs. Drugs were dissolved at 1-100 mM in deionised water: bicuculline methiodide 
(Sigma), TTX (tetrodotoxin, Advent Scientific) and ouabain (Sigma). Aliquots of these 
stock solutions were stored frozen at -20°C, thawed and diluted in perfusion medium on 
the day of recording.  All drugs were bath applied. 

2.3   Results
2.3.1   The Purkinje cell model can replicate the trimodal pattern of spontaneous 
firing

In the absence of synaptic input, the model Purkinje cell fires spontaneously in a 
repeating trimodal pattern that consists of tonic spiking (t), bursting (b) and 
silence/quiescence (s) (Fig. 2.1). Significantly, the model captures the long timescale 
reported for Purkinje cell trimodality (Womack and Khodakhah, 2002), with a pattern 
repeat length of ~20 seconds. 

There is some uncertainty as to whether the trimodal firing pattern is intrinsically 
generated or a function of neuromodulatory input (Womack and Khodakhah, 2002). This 
replication of trimodal firing in an experimentally constrained and detailed model of an 
isolated Purkinje cell adds significantly to the case for intrinsic generation. 

The model soma can fire sodium spikes (Fig. 2.1c) and the model dendrites can fire 
calcium spikes (Fig. 2.1d), which is in alignment with experimental findings (Llinas and 
Sugimori, 1980a, 1980b). A comparison of figures 2.1c and 2.1d shows that the model’s 
tonic mode (t) is somatic spiking in the absence of dendritic spiking. Whilst the model’s 
burst mode (b) is produced by dendritic spikes propagating to the soma to drive somatic 
bursting. 

A single dendritic calcium spike initiates and terminates each somatic burst, producing a 
stereotypical burst waveform (Fig 2.1e). The leading foot of the dendritic calcium spike 
(Fig. 2.1e iii, denoted by #) causes the slow progressive depolarisation during the burst 
(Fig. 2.1e iv, denoted by &). The peak of the dendritic calcium spike (Fig. 2.1e iii, 
denoted by *) causes the sudden and rapid depolarisation that ends the burst (Fig. 2.1e iv). 

The model’s relationship between dendritic spikes and trimodal bursting is in alignment 
with experimental data, where a similar stereotypical burst waveform has been observed 
(Womack and Khodakhah, 2004). The frequency of dendritic spiking sets the model’s 
burst parameters. For example, the Kv1.2 K+ channel limits the frequency of dendritic 
calcium spikes and its removal from the model permits a higher frequency of dendritic 
firing (Fig. 2.1h i), which decreases the number of spikes per burst (Fig. 2.1h ii). This 
replicates experimental data recorded when Kv1.2 channels were pharmacologically 
blocked (McKay et al., 2005). 
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2.3.2   In the model, the Kv1.2 channel gates the trimodal pattern's tonic to burst 
transition

The model dendrites have an intrinsic capacity to fire Ca2+ spikes. Their low-threshold T-
type and E-type voltage-gated Ca2+ channels open near the resting potential and they 
depolarise the membrane potential to activate high-threshold P-type voltage-gated 
calcium channels. These P-type Ca2+ channels then produce Ca2+ spikes, which are 
repolarised by K+ flow through BK-type K+ channels (in alignment with Miyasho et al., 
2001). 

This system is gated by dendritic Kv1.2 voltage-gated K+ channels. Kv1.2 channels 
generate hyperpolarizing current which clamps dendritic excitability and prevents Ca2+ 
spike generation, thus allowing the tonic mode of firing. However, the power of this 
excitability clamp diminishes with time because extracellular K+ accumulates and this 
reduces the electrochemical driving force for potassium flow. Eventually the 
hyperpolarizing current produced by Kv1.2 channel activity is insufficient to prevent 
dendritic spiking and the model is switched from the tonic to the burst mode. 

The control of the tonic to burst transition by Kv1.2 channels enables the model to 
replicate an experimental investigation in which Kv1.2 channel block dramatically 
shortened the tonic phase within the trimodal pattern (fig. 2.1f) (McKay et al., 2005).

2.3.3   In the model, the Na+/K+ pump generates the trimodal pattern's quiescent 
phase

The Na+/K+ pump hyperpolarizes the membrane potential with a stoichiometry of three 
internal Na+ ions exchanged for every two external K+ ions (methods). The Na+ 
concentration in a "fuzzy space" underneath the pump ([Na+]i) rises during the tonic and 
burst firing modes, as a function of voltage-gated Na+ entry, and this intracellular Na+ 
enzymatically increases pump activity (methods). Eventually, during the bursting mode, 
the pump generates such a hyperpolarising current that firing stops and the model cell is 
driven to quiescence. In this case, without any spike associated Na+ entry, [Na+]i would 
be expected to stop rising. However, [Na+]i continues to increase as the Na+ influx is 
lagged by an empirical parameter τ (methods), which phenomenologically encodes the 
long duration of Na+ diffusion from the Na+ channel to Na+/K+ pump (discussion). When 
τ expires, Na+ influx stops whilst the pump maintains Na+ efflux. This decreases [Na+]i, 
which reduces hyperpolarising pump activity and eventually permits the model’s 
spontaneous firing to resume. Firing resumes in the tonic spiking mode, rather than in the 
bursting mode which preceded the quiescence, as during the quiescence the Na+/K+ pump 
resets the extracellular K+ concentration and the Kv1.2 channels block to bursting. Thus, 
the trimodal pattern is reset for another cycle. 
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2.3.4   The model can account for the heterogeneity in trimodal repeat length 
between different Purkinje cells

The trimodal repeat length is the duration of a single repeat of the trimodal pattern. It is a 
constant for an individual Purkinje cell but can vary from 20 seconds to 20 minutes 
between different cells (Womack and Khodakhah, 2002). The model reproduces the fixed 
repeat length for a single cell and identifies the mechanistic basis of the cell-to-cell 
heterogeneity. 

The Na+/K+ pump’s affinity for internal Na+ (KNa model parameter) sets the “firing 
length”, which is the combined duration of the tonic and bursting modes. The lower KNa, 
the less intracellular Na+ required for stimulating the Na+/K+ pump to produce a 
hyperpolarisation that can silence firing, which equates to a shorter period of Na+ entry i.e. 
a shorter “firing length” (Fig. 2.2b). Reported KNa values vary in the literature (Glitsch, 
2001) and thus it is feasible that KNa could vary between Purkinje cells.

The Na+/K+ pump’s affinity for external K+ (KK model parameter) sets the duration of 
tonic firing. The higher KK, the shorter the tonic mode (Fig. 2.2c). KK exerts this control 
by regulating the rate of extracellular K+ accumulation. Reported KK values vary in the 
literature (Glitsch, 2001) and thus it is feasible that KK could vary between Purkinje cells.

Intracellular Na+ dynamics (encoded by the τ model parameter) set the duration of the 
quiescent mode. The smaller τ, the shorter the quiescent phase (Fig. 2.2d). Na+ dynamics 
are complex and embrace many constituent parameters, some of which could feasibly 
vary between different Purkinje cells.

KNa, KK and τ are hypothesised to be fixed constants for a single cell but with the 
potential to vary between different cells. A model variant was constructed in which these 
three parameters were modified. KNa was changed from 40 mM to 10.5mM, KK from 
2.245 mM to 50 mM and τ  from 5 s to 1 s. This variant had a trimodal repeat length of 
~3 seconds (Fig. 2.2e, Fig 2.4a) as compared to the ~20 seconds of the standard model 
(Fig. 2.2a). This shorter repeat length is not within the experimentally reported range 
(Womack and Khodakhah, 2002). However, this model variant will now be the standard 
model preparation for the remainder of this report as the shorter repeat length is more 
practical for simulations of multiple trimodal repeats. Our Purkinje cell model is 
computationally expensive to run, with 22 minutes of CPU time required for 1 second of 
simulation (on an Intel Pentium PC). This shorter repeat variant has enabled faster rates 
of investigation, whilst its length is still sizeable and has a proven relation to a longer, 
realistic pattern length. 

The model cell has a morphology reconstructed from a Purkinje cell in an adult rat 
cerebellum (fig. 2.1a) (Shelton, 1985). When the model was re-run with the same 
parameters, but with a different reconstructed morphology (fig. 2.1b) (from guinea pig, 
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Rapp et al., 1994), the trimodal repeat length was not greatly changed (Fig. 2.2f). This is 
despite the second morphology being visually distinct. This suggests that morphology is 
not a primary dictator of the trimodal repeat length. Although it does appear to dictate the 
number of spikes per burst, with the second morphology having more spikes per burst 
than the first (15 as compared to 11). 

2.3.5   The model's soma and dendrites can both fire spontaneously
The model has a soma capable of spontaneously firing sodium spikes and a dendritic tree 
capable of spontaneously firing calcium spikes. Thus, the model’s dendritic spiking is not 
reliant upon an excitatory drive from the soma. This enables the model to replicate the 
persistence of dendritic Ca2+ spikes (Fig. 2.3b) when Na+ channels are blocked (by TTX; 
Womack and Khodakhah, 2004) (TTX block is simulated in the model by setting the 
resurgent sodium current density to 0). These dendritic spikes propagate to the soma 
where they produce small deflections in the membrane potential (Fig. 2.3a). In the model 
dendrites, the hyperpolarisation activated cation current, Ih, is essential to the model's 
dendritic spontaneity. Without Ih the dendrites cannot fire Ca2+ spikes spontaneously, 
only in the presence of somatic drive (data not shown). The importance of Ih in the 
Purkinje cell’s electrical response to TTX has been shown experimentally (Chang et al., 
1993). 

In the presence of TTX, somatic activity is bimodal with periods of Ca2+ spike firing 
alternating with periods of quiescence (Womack and Khodakhah, 2004). The model can 
replicate this pattern (Fig. 2.3a), with the quiescent periods generated by the electrogenic 
action of the Na+/K+ pump (as with the trimodal pattern). In this TTX simulation, though 
there is no resurgent Na+ entry, stimulatory Na+ to the Na+/K+ pump can still enter 
through the Na+/Ca2+ exchanger. 

2.3.6   The model can replicate other patterns of Purkinje cell firing

Some Purkinje cells express the trimodal firing pattern without pharmacological 
manipulation while others express it only upon the condition that GABAergic synaptic 
inputs are blocked (Womack and Khodakhah, 2002). In our experimental Purkinje cell 
recordings, we observed a repeating bimodal pattern of tonic spiking and quiescence 
when GABAergic connectivity is intact and only observed the trimodal firing pattern 
upon pharmacological block of GABA synapses. 

GABAergic stellate cells make inhibitory synaptic contacts upon the dendrites of 
Purkinje cells (De Schutter and Bower, 1994b). When these inputs are introduced into the 
Purkinje cell model they clamp the dendritic excitability and prevent Ca2+ spike 
generation. Thus, they prevent the tonic to bursting transition and switch the model from 
firing in a trimodal pattern to firing in a repeating bimodal pattern of tonic spiking and 
quiescence (fig. 2.4b). 
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Some Purkinje cells intrinsically fire in this repeating bimodal pattern, in the absence of 
synaptic input (McKay et al., 2005), and with adjustment the model can reproduce this 
behavior. For the model, we shall term the length of firing (tonic and/or bursting) that can 
happen before the pump gains enough strength to overcome it, and cause quiescence, as 
the “pump repeat length”. This is dictated by KNa. And we shall term the length of tonic 
spiking that can happen before the onset of bursting as the “tonic repeat length”. This is 
dictated by KK, which sets the loss rate of the Kv1.2 channel gate to bursting. These two 
lengths are fixed for a particular model cell but can vary between different model cells. If 
[pump repeat length > tonic repeat length] then the model cell fires in a trimodal pattern 
(Fig. 2.4a). If [tonic repeat length > pump repeat length] then the model cell fires in a 
bimodal pattern (Fig. 2.4c) - no bursting is observed because the pump drives the model 
cell to quiescence before it can occur. A model cell can be switched from bimodal to 
trimodal firing, or vice-versa, by changing the KNa or KK values to modify the relation of 
“pump repeat length” to “tonic repeat length”. 

An intrinsically bimodal model cell can be switched to trimodal firing by blocking the 
Kv1.2 current (setting Kv1.2 channel density to 0) (Fig. 2.4d). This has experimental 
support with McKay et al. (2005) observing that pharmacological block of Kv1 channels 
can switch a bimodal Purkinje cell into bursting; with the pertinent Kv1 channel reasoned 
by the authors to be Kv1.2. Physiologically, we can speculate that Kv1.2, with its acute 
phosphorylation control (Huang et al., 1993; Winklhofer et al., 2003; Colley et al., 2004), 
might be an “online” molecular switch between the bimodal and trimodal firing modes. 

A model cell firing in the trimodal pattern can be switched into the bimodal pattern by 
removing its dendritic P-type Ca2+ channel complement (Fig. 2.4e) such that it can no 
longer fire dendritic Ca2+ spikes. This replicates Purkinje data recorded when the 
dendritic P-type Ca2+ channels were pharmacologically blocked (Womack and 
Khodakhah, 2004).

Without synaptic input, not all Purkinje cells fire spontaneously - some are quiescent 
(Llinas and Sugimori, 1980a; De Schutter and Bower, 1994a). The model’s basal 
intracellular Na+ concentration is 10mM (methods) and setting KNa to 10 mM, which is a 
realistic value (Glitsch, 2001), locks the model cell in continuous quiescence (data not 
shown). It is worth mentioning that the persistently quiescent Purkinje state might be 
erroneous and that when quiescence is experimentally observed (Llinas and Sugimori, 
1980a) it is not a continuous operating mode in its own right, but just a component of the 
trimodal or bimodal patterns. Our model is neutral to this debate, being able to replicate 
either scenario.  

2.3.7   The model replicates the response of Purkinje cells to Na+/K+ pump block by 
ouabain
As an objective assay of the model's validity we investigated whether it could predict the 
Purkinje cell response to the application of ouabain. This is an experimental test that the 

41



model has not been specifically tuned to capture and the ability of a model to predict/fit 
data not used in determining its parameters is an independent measure of how well the 
model approximates reality. Ouabain inhibits the Na+/K+ pump irreversibly (Glitsch, 
2001) and thus, after ouabain application, the proportion of pump molecules blocked 
increases in time until eventually all pump activity is abolished. Ouabain application was 
simulated in the Purkinje cell model by decreasing the Na+/K+ pump densities by 
arbitrary functions of time (methods), which switched the model’s trimodal firing pattern 
into a continuous burst mode that converged upon depolarization block. This same 
transition was observed experimentally in whole cell patch clamp recordings from 
Purkinje cells (firing in the trimodal pattern) following the application of 2.5 μM ouabain 
(with 10 μM bicuculline present to block GABAergic inputs) (n = 4). After noting that 
the model and experimental response to ouabain matched, validating the model, we then 
tuned the model’s pump density decline functions to generate a best fit between model 
(Fig. 2.6) and data (Fig. 2.5).    

In the Purkinje cell response to ouabain (real or simulated), the duration of the trimodal 
pattern’s quiescent periods became shorter until firing was continuous (Fig. 2.5a) (Fig. 
2.6a). The duration of the trimodal pattern’s tonic mode also decreased, leading to an 
increased proportion of burst firing (compare Fig. 2.5b and 2.5c) (compare Figs. 6b, 6c 
and 6d). Indeed, by the time cells were continuously active the firing only consisted of 
bursts, with no tonic mode remaining (Fig. 2.5d) (Fig. 2.6e). An experimental 
hyperpolarisation of the membrane potential could not prompt the re-emergence of the 
tonic or quiescent modes (n = 3). After a time, this continuous bursting attained a shallow 
gradient of depolarisation that eventually converged upon somatic depolarisation block 
(Fig. 2.5a) (Fig. 2.6a). This block was furrowed with small deflections in the membrane 
potential (Fig. 2.5e) (Fig. 2.6f), which are attributable to Ca2+ spikes that have travelled 
from the dendrites. So, although the soma was in depolarisation block the dendrites were 
not and continued to fire. In some cells these deflections got smaller and smaller until 
there was complete quiescence, which suggests that in these cases the dendrites entered 
depolarisation block as well (data not shown). During the progression to somatic 
depolarisation block, the number of Na+ spikes per burst decreased (Figs. 2.5f, 2.5g, 2.5h) 
(Figs. 2.6g, 2.6h, 2.6i) until there were none and only Ca2+ spikes (from the dendritic 
arborisation) were observed (Fig. 5i) (Fig. 6j). During the somatic depolarisation block, 
an experimental hyperpolarisation of the membrane potential brought re-emergent Na+ 
spiking and showed this block to be a function of Na+ channel inactivation. However, this 
recovery could not occur if the hyperpolarisation was introduced too long after the onset 
of depolarisation block, perhaps because these Na+ channels become irreversibly 
inactivated in time. 

With this matching experimental and model response to ouabain, the loss of the quiescent 
mode shows the Na+/K+ pump to generate trimodal quiescence. The loss of the tonic 
mode shows that the Na+/K+ pump controls the tonic to burst transition through its setting 
of extracellular [K+], which controls a Kv1.2 channel “gate” to bursting. The 
depolarisation block demonstrates that the Na+/K+ pump is required to counterbalance a 
strong and depolarising force. Indeed, the pump has been reported to offset a depolarising 
tetrodotoxin (TTX) resistant Na+ entry in the Purkinje cell (Genet and Kado, 1997). The 

42

model incorporates a hypothesis that this Na+ entry is through the Na+/Ca2+ exchanger, 
which has been to be shown present in Purkinje cells (Fierro et al., 1998). The Na+/Ca2+ 
exchanger is net depolarising (-1), inwardly passing 3 Na+ ions for the extrusion of every 
Ca2+ ion (Philipson, 1985). By contrast, the Na+/K+ pump is net hyperpolarising (+1) with 
a stoichiometry of [3 Na+ out: 2 K+ in] (Glitsch, 2001). The model soma and dendrites 
have a Na+/Ca2+ exchanger and an electrically counterbalancing Na+/K+ pump 
mechanism (methods). With pump loss the counterbalance to the depolarising force of the 
Na+/Ca2+ exchanger is lost and depolarisation ensues. The sizable exchanger density at 
the soma, when not counterbalanced by the pump, puts the soma into depolarisation block. 
However, the lesser exchange density in the dendrites, when not counterbalanced by the 
pump, cannot put the dendrites into depolarisation block. We predict that the somatic 
depolarisation block in the Purkinje response to ouabain would be abolished by 
pharmacological block of the Na+/Ca2+ exchanger.

The reader must be aware that Na+/K+ pump block might eradicate quiescence, not 
because the Na+/K+ pump generates quiescence (per se), but because this block causes 
depolarisation which compromises the activity of the true entity responsible. This is 
actually a problem inherent to many pharmacological block experiments that seek to 
parse the function of individual neuronal currents. By knocking out a current, the voltage 
trajectory is changed and in interpretation one is then unsure as to whether functional 
changes are due to that loss or due to changes in (an)other current(s), which is regulated 
by the membrane potential. We did control experiments where we injected 
hyperpolarising current to counter the depolarisation (n=3) and in which we still 
observed the loss of the quiescent mode. However, this injection was at the soma and it 
probably didn’t prevent depolarisation in the entirety of the elaborate dendritic tree. So, it 
is with this caveat that we propose the Na+/K+ pump as the generative mechanism to 
trimodal quiescence. 

Before we considered the Na+/K+ pump as the drive to trimodal quiescence, we 
entertained the possibility that a Ca2+-activated K+ current might be responsible. However, 
we discounted the SK K+ current because the trimodal pattern’s quiescent mode can still 
occur when this current is blocked by apamin (Womack and Khodakhah, 2003). And we 
discounted the BK K+ current because the trimodal pattern’s quiescent mode can still 
occur when this current is pharmacologically blocked by IBTX (Womack and Khodakhah, 
2004) or when it is genetically knocked out (Sausbier et al., 2004). And our Na+/K+ pump 
block experiment indicates that Ca2+-activated K+ currents are not involved - Na+/K+ 
pump block has been shown to cause intracellular Ca2+ accumulation in a number of cell 
types because it compromises the Na+ electrochemical gradient, which the Na+/Ca2+ 
exchanger requires to pump Ca2+ out of the cell (Gustafsson and Wigstom, 1983; Wit et 
al., 1981). So, if the trimodal pattern’s quiescent mode is not generated by the Na+/K+ 
pump, but instead by a Ca2+-activated hyperpolarising current, we would expect Na+/K+ 
pump block to promote quiescence rather than shorten and eradicate it. Indeed, Na+/K+ 
pump block has been shown to cause quiescent periods, via Ca2+-activated K+ currents, in 
canine coronary sinus fibers (Wit et al., 1981). 
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Unfortunately, the ouabain response of the real and model Purkinje cell was not in 
complete alignment. The model's deflections in the membrane potential, furrowing the 
depolarisation block, are smaller than those observed experimentally. Also, the model's 
timescale of response to ouabain (~10 seconds, fig. 2.6a) does not match that observed in 
vitro (1000 seconds, fig. 2.5a). Although, to address the latter we propose that the model 
might be modified to operate over the longer experimental timescale by 1) changing 

,  and τ  to yield a longer trimodal repeat length and 2) using slower functions 
of decline for the model's Na+/K+ densities. 

In experiments with a lower ouabain concentration (1.5 μM) the same sequence of events 
occurred but took longer (n = 3), presumably because the pump block progression was 
slower. And with higher ouabain concentrations (10- 20 μM), the progression to 
depolarisation block was rapid and the transition through the aforementioned sequence 
was not observed (n = 5). 

Ouabain block of the Na+/K+ pump also imposes a switch in behaviour for Purkinje cells 
that still have intact inhibitory synaptic inputs and which fire in a repeating bimodal 
pattern of tonic spiking and quiescence. Ouabain (2.5 μM) initially switches their firing 
from bimodal to trimodal before continual bursting and an eventual depolarisation block 
(Fig. 2.7a) (n = 3). This shows that the pump generates the quiescent mode in the 
bimodal pattern of firing as well as in the trimodal pattern. The model is able to 
accurately reproduce this experimentally observed behaviour (Fig. 2.7b). 

In the presence of TTX (1 μM), the Purkinje cell expresses a repeating bimodal pattern of 
activity and quiescence (Womack, 2004). When Ouabain (2 μM) is applied to a Purkinje 
cell that is in this TTX induced bimodality, it shortens the length of the quiescent periods 
until ultimately the cell is switched to a pattern of continuous firing (Fig. 2.8a) (n = 3). 
This suggests that it is the Na+/K+ pump that generates the quiescent periods in the 
Purkinje response to TTX. This experiment is well replicated by the model (Fig. 2.8b). 

2.4   Discussion
This investigation valuably reconciles the divergent Purkinje behaviours observed in 
different in vitro studies (quiescent, Llinas and Sugimori, 1980a; trimodal, Womack and 
Khodakhah, 2002; bimodal, McKay et al., 2005) and establishes the biophysical basis to 
the operating diversity of the cerebellar Purkinje neuron. We find that at the foundation of 
Purkinje cell multimodality there is the working of just a single molecular species – the 
Na+/K+ pump - and we show that it sets the Purkinje cell as persistently quiescent or 
spontaneously firing in trimodal or bimodal patterns. 

The mechanisms that we propose to drive the Purkinje cell’s trimodal pattern of firing 
have been observed in other classes of neuron. Extracellular K+ has been experimentally 
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observed to accumulate during sustained neural activity (Moody et al., 1974; Heinemann 
and Lux, 1977; Amzica et al., 2002) and has been modelled to drive a tonic to burst 
transition in the neocortical pyramidal cell (Frohlich et al., 2006). The electrogenic action 
of the Na+/K+ pump (regulated by the intracellular Na+ concentration) has been shown 
experimentally to generate quiescent periods in canine coronary sinus fibers (Wit et al., 
1981). 

The trimodal pattern’s quiescent mode can span seconds or minutes (Womack and 
Khodakhah, 2002) and thus its generative mechanism, which we suggest to be Na+/K+ 
pumping, must match this timescale. Na+/K+ pump activity is stimulated by intracellular 
Na+ and for it to persist at sufficient intensity during the quiescence, to perpetuate the 
quiescence, there must be a maintained intracellular Na+ accumulation. This persistence 
is non-intuitive as pump activity would be expected to quickly erode the Na+ 
accumulation during quiescence (by continuing to pump Na+ out of the cell in the absence 
of any voltage-gated Na+ entry) and down-regulate pump activity. However, intracellular 
Na+ accumulation has actually been experimentally observed to persist minutes after the 
end of voltage-gated  Na+ entry; a phenomenon that has been ascribed to a nonuniform 
cytoplasmic distribution of ions (Wendt-Gallitelli et al., 1993; Verdonck et al., 2004; 
Blaustein and Wier, 2007). Neurons and muscle cells have a “fuzzy space” between the 
endoplasmic reticulum (ER) and the plasma membrane (Henkart et al., 1976; Semb and 
Sejersted, 1996; Blaustein and Lederer, 1999; Delmas and Brown, 2002), termed the 
“PLasmERosome”, where some “unknown molecular anatomy severely impedes the 
movement of small ions and yet allows equilibration with the cytoplasm over longer 
times” (Lederer et al., 1990). Thus, the soma has two spatially-distinct and weakly 
coupled compartments for Na+, the fuzzy space and the bulk cytoplasm. A steep Na+ 
gradient has been experimentally measured between these two spaces (Wendt-Gallitelli et 
al., 1993). The Na+/K+ pump is located in the fuzzy space whilst the voltage-gated Na+ 
channels might be localised to a “third functional domain” (Verdonck et al., 2004) or they 
may also be in the fuzzy space but spatially segregated from the pumps, given this 
domain’s reported microheterogeneity of high [Na+] “hot spots” alternating with areas of 
lower [Na+] (Wendt-Gallitelli et al., 1993). Either way, the Na+ channel and pump appear 
geographically distinct. In the model, the empirical lag parameter (τ ) accounts for the 
duration of sodium's diffusion from channel to pump. This duration can be on the order of 
seconds to minutes because diffusion is significantly restricted in the fuzzy space by an, 
as yet, uncharacterized physiochemical process (Despa and Bers, 2003). Thus, when Na+ 
influx stops it takes time to feed through and reduce the Na+ concentration underneath the 
pump, which is the critical concentration for pump activity. This lag could account for 
why the pump current decays on the “order of seconds to minutes”, as reported by Su et 
al. (1998), rather than milliseconds. This large diffusive lag might also account for why 
no elevated pump activation is observed within 2 seconds of an increased Na+ entry 
(Silverman et al., 2003). The model represents diffusion empirically, with the τ  
parameter, because an explicit account would be too computationally expensive and ill 
constrained by the literature. 
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To date, the trimodal firing pattern has only been observed in vitro and the length of its 
constituent modes (tonic, bursting, quiescent) is reported as fixed for a particular Purkinje 
cell (Womack and Khodakhah, 2002). However, if the trimodal pattern is physiologically 
relevant we propose that modulators to Na+/K+ pumping might act to regulate the length 
of modes as a signalling element to the deep cerebellar nuclei (DCN). The model shows 
how modifying the KNa and KK pump parameters, which have been experimentally shown 
as modulated elements (Therien and Blostein, 2000), can change the trimodal pattern. 
Indeed, the model highlights that their modulation could be an “online” molecular switch 
between the trimodal and bimodal patterns of firing. 

The model shows that the trimodal pattern of firing is regulated by the extracellular K+ 
concentration. Neighboring Purkinje cells share an immediate extracellular milieu, which 
raises the possibility that adjacent or nearby Purkinje cells can signal to each other 
through the extracellular K+ concentration variable. Glial cells buffer K+ (Kofuji and 
Newman, 2004) and they might modulate this communication and be a novel working 
component of the cerebellar circuit.

In vitro, repetitive climbing fiber (CF) input (at a physiological frequency, 1 Hz) switches 
Purkinje cells out of the trimodal firing pattern and into a nonbursting pattern of activity 
(McKay et al., 2007). On this basis it might be that the trimodal firing pattern is not 
applicable in vivo. However, in these experiments, although CF input blocks the trimodal 
pattern’s bursting mode, long quiescent periods still occur (in which CF input cannot 
evoke a state transition into the firing state; figure 1D in McKay et al., 2007) and these 
have been observed in vivo also (Loewenstein et al., 2005). We propose that these are 
Na+/K+ pump generated silences. So, we assert that although CF input blocks the trimodal 
pattern’s bursting mode, it does not block its quiescent mode, which we have shown to be 
generated by Na+/K+ pumping i.e. we suggest that Na+/K+ pump generated silences occur 
physiologically. And we affirm this suggestion with the research and findings presented 
in Chapter 4, where we model Purkinje activity under conditions of CF input.  

Spikes are frequently taken as the basic unit of neural coding. However, silences in 
spiking may be just as meaningful for the Purkinje cell as its firing output is inhibitory to 
the downstream deep cerebellar nuclei (DCN) and so a pause in its spiking would convey 
disinhibition (Jaeger, 2007; Steuber et al., 2007) . We suggest that the patterning and 
lengths of quiescent periods might be salient to how the Purkinje cell encodes 
information. We propose intracellular Na+ concentration to be a memory element in the 
Purkinje cell, integrating firing history and setting Na+/K+ pump activity to dictate 
quiescence length and patterning, with potential modulation by signaling cascades 
convergent on the pump (Therien and Blostein, 2000). In support, a mutation in the 
Na+/K+ pump causes rapid-onset dystonia-parkinsonism (RDP), which has symptoms to 
indicate that it is a pathology of cerebellar computation (Cannon, 2004; de Carvalho et al., 
2004). A role of the Na+/K+ pump in neural coding has very recently been established for 
the T-neurons of the leech, in particular the adaptation of its code to stimulus statistics 
(Arganda et al., 2007). So, there is a precedent for what we propose here, that the Na+/K+ 
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pump can be more than just a homeostatic mechanism for ionic gradients - it can actually 
be a computational element. This shift in view may change earlier estimates of the 
metabolic cost of neural information where ionic pumping was considered purely as cost 
(Laughlin et al., 1998). 

Table 2.1 Maximal current conductances (mS/cm2) (assumed uniform over the dendrites). 

Current Soma Dendrite

Resurgent Na+ 156 0
P-type Ca2+ 0.52 1.6
T-type Ca2+ 0 0.6
E-type Ca2+ 0 3.2
A-type K+ 0 32
D-type K+ 0 36
M-type K+ 0 0.004
Delayed rectifier K+ 0 0.24
Bk K+ 72.8 60
SK K+ 10 0
K2 K+ 0 0.16
Kv1.2 K+ 0 1
Highly TEA sensitive K+ 41.6 0
Moderately TEA sensitive K+ 20.8 0
TEA insenstitive K+ 41.6 0
hyperpolarisation activated cation, Ih 1.04 0.29
Leak 0.1 0.08

47



Figure 2.1 The Purkinje cell model. In the absence of synaptic input, the Purkinje cell 
model fires spontaneously in a repeating trimodal pattern. A, The model cell’s default 
morphology with somatic and dendritic recording points labeled. B, An alternative 
morphology used for the model. C, A single trimodal repeat, recorded at the soma (A), 
with the constituent tonic (t), burst (b) and silent (s) modes labeled. D, The same trimodal 
repeat as (C) but recorded from a point within the dendritic tree (A). E, Without high-
threshold dendritic spikes (i), somatic firing has a tonic (t) form (ii). With high-threshold 
dendritic spikes (iii), somatic firing has a stereotypical burst (b) waveform (iv). A single 
dendritic spike initiates and terminates each somatic burst. The leading foot of the 
dendritic spike (#, iii) causes the slow progressive depolarisation of the somatic burst (&, 
iv). The peak of the dendritic spike (*, iii) causes the sudden and rapid depolarisation that 
ends the somatic burst (iv). F, A single trimodal repeat recorded from the soma (A) of a 
model variant that lacks the Kv1.2 channel. It has a markedly shorter tonic mode (t) than 
observed with the standard model (C). G, The same trimodal repeat as (F) but recorded 
from a point within the model’s dendritic tree (A). H, Without Kv1.2 channels, the 
dendritic spike frequency is higher (i) which results in a smaller number of spikes per 
somatic burst (ii). Panels C, D, F and G are scaled by the first scale bar (40 mV, 5 s) and 
panels E and H by the second scale bar (40 mV, 50 ms).    
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Figure 2.2 Model output. The KNa, KK and ττ  model parameters set the model's 
trimodal repeat length. This is shown by the presented durations of the tonic mode, 
bursting mode, firing mode (tonic + bursting), quiescent mode and trimodal repeat length 
(tonic + bursting + quiescent) for different model settings. A, With default settings [KNa = 
40mM; KK =2.245mM; τ = 5s] the trimodal repeat length is ~20 s. B, Reducing KNa (40 
mM to 20mM) shortens the firing (tonic + burst) duration. C, Increasing KK (2.245mM to 
20mM) shortens the tonic duration. D, Reducing τ  (5s to 1s) shortens the quiescent mode. 
E, With KNa, KK and τ all modified [KNa = 10.5mM; KK =50mM; τ = 1s] the trimodal 
repeat length is ~3 s. F, When the model was run with a different reconstructed Purkinje 
cell morphology, but with the same parameters as (E), the trimodal repeat length was not 
majorly changed.
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Figure 2.3 Model output. Removal of Na+ channels (simulation of TTX application) 
abolishes the model’s somatic Na+ spiking but not it’s dendritic Ca2+ spiking. A, The 
model’s somatic membrane potential (vs. Time), when Na+ channels are absent. There are 
no Na+ spikes but periods of small deflections in the membrane potential, which alternate 
with quiescent periods (bimodal behaviour). B, The model’s dendritic membrane 
potential (vs. Time), when Na+ channels are absent. Ca2+ spikes persist in the dendrites 
and travel to the soma to produce the aforementioned small somatic deflections in 
membrane potential. 
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Figure 2.4 Model output. The Purkinje cell model can replicate experimentally 
observed bimodal patterns of Purkinje cell firing. Left panels are somatic membrane 
potential and right panels are dendritic membrane potential (vs. Time). By referring to the 
dendritic membrane potential one can distinguish bursting from tonic firing at the soma - 
because bursting, unlike tonic activity, is co-incidental with dendritic spiking. A, The 
standard Purkinje cell model fires in a repeating trimodal pattern. B, Addition of 
inhibitory input switches the standard model out of the trimodal pattern and into a 
repeating bimodal pattern of tonic spiking and quiescence. C, Modifying the KK 
parameter (50 to 0.8) makes the model intrinsically bimodal - firing bimodally (tonic 
spiking and quiescence) in the absence of inhibitory input. D, Removal of Kv1.2 channels 
converts the model’s intrinsic bimodal pattern (Panel C) into a trimodal pattern. E, 
Removal of P-type Ca2+ channels converts the model’s intrinsic trimodal pattern (Panel A) 
into a bimodal pattern.
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Figure 2.5 Experimental data. Ouabain block of the Na+/K+ pump switches Purkinje 
cell activity out of the trimodal firing pattern and into a continuous burst mode that 
ultimately converges upon depolarisation block. Panel A shows a whole cell patch 
clamp recording from a Purkinje cell following the application of 2.5 μM ouabain. The 
arrow denotes the time at which we feel that ouabain starts to modify Purkinje cell firing 
(recording courtesy of Mark Wall at the University of Warwick, personal 
communication). Panels B, C, D, and E correspond to the labelled parts of panel A. Panels 
F, G, H and I show individual bursts from B, D, D and E respectively. The initial firing 
mode, before any Na+/K+ pump block, is trimodal (panel B). With time, as Na+/K+ pumps 
become blocked, the trimodal pattern's quiescent periods get shorter until they are 
eventually abolished and the cell fires continuously (panel A). Over this same period the 
length of the trimodal pattern’s tonic mode also decreases, ceding to an increasing 
propensity to burst (compare panels B and C). Indeed, by the time of continuous firing 
(panel D) there is only bursting and no tonic fraction at all. This continuous bursting has a 
gradient of depolarisation (Panel A) and, as it depolarises, the number of spikes per burst 
steadily decreases (F, G, H) until the soma enters depolarisation block and there are none. 
In this case, the only deflections observed are those of the Ca2+ spikes that have travelled 
into the soma from the dendritic arborisation (E, I). Panel A scaling is encoded in the first 
scale bar (50mV, 50s). The scaling of panels B, C, D and E is encoded in the second scale 
bar (50mV, 3s). The scaling of panels F, G, H and I is encoded in the third scale bar 
(50mV, 100ms).  
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Figure 2.6 Model output. The model can replicate the response of Purkinje cells 
(firing in the trimodal pattern) to Na+/K+ pump block by ouabain. A, Somatic 
membrane potential (vs. Time) with the arrow denoting the onset of  Na+/K+ pump block. 
Panels B, C, D, E and F correspond to the labelled parts of Figure A. Panels G, H, I and J 
show individual bursts from B, D, F and F respectively. The firing pattern in control, 
before any Na+/K+ pump block, is trimodal (panel B). Following the onset of Na+/K+ 
pump block, the trimodal pattern's quiescent periods get shorter until eventually they are 
abolished and the cell fires continuously (panel A). Over this same period the duration of 
the trimodal pattern’s tonic mode also decreases, leading to an increased proportion of 
burst firing (compare panels B, C and D). Indeed, by the time cells are continuously 
active the firing only consists of bursts, with no tonic mode remaining (panel E). This 
continuous bursting has a gradient of depolarisation (Panel A) and, as it depolarises, the 
number of spikes per burst steadily decreases (G, H, I) until the soma enters 
depolarisation block and there are none. In this case, the only deflections observed are 
those produced by Ca2+ spikes that have travelled to the soma from the dendritic 
arborisation (F, J). Panel A scaling is encoded in the first scale bar (80mV, 1s). The 
scaling of panels B, C, D, E and F is encoded in the second scale bar (80mV, 100ms). 
The scaling of panels G, H, I and J is encoded in the third scale bar (80mV, 30ms). 
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Figure 2.7 Experimental (panel A) and model (panel B) data plots. With inhibitory 
synaptic inputs unblocked, some Purkinje cells fire in a repeating bimodal pattern 
(tonic spiking/quiescence) and the model can replicate the experimental response of 
these cells to Na+/K+ pump block by ouabain. A, Whole cell patch clamp recording 
from a Purkinje cell (with GABA synaptic inputs unblocked) in control and following the 
application of 2.5 μM ouabain (recording courtesy of Mark Wall at the University of 
Warwick, personal communication). The arrow denotes the time at which we feel that 
ouabain starts to modify Purkinje cell firing. In control, the Purkinje cell activity is in the 
repeating bimodal pattern (bi). Following the addition of ouabain, the firing pattern is 
switched from bimodal to trimodal (tri) and then transitions into continuous bursting 
(cont) and somatic depolarisation block (calc). B, With GABAergic synaptic inputs, the 
model replicates this Purkinje cell response to ouabain. The arrow denotes the onset of 
simulated ouabain application.   
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Figure 2.8 Experimental (panel A) and model (panel B) data plots. Upon Na+ channel 
block, real and model Purkinje cells express a repeating bimodal pattern 
(activity/quiescence) and Na+/K+ pump block eradicates its quiescent component. A, 
Whole cell patch clamp recording from a Purkinje cell in the presence of 1 μM TTX (to 
block Na+ channels), which sets a repeating bimodal pattern of activity and quiescence, 
before the introduction of 2 μM ouabain (to block the Na+/K+ pump) eradicates 
quiescence and renders continuous activity (recording courtesy of Mark Wall at the 
University of Warwick, personal communication). B, The model’s somatic membrane 
potential (vs. Time), with arrows denoting the onset of TTX simulation (Na+ channel 
density = 0) and ouabain simulation (Na+/K+ pump densities reduced as a function of 
time), replicates the experimental recording.  
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                                    Chapter 3
A reduced compartmental model of the cerebellar Purkinje cell 
that is suitable for deployment in network models of the 
cerebellar cortex.

3.1   Introduction
There are presently two principal, but minimally interacting, levels of investigation in 
computational neuroscience. In the first, researchers use Hodgkin-Huxley models of 
currents (1952) and compartmental/cable modelling of dendrites (introduced by Rall, 
1959) to assemble detailed single neuron descriptions. In the second, researchers study 
neural circuits and find it useful to represent each neuron and synapse as simply as 
possible, ignoring much of the biological detail. A major reason for this demarcation is 
that the computational complexity of the former is not conducive to the scaling of the 
latter. For example, the Purkinje cell model of chapter 2 requires 22 minutes of CPU time 
for 1 second of simulation and so it is too computationally expensive to use in a network 
model of the cerebellar cortex, with its many constituent Purkinje cells. This issue is 
unfortunate as there is some evidence that the richness of biophysical properties on the 
single neuron scale can supply mechanisms that serve as the building blocks for network 
dynamics (Getting, 1989). 

In neuromodelling there is great potential for bridging the gap between these two levels 
of enquiry using networks of neurons with a level of complexity and biological fidelity 
intermediate between highly detailed multi-compartmental models and simple network 
models. In this chapter, we take the detailed Purkinje cell model of chapter 2 and use 
mathematical transforms to collapse its dendrites into fewer compartments, to produce a 
simpler, surrogate version with the same electrical properties. 

3.2   Materials and Methods
To generate a simpler version of the Purkinje cell model of chapter 2, the dendritic 
arbour was collapsed into fewer compartments with a reduction algorithm that conserves 
axial resistance (Ra) (Bush and Sejnowski, 1993; Destexhe et al., 1998). The method 
consists of merging successive dendritic branches into equivalent cylinders, preserving 
the axial resistance of the original branches. With this method, the radius (R) of an 
equivalent cylinder is given by:
                                                                                                               (3.1)∑=

i
irR 2

Where ri are the radii of the collapsed branches for that equivalent cylinder. The length (l) 
of an equivalent cylinder is taken as an average of the lengths of the collapsed branches 
(li) for that cylinder, weighted by their respective radii (ri):
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With this collapsing method, the membrane surface area of the reduced model is less than 
the original because, although axial resistance is conserved, surface area (and hence the 
membrane resistance and capacitance) is not. This is compensated for by introducing, in 
each equivalent cylinder, a dendritic correction factor (Cd), which rescales the 
current/pump/exchanger density values (gi) and membrane capacitance (Cm) in the 
dendrites such that:

                                                         (3.3)
                                                                                                               (3.4)   mdm CCC ='

The dendritic correction factor Cd is the ratio of the total surface area of the dendritic 
segments to their equivalent cylinders. The model’s somatic compartment is not 
introduced into the collapsing algorithm and so in the reduced model it has the same 
dimensions as in the full model, and the Cd correction factor is not applied to any of its 
parameters. 

Following the methodology of Destexhe et al. (1998), our reduced Purkinje cell model 
had Cd applied to the model parameter, depth, which sets the depth of the sub-membrane 
shell that Ca2 diffuses in within the model dendrites (the dendrite description of 
intracellular Ca2+ dynamics is sourced from Miyasho et al., 2001).  
 
                                                                                                      (3.5)depthCdepth d='

There are a number of published mathematical transformations for collapsing dendrites 
into equivalent profiles (for a review, refer to Burke, 2000). We favoured this “Ra 
conservation” algorithm because it has been shown to produce reduced, surrogate models 
that capture the synaptic integration properties of their full, parent models i.e. reduced 
models produced by this algorithm can perform the same non-linear integration of 
dendritic EPSPs and IPSPs and hence have the same input-output function as their parent 
models (Bush and Sejnowski, 1993). 

We used this “Ra conservation” algorithm to collapse the 1089 compartments of the full 
Purkinje cell model into the 41 compartments of a reduced model (1 soma, 40 dendritic 
compartments). The reduced model’s 40 dendritic compartments were allocated smooth 
and spiny (20 smooth, 20 spiny) in an arbitrary mirroring of the full model (85 smooth, 
1003 spiny). Note that in our approach, smooth and spiny dendrites are not distinguished 
from one another by the actual modelling of dendritic spines, but by empirical 
representation, with a larger specific membrane capacitance (Cm) for spiny dendrites 
(Miyasho et al., 2001). Cd was 3.80. The dimensions of the soma were as in the full 
morphology (length = 22 μm; diameter = 22 μm) and the dimensions of the 40 dendritic 
compartments are shown in table 3.1.  
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The Q parameter is a setting in the model’s description of extracellular K+ dynamics 
(refer chapter 2) and in the full model it is 0.143. In order for our reduced model to 
replicate full model behaviours we had to change this parameter to 0.033, which is 
reasonably distinct from the value of 0.543 obtained by a Cd manipulation (0.143 * Cd = 
0.543, where Cd is 3.80). We utilised 0.033 as opposed to 0.543 because it conferred 
closer behaviour to the full model and because there is no precedence in the literature for 
applying Cd in this way. This parameter, Q, isn’t set or constrained by any feature of the 
reduction algorithm used. Thus, in our reduction process there was a model parameter (Q) 
that needed manual tuning to get best fit between reduced and full model output.

We strove for a small number of compartments, but through testing we found that 41 (1 
soma, 40 dendrite) was the smallest number that could behave equivalently to the full 
1089 compartments. Through further testing we ascertained that this is because the 
collapse algorithm employed doesn’t conserve dendritic length fully (see * below) and 
that Purkinje functioning requires a degree of uncoupling (distance) between somatic and 
dendritic events. 41 compartments is the smallest number that confers sufficient 
uncoupling (distance). Without this, for instance if the reduced model is the full model 
transposed to just 3 compartments, the tonic mode is absent in the trimodal firing pattern 
i.e. the reduced model of 3 compartments cannot replicate the Purkinje cell’s trimodal 
firing pattern. By contrast, the reduced model of 41 compartments can replicate this 
activity motif.

* The length of the 40 dendritic compartments (collapsed from the original 1089 
compartments, using the described “Ra conservation” algorithm) in the 41 compartment 
model is ~502 μm. With this same algorithm and substrate, the length of 22 collapsed 
dendritic compartments is ~359 μm and the length of 3 collapsed dendritic compartments 
is ~129 μm. Models with the latter two dendritic lengths are too short to replicate the 
trimodal firing pattern. Exhaustive testing of many different compartment numbers 
determined that 40 dendritic compartments is the lowest compartment number that 
provides the minimum dendritic length required (~502 μm).

We established that the problem with the 3 compartment model was a lack of dendritic 
distance, rather than a lack of dendritic load, because increasing dendritic load could not 
enable a compartment number lower than 41. The “rallbranch” variable is unique to the 
NEURON simulator (Hines and Carnevale, 1997). When a model compartment has a 
rallbranch number of n it is as though there are [n] mathematically identical 
compartments, including the entire sub-tree, connected to that compartment. This is a 
method of adding load to a dendritic tree without adding load to computation time. 
However, increasing rallbranch numbers could not decrease the compartment number 
requirement and thus it is not a load requirement that is limiting. 

The reduced model (41 compartments) ran ~19 times faster than the full model (1089 
compartments) - it requires 68 seconds of CPU time for 1 second of simulation, as 
compared to the full model’s 22 minutes. However, this reduced model still requires 22 
minutes of CPU time to replicate a single cycle of the trimodal firing pattern if its pattern 
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length is the shortest that has been experimentally reported - 20 seconds (Womack and 
Khodakhah, 2002). Longer pattern lengths (e.g. 20 minutes) take longer to simulate. 
Given the protracted timescale of Purkinje behaviours, simulating them is a formidable 
challenge even with reduced models.   

Our reduced Purkinje cell model could replicate the intrinsic firing behaviour (e.g. the 
trimodal firing pattern) of the full model, which itself can replicate intrinsic behaviours of 
a real Purkinje cell. After some time researching the properties of our reduced 41 
compartment model, we had a renewed appetite for further simplification. But of course 
this was hindered by the aforementioned problem of dendritic distance. We sidestepped 
this issue by collapsing the dendritic tree of the full model to just 3 compartments (using 
the “Ra conservation” algorithm), and linking these three to the soma through a coupling 
compartment that had dimensions of our setting. This coupling compartment had the 
same passive and conductance properties as the three dendritic compartments and, indeed, 
can just be thought of as component to the reduced model’s dendritic tree. We manually 
tuned the coupling compartment’s dimensions to confer the right degree of uncoupling 
between soma and dendrites; to ensure that this 5 compartment model could replicate the 
behaviours of the 41 compartment and 1089 compartment models. In the tuned and final 
5 compartment model, its Cd value (the ratio of [membrane surface area upon its 4 
dendritic compartments: membrane surface area upon the full model’s 1088 dendritic 
compartments]) was 4.79. The total length of its dendritic compartments was ~529 μm. 
For this 5 compartment model, we had to modify the aforementioned Q parameter, from 
0.143 (as it is in the full model) to 0.02, to replicate full model behaviour. This 
modification in no way approximates a Cd multiplication (0.143 * Cd = 0.68, where Cd is 
4.79). The dimensions of the soma were as in the full morphology (length = 22 μm; 
diameter = 22 μm) and the dimensions of the 4 dendritic compartments are shown in 
table 3.2. The “coupling compartment” is compartment number 1 in this table.  
   
Given that this 5 compartment model has some “dimensions of our setting” it does lose 
some line of sight to the full model and the biology. But at this cost it runs much faster, 
with 26 seconds of CPU time required for 1 second of simulation, which is ~51* faster 
than the full model, and ~3* faster than the 41 compartment model. 

3.3   Results
Figure 3.1 shows that the 1089, 41 and 5 compartment models can all spontaneously fire 
in the trimodal pattern of activity i.e. they are qualitatively equivalent. Figure 3.2 shows 
that the 1089, 41 and 5 compartment models all respond equivalently to simulated 
ouabain block of the Na+/K+ pump. The different models have matching qualitative 
behaviour with minor quantitative discrepancies, which could presumably be minimised 
further by continued manual tuning of Q parameters. 

3.4   Discussion
Our reduced models run much faster than the full model, yet faithfully reproduce its 
electrical behaviour. This similarity, between the outputs of the full model and its 
derivatives (the 41 compartment and 5 compartment models), serves to illustrate the 
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reproducibility (semi-quantitative) of the computational experiments performed with the 
full model in chapter 2. So, the work in this chapter reinforces and validates the work in 
chapter 2. 

Our reduced models are the first intermediate-complexity models for the cerebellar 
Purkinje cell. We hope that others will see the benefit of their lower computational costs 
and utilise them in network simulations in the future. In this way we hope that these 
reduced models will be a bridge between studies of the cerebellar Purkinje cell and those 
of the cerebellar network. At present these are largely studied independently (in 
experiment and computation), which may be overly reductionist as cellular features are 
likely to be very important in system functioning. To elucidate brain functioning we 
believe that ultimately we need to build bridges between the different levels of 
description - to relate genes to molecules, molecules to cells, cells to systems, and 
systems to behaviour and perception. We lay the framework for one bridge in this study, 
by producing a detailed Purkinje cell model that has a low computational overhead and 
hence suitability for inclusion in network simulations.      

Our most reduced model (5 compartments) is likely not the most minimal 
biophysical/mathematical description that can account semi-quantitatively for the 
dynamical features of the full model. We envisage that there is still margin for this 
description to be further idealized while retaining enough accountability to the full 
formalism. For instance, although we have sought to reduce the compartment number, we 
have not investigated if any currents can be omitted without perturbation of the dominant 
qualitative mechanisms. It is likely that some can. An absolutely minimal description 
contains only elements thought to be essential. The pathway to this account is usually by 
including additional features when the model is deemed too limited. But we suggest that 
in the future this account can be converged upon by pruning our 5 compartment model. 
Of course, this pruning is to move further along the abstraction gradient, with a loss of 
much biological realism, which is a path that we were anxious not to take ourselves. 
However, we do see that the result could have value, because with fewer variables and 
parameters (hence less computational overhead) it will enable protocols unfeasible in 
fuller models. For instance, it could permit one to explore rather thoroughly the 
dependence on parameters, which we could not do (to the extent that we would have 
liked) in the fuller models. Although we do predict that the most minimal working 
description would still not be just a single compartment, because trimodal bursting 
depends on spatiotemporal interactions between the soma and dendrites that require their 
(incomplete) electrical decoupling, and such decoupling cannot be represented in an 
isopotential, single compartment. 

Although our reduced models are very useful it is important to know their limits. For 
instance, be aware that a single IPSP/EPSP on an equivalent dendrite of a reduced model 
is not equivalent to a single IPSP/EPSP on a single dendrite of the full model. Rather it is 
equivalent to dividing this IPSP/EPSP and applying one fraction of it to each of the real 
dendrites represented by the equivalent dendrite. Thus, a reduced model is not 
appropriate for studying the effect of single synaptic inputs on single dendritic branches 
of Purkinje cells, or for studying local dendritic processing in general. For example, we 
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cannot use a reduced model to investigate clustering of individual synaptic inputs or the 
inhibitory control of specific dendrites. Such studies must use the full Purkinje cell model 
that represents each process of the neuron explicitly. The reduced models are however 
useful for studying the effect of multiple synaptic inputs that are diffuse over the dendritic 
tree. Such work is conducted in the next chapter.   

Table 3.1 Dimensions of the 40 dendritic compartments in the 41 compartment model. 
Compartment 1 is linked to the somatic compartment.   

Compartment Length (μm) Diameter (μm)
1 20.545455 3.3166248
2 19.4 2.236068
3 18 1.7320508
4 17.571429 2.6457513
5 8.5306122 3.3045423
6 13.344828 2.6305893
7 12.567568 2.8213472
8 16.9 3.1622777
9 11 3.3166248

10 10.352941 3.4467376
11 12.732394 3.9849718
12 12.5 3.7309516
13 10.475728 4.7791213
14 15.361446 4.3405069
15 11.986486 3.9899875
16 12.692308 5.5497748
17 10.326667 5.9665736
18 9.6402116 6.9079664
19 13.5625 6.2289646
20 9.8686831 6.5415792
21 10.347368 6.6932802
22 8.5744681 7.5232971
23 10.075188 8.2267855
24 9.5446429 7.3972968
25 8.6412429 9.1389277
26 8.8216783 8.5135187
27 8.1569732 9.4462488
28 6.1189159 8.5064444
29 7.8575581 10.055844
30 6.7650755 10.560032
31 6.892365 10.617743
32 6.5219251 11.041739
33 7.6343948 11.421714
34 7.9040284 10.478619
35 10.028048 10.878798
36 18.067147 9.2108216
37 17.821097 8.0038358
38 57.640576 7.3301444
39 24 3.5777088
40 18 4
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Table 3.2 Dimensions of the 4 dendritic compartments in the 5 compartment model. 
Compartment 1 is linked to the somatic compartment.  

Compartment Length (μm) Diameter (μm)
1 400 3
2 16.11816 18.5088
3 95.16785 7.947963
4 18 4

Figure3. 1 The 1089, 41 and 5 compartment models can all spontaneously fire in the 
trimodal pattern of activity i.e. they are qualitatively equivalent. 
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Figure 3.2 The 1089, 41 and 5 compartment models all respond equivalently to simulated 
ouabain block of the Na+/K+ pump. 
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                                    Chapter 4

An intracellular calcium computation permits the Purkinje cell 
model to perform toggle and gain computations upon its inputs. 

4.1   Introduction
In contrast to the complexity of other brain regions, the cerebellum has a single repeating 
connectivity motif (Ito, 1984). This motif consists of parallel, climbing, basket and 
stellate inputs feeding into a central Purkinje cell, which transforms them into an output. 
The relative simplicity of the cerebellar motif makes it a good focal point for trying to 
understand how a brain circuit actually computes. Ultimately its computation collapses to 
one question, how does the Purkinje cell compute? In particular, how does its 
morphology and conductances transform/encode its inputs into an output? Our work 
addresses this issue. In chapter 2 we researched the intrinsic activity of the Purkinje cell, 
and how it is modulated by stellate cell input (section 2.4.6). In this chapter we 
investigate how this intrinsic activity is modulated by climbing and parallel fiber inputs. 
We show how the Purkinje cell performs computations with these inputs, to generate an 
output.    

4.2   Materials and Methods
Numerical simulations. The Purkinje cell model for this chapter is almost identical to the 
41 compartment model described in Chapter 3, with the same morphology and largely the 
same incorporated ion currents/channels, at the same densities. However, this model 
differs in having no Kv1.2 channels, no Na+/Ca2+ exchanger and no Na+/K+ pump 
description in the dendrites (it does, however, have the same Na+/K+ pump descriptions at 
the soma). Also, in this model, extracellular K+ concentration ([K+]o) is not set by a 
formula but is a fixed constant (2.5 mM). In short, this model doesn’t have the {Kv1.2, 
[K+]o accumulation, Na+/K+ pump, Na+/Ca2+ exchanger} system in its dendrites. 

The model of this chapter can fire in the trimodal pattern of activity, like the 41 
compartment model of Chapter 3. The two models are conceptually equivalent, 
reproducing the trimodal pattern with the same incorporated ideas. The difference is that 
the model of this chapter is more abstractive in its implementation. The added abstraction 
of this model is a limitation. However, abstraction is necessarily inherent to all neuronal 
modelling and the additional abstraction is founded upon good rationale, it benefits the 
simulation speed and reduces the parameter number which greatly facilitated the manual 
tuning of the model to replicate the complex Purkinje cell response to climbing and 
parallel fiber inputs. So, the model of this chapter is a further simplification; simplified 
for practical reasons. It does however incorporate, and is an investigation into, the same 
hypotheses.  
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The models differ in relation to the [tonic  burst] transition in the trimodal pattern of →
firing. The same concept drives this transition in both models, but the models differ in the 
level of detail that this shared concept is represented at. The model of Chapter 3 has a 
{Kv1.2, [K+]o accumulation, Na+/K+ pump, Na+/Ca2+ exchanger} system in its dendrites 
controlling this transition, whereas the model of this chapter doesn’t have this dendritic 
system.  It’s tonic to burst transition is instead controlled by a slowly inactivating D-type 
K+ current (ID), which is set to be a simulacrum of the {Kv1.2, [K+]o accumulation, 
Na+/K+ pump, Na+/Ca2+ exchanger} system. The D-type K+ current is in place of Kv1.2 
(which is reasonable because they are likely equivalent; Shen et al., 2004) and the 
decrease in this current over time, through a very slow inactivation mechanism, 
empirically captures a slow decrease in K+ current through ion relaxation processes 
(which in the other model are modelled explicitly; set by its incorporated [K+]o 
accumulation, Na+/K+ pump, Na+/Ca2+ exchanger mechanisms). So, to reiterate, the 
difference between the models is not conceptual. The same intellection drives the tonic to 
burst transition in both models, but the model of Chapter 3 encapsulates it with a 
relatively detailed abstraction whilst the model of this chapter encapsulates it with a 
simpler abstraction. This is expanded on in following paragraphs.

The 41 compartment model in Chapter 3 can fire in the trimodal pattern of activity, with 
K+ flux through Kv1.2 channels controlling its tonic to burst transition. Dendritic Ca2+ 
spikes generate the bursting mode. The Kv1.2 channels produce hyperpolarizing current 
which clamps dendritic excitability and prevents Ca2+ spike generation, thus permitting 
the tonic mode of firing. However, the power of this excitability clamp diminishes with 
time because extracellular K+ accumulates ([K+]o increases) and this reduces the 
electrochemical driving force for K+ flow. Eventually the hyperpolarizing current 
produced by Kv1.2 channel activity is insufficient to prevent dendritic spiking and the 
model is switched from the tonic to the burst mode. During the quiescent mode of the 
trimodal pattern, Na+/K+ pump activity in the dendrites reduces the extracellular K+ 
accumulation and “resets” [K+]o. The Na+/Ca2+ exchanger permits Na+ entry to the 
dendrites (dendrites have no voltage-gated Na+ channels) so that the Na+/K+ pump can 
function – the Na+/K+ pump cannot pump K+ into the dendrites if there is no Na+  in the 
dendrites to be pumped outside. So, in this model the tonic to burst transition is controlled 
by a {Kv1.2, [K+]o accumulation, Na+/K+ pump, Na+/Ca2+ exchanger} system. The model 
of course has other K+ currents/channels in its dendrites, but these are largely uninvolved 
in the clamping of dendritic excitation as, unlike the Kv1.2 channel which is low-voltage 
gated, they are high-voltage gated and not open at the relevant potentials. Although the 
incorporated D-type and A-type K+ currents are low-voltage gated, they are still 
uninvolved as they inactivate quickly. The Kv1.2 current by contrast is non-inactivating, 
which is why its current persists long enough to be tempered by slow ion relaxation 
processes. Indeed, experiment has shown the Kv1.2 current to be non-inactivating in the 
Purkinje cell (McKay, 2005). We are open to the possibility that other low-voltage gated 
K+ currents might be non-inactivating in the Purkinje cell, and involved in this regulation 
of the tonic to burst transition, but at this time Kv1.2 is the only current that has been 
experimentally implicated.     
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The model of this chapter can also fire in the trimodal pattern but it has no Kv1.2 
channels. Its tonic to burst transition is instead controlled by the D-type K+ current (ID). 
This is not so distinct from the model of chapter 3, as the kinetics of the Kv1.2 and ID 
currents are very similar. In fact, there is evidence that Kv1.2 is actually a channel 
correlate to the ID current (Shen et al., 2004). The D-type K+ current’s inactivation 
formalism is modified in this model from its original form (Miyasho et al., 2001), with an 
added parameter (k = 0.05) that slows its inactivation:         
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Where h is the Hodgkin-Huxley inactivation gate, t is time and V represents the 
membrane potential in mV as a dimensionless quantity. 

In this model, ID activates at simulation onset and its hyperpolarizing K+ current clamps 
dendritic excitability and prevents Ca2+ spike generation, thus permitting the tonic mode 
of firing. However, ID slowly inactivates over time, and when its current has diminished 
past a critical point it can no longer block dendritic Ca2+ spiking and the model is 
switched from the tonic to the burst mode. So, the rate of ID inactivation (modulated by 
the k parameter) sets the tonic mode duration. To get a realistic tonic duration requires an 
extremely slow and unreported rate of ID inactivation. However, we actually include this 
slow inactivation with the postulate that ID, by analogy to Kv1.2, is non-inactivating and 
that this slow inactivation is an empirical capture of ion relaxation i.e. the slow 
inactivation of the ID current empirically represents the slow decline in a non-inactivating 
ID/Kv1.2 current because of ion relaxation. So, this model is conceptually equivalent to 
that of chapter 3, just more abstractive in its implementation. 

In some model simulations, climbing fiber (CF) inputs were introduced. CF inputs make 
17 excitatory synaptic contacts upon 17 of the model’s proximal smooth dendrites (De 
Schutter and Bower, 1994b). They fire synchronously at a frequency of 1 Hz. Their 
reversal potential is 0 mV, with a synaptic weight of 1 μS and their amplitude upon 
activation follows a dual exponential time course (τ1 = 0.5 ms; τ2 = 1.2 ms) (De Schutter 
and Bower, 1994b).
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In other model simulations, parallel fiber (PF) inputs were introduced. PF inputs make 
one excitatory synaptic contact upon each of the model’s spiny dendrites (De Schutter 
and Bower, 1994b). They fire asynchronously around a mean frequency of input (100 Hz). 
Their reversal potential is 0 mV, with a synaptic weight of 0.005 μS and their amplitude 
upon activation follows a dual exponential time course (τ1 = 0.5 ms; τ2 = 1.2 ms). The 
Purkinje cell is known to receive ~ 200,000 parallel fiber synaptic contacts (Ito, 1984). 
Given computing resources, it was not possible for us include all these inputs and that is 
why our model has just 20 parallel fiber synaptic contacts (one on each spiny dendrite 
compartment) – 0.01% of the real value. Under the conditions of random, asynchronous 
inputs simulated here, this missing input is compensated for by an increased firing rate of 
each parallel fiber synapse. A similar approach has been taken by other Purkinje cell 
modellers (Rapp et al. 1992; De Schutter and Bower, 1994b). Assuming a linear scaling, 
our simulation of 0.01% of the inputs, with an asynchronous firing rate of 100 Hz, 
corresponds to the realistic average parallel fiber firing rate of ~ 0.01 Hz. 

In some model simulations, both CF and PF inputs were introduced.

The intracellular Ca2+ dynamics abstraction, incorporated in the model dendrites, is 
modified from its original description in Miyasho et al. (2001). The modified form:

             (4.6)

                                                                                  (4.7)CaPCaECaTCa IIII ++=+2

Where [Ca2+]i is the intracellular Ca2+ concentration in a supra-membrane shell of depth = 
0.1 μm, F is the Faraday constant, kt = 1*10-4 mM/ms, kd = 1*10-4 mM, τr = 2 ms and 

is the Ca2+ membrane current which is the sum of the T-type (ICaT),  E-type (ICaE) +2CaI
and P-type (ICaP) voltage-gated Ca2+ currents (descriptions in Appendix A.2). Parameter y 
is the set point/equilibrium Ca2+ concentration that the system strives to return the Ca2+ 
concentration to after a perturbation. The equation form and all of the aforementioned 
parameters are as in Miyasho et al., 2001. However, whereas Miyasho et al. (2001) has y 
specified as a constant (2.4*10-4 mM), in this model y is dictated by the following 
relationship:
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Where is the Ca2+ membrane current, F is the Faraday constant, d is the +2CaI
compartment diameter, z = 2.4*10-4 mM, g = 1*105 and m = 100 ms. On the right hand 
side (RHS) of the equation, the first block is an intracellular Ca2+ accumulation term that 
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is equivalent to the intracellular Na+ accumulation equation in Chapter 2 [eq. 2.3] 
(sourced from Canavier, 1999) but with the modification of an added parameter g (which 
has a role described later). The second block on the RHS has the same first order decay 
form as the third block on the RHS of equation [4.6], which was sourced from Miyasho et 
al. (2001).    

Equation [4.8] dictates that y, the Ca2+ set point concentration, increases with Ca2+ influx 
into the cell. Through equation [4.6], this increase in y then drives increased [Ca2+]i. 
Studying equations [4.6] and [4.8], it should be clear that y is in essence a floating set 
point for [Ca2+]I that adheres to a true, fixed set point: z = 2.4*10-4 mM.

In these equations dictating [Ca2+]i, accumulation is applied to [Ca2+]i both directly (the 
first block on the RHS of eq. [4.6] - the equation for [Ca2+]i) and indirectly (the first block 
on the RHS of eq. [4.8] - the equation for y). The former captures [Ca2+]i accumulation on 
the scale of milliseconds, during Ca2+/[Ca2+]i spiking for instance, and the latter captures 
more gradual accumulation over seconds and minutes. Without this layered system, using 
the intermediary of the y parameter, it is not possible to have [Ca2+]i accumulation over 
these longer time scales without disrupting the fast spiking in [Ca2+]i, which is relevant as 
this spiking is integral to the operation of the Purkinje cell model (Ca2+/[Ca2+]i spikes in 
the dendrites drive somatic bursting, refer Chapter 2). Anyhow, we believe that a 
“creeping” Ca2+ set point is a very realistic proposition as Ca2+ efflux and buffering 
systems are sub-linearly dependent on [Ca2+]i, as they rely on enzymes that have 
saturation (Michaelis-Menten) kinetics. 

The g and m parameters control the rate of increase (and decrease) in the Ca2+ set point 
concentration (y). Their value is controlled by the value of parameter w:

Initial condition, w = 0
if ( > 0.06 mA/cm2) {w = 1}+2CaI

           f = 100 ms⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

f
w

dt
dw

if (w > 0.1) {g = 10,000, m = 1000}
if (w < 0.1) {g = 1*105, m = 100}                                                                            (4.9)

The default value of w is 0 and so the default values of g and m are 1*105 and 100 
respectively. However, if  surpasses 0.06 mA/cm2, as it does when there is a +2CaI
climbing fiber (CF) input, w is set to 1 and the g and m parameters are updated to 10,000 
and 1000 respectably. The rational for these parameter changes are that the dramatic CF 
associated Ca2+ influx floods the Ca2+ regulatory systems and with their nonlinearity they 
cannot increase their activity to match the increasing [Ca2+]i, in which case the rate of 
increase in [Ca2+]i must rise. Parameter f controls the lifespan of these changed g and m 
values, after a CF input event, by controlling a rate of attenuation to the w parameter. 
When w declines to below 0.1, g and m revert to default. However, if there is another CF 
input event before w falls to below 0.1, w is reset to 1 which prolongs the lifespan of g 
and m at their updated values for another cycle of w decline. 
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The model dendrites have an SK type Ca2+-activated K+ conductance (sourced from 
Moczydlowski and Latorre, 1983), of density gsk, which is activated only upon the 
condition of CF input. This condition is realised by gsk being 0 at default but, upon CF 
input, it being reassigned a positive value. The value of gsk is controlled by the value of 
parameter r:
 
Initial condition: r = 0
if ( > 3 nA) {r = 1}synI

            s = 1000 ms⎟
⎠
⎞

⎜
⎝
⎛ −=

s
r

dt
dr

if (r > 0.1) { gsk = 0.72 S/cm2}
if (r < 0.1) { gsk = 0 S/cm2}                                                                                     (4.10)

The default value of r is 0 and so gsk at default is 0 S/cm2. However, if there is CF input, 
(the synaptic current across the CF synapses) exceeds 3 nA and r is set to 1, gsk is synI

thus updated to 0.72 S/cm2. This system captures the essence that gsk is the density of an 
SK conductance that is only activated by Ca2+ entry generated by CF input. It is not 
activated by the equivalently large Ca2+ entries during the trimodal bursting mode. This 
system is an empirical representation of a postulated compartmentalisation to the 
intracellular Ca2+ dynamics in the Purkinje cell dendrite, where we hypothesise that there 
is an SK Ca2+-activated K+ conductance that is activated only by CF generated Ca2+ 
influx. Ca2+ compartmentalisation has been observed experimentally before for the 
Purkinje cell, but in other contexts (Womack, 2004). Parameter s controls the lifespan of 
this changed gsk value, after a CF input event, by controlling a rate of attenuation to the r 
parameter. When r declines to below 0.1, gsk reverts to default. However, if there is 
another CF input event before r falls to below 0.1, r is reset to 1 which prolongs the 
lifespan of gsk at its updated value for another cycle of r decline. 

This system of intracellular Ca2+ dynamics was built and incorporated in the Purkinje cell 
model to endow it with the ability to replicate the experimentally observed CF toggling of 
the Purkinje cell state (refer Results). And the system’s free parameters (g, m, f, w, z, gsk, 
r, s) were manually tuned to attain this replication. Of course it is an abstraction, but it is 
founded upon good rationale in the absence of good experimental data - our present 
understanding of intracellular Ca2+ dynamics is extremely limited and so there is not 
much to guide and constrain its modelling. 

Experimentally, repetitive CF input (1 Hz) doesn’t always produce Purkinje toggling. In 
some cases it induces a different Purkinje firing pattern in which tonic activity is 
punctuated, at a frequency of 1 Hz, by a complex spike and its short evoked after-pause 
(refer Results). In our model, CF input generates this pattern, as opposed to the CF driven 
bimodal patterning, when the raised value of gsk is 0.62 S/cm2 as opposed to 0.72 S/cm2. 

4.3   Results
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4.3.1   Parallel fiber inputs change the frequency, but not the pattern, of Purkinje 
cell firing
In the model, with the introduction of parallel fiber inputs (refer methods), the frequency 
of firing in the trimodal pattern’s tonic mode shifts from 99 to 132 Hz – a 33% increase.

4.3.2   Climbing fiber input blocks trimodal output
A climbing fiber (CF) input induces a Ca2+ spike event in the dendrites, which produces a 
complex spike at the soma (Kandel et al., 2000). In vitro, if a Purkinje cell firing in the 
trimodal pattern is presented with repetitive CF input, at a physiological frequency (1 Hz), 
then its trimodality is replaced with a more naturalistic, nonbursting pattern of tonic firing 
(McKay et al., 2007). This tonic firing can be in the context of a repeating bimodal 
pattern of tonic firing and quiescence, with tonic firing termed the up state and 
quiescence the down state. In which case, the CF input, via its induced complex spike, 
toggles the Purkinje cell between the two states at a frequency of 1 Hz. When the cell is 
in the up state, CF input toggles it to the down state. When the cell is in the down state, 
CF input toggles it to the up state. It is presently unknown how identical CF inputs can 
produce such contrasting transitions. Addressing this issue, we have constructed a 
detailed biophysical Purkinje cell model that can replicate this CF toggling and which 
shows its basis to be intracellular Ca2+ dynamics (figures 4.1, 4.2, 4.3, 4.4).
 
CF input opens AMPA ionotropic receptors (AMPAR), which pass a depolarising cation 
flow (McKay et al., 2007). The AMPAR variant found in the Purkinje cell has a 
constituent GluR2 subunit, with the [gluatamine/arginine] RNA editing site set to arginine, 
which sets it as impermeable to Ca2+ (Kandel et al., 2000). So, with CF input, no Ca2+ 
enters through AMPAR directly. However, the CF induced cation flow through AMPAR 
causes depolarisation, which opens voltage-gated Ca2+ channels locally, which raises 
intracellular Ca2+ concentration ([Ca2+]i) and augments the activation of hyperpolarising 
Ca2+-gated K+ channels (McKay et al., 2007). So, CF input directly prompts depolarising 
cation flow but also has a parallel, indirect hyperpolarising action. 

The CF induced complex spike at the soma is a burst event. With experimental and model 
data, comparing a complex spike to a single burst from the trimodal firing pattern reveals 
much similarity. This then raises the issue of why a single complex spike can toggle the 
Purkinje cell to quiescence and a single burst of the trimodal pattern cannot. Our model 
incorporates our hypothesis that there is a compartmentalisation to the intracellular Ca2+ 
system, with an SK Ca2+-regulated K+ conductance that is activated by CF associated 
Ca2+ influx, but not by bursting associated Ca2+ influx. Ca2+ compartmentalisation has 
been observed experimentally before for the Purkinje cell, but in other contexts (Womack, 
2004). 

Our model incorporates our hypotheses that the tonic firing (up) state responds differently 
to CF input than the quiescent (down) state, because it has a different intracellular Ca2+ 
concentration. During tonic firing, intracellular Ca2+ accumulates as a function of 
voltage-gated Ca2+ entry, and during quiescence it recedes as Ca2+ extrusion exceeds any 
remaining Ca2+ entry. A CF input during tonic firing produces an [up-to-down] transition 
because, with the higher basal [Ca2+]i, it produces a net hyperpolarisation. A CF input 
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during quiescence produces a [down-to-up] transition because, with the lower basal 
[Ca2+]i, it produces a net depolarisation. In this way, the same stereotypical CF input 
produces two very different effects, depending on the prior state of the cell i.e. the CF 
input acts as a toggle switch, flipping the cell from whichever of the two states it is in to 
the alternate state. 

In vitro, repetitive CF input (1 Hz) doesn’t always switch a trimodal Purkinje cell to 
bimodal patterning. In some cases, it switches the cell to a tonic firing pattern, which is 
punctuated, at a frequency of 1 Hz, by a complex spike and its short evoked after-pause 
(McKay et al., 2007). In our model, CF input generates this pattern, as opposed to the CF 
driven bimodal patterning, when the CF conferred activation of SK is present but at lower 
amplitude (figure 4.3). 

So, to summarise, repetitive CF input (1 Hz) blocks the trimodal firing pattern and 
replaces it with a tonic firing pattern, interrupted either by short or longer pauses. No 
bursting mode is observed. In both these firing patterns there are very long quiescent 
periods, where the only deflections in somatic membrane potential are attributable to CF 
driven spikes at the frequency of CF input and in which CF input cannot evoke a state 
transition into the firing state (McKay et al., 2007). The cause of these quiescent periods 
is not known. We hypothesise that they are generated by the electrogenic action of the 
Na+/K+ pump. So, we suggest that although CF input blocks the trimodal pattern’s 
bursting mode, it does not block its quiescent periods, which we have shown to be 
generated by Na+/K+ pumping (chapter 2). Indeed, our incorporated Na+/K+ pump system 
enables the model to replicate these long quiescent periods in the CF produced tonic 
firing patterns. 

To collate, we suggest that there are two different classes of pause/silence in Purkinje cell 
activity – 1) CF conferred (via the action of Ca2+-regulated K+ conductances) and 2) 
Na+/K+ pump conferred. 

The validity of the model can be assessed by comparing its output (figures 4.1, 4.2, 4.3) 
to the experimental data (figure 4.4).  

Parallel fiber (PF) input increases tonic firing frequency. CF input decreases it. In fact, 
CF input decreases the frequency of firing to a range where PF input can greatly increase 
it, setting the gain of the PF response (McKay et al., 2007). Our model replicates this gain 
computation. In the model, with the introduction of just PF inputs, the frequency of tonic 
firing shifts from 99 to 132 Hz – a 33% increase. With the introduction of just CF input 
(gsk = 0.62 S/cm2), the frequency of tonic firing shifts from 99 to 54 Hz – a 55% decrease. 
With CF input already introduced and then with the subsequent introduction of PF inputs, 
the frequency of tonic firing shifts from 54 to 80 Hz – a 68% increase. So, CF input 
confers a 68-33 = 35% gain in the PF induced frequency change. 

We have thus far described the response of Purkinje cells firing in the trimodal pattern to 
1 Hz CF input. Purkinje cells firing in the bimodal firing pattern (tonic firing and 
quiescence) respond to 1 Hz CF input in the same manner as trimodal cells, in the 
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experimental data (McKay et al., 2007) and the model (not shown). They are switched to 
a tonic firing pattern that has 1) long or short CF induced pauses and 2) longer pauses, 
which we suggest are generated by Na+/K+ pumping.  

4.4   Discussion
CF toggled bimodal patterning, unlike the trimodal firing pattern, has been observed in 
vivo (Loewenstein et al., 2005). In this chapter’s modelling, we show the mechanistic 
relation between the trimodal firing pattern and CF toggled bimodal patterning. In this 
way we are reconciling in vitro and in vivo behaviour. This is useful because a lot of 
research is conducted on the trimodal firing pattern (Womack and Khodakhah, 2002; 
Womack and Khodakhah, 2003; Womack et al., 2004; Womack and Khodakhah, 2004; 
Mckay and Turner, 2004; McKay and Turner, 2005; Mckay et al., 2005; Mckay et al., 
2007) and the pursuit of this in vitro study assumes a correlation between the reduced and 
intact behaviour. This correlation doesn't necessarily have to be complete, but there 
certainly needs to be a real understanding to any differences so that it can be factored into 
in vitro drawn conclusions. Our study provides such an understanding.

Our Purkinje cell model captures the biophysics of the Purkinje cell’s toggle and gain 
computations. This has broad interest because there are not many biophysical models of 
single neuron computation, despite an avid interest in the computational repertoire and 
power available to individual neurons (Sejnowski et al., 1988; Koch, 1999; Zador, 2000; 
London and Hausser, 2005; Herz et al., 2006; Mel, 2006). In particular, this is the first 
biophysically detailed model of a toggle computation for any neuron class.  

Our model incorporates the innovative hypothesis that the Purkinje cell toggle and gain 
computations hinge on an underlying Ca2+ computation. The model’s intracellular Ca2+ 
concentration provides memory (information store), recording the history of firing and 
inputs, to dictate how the model cell responds to future inputs. For example, the model’s 
Ca2+ system memorizes a CF input, which causes it to then respond differently to a PF 
input than it would otherwise. This Ca2+ memory has a lifespan, and once it has expired, 
the model cell then responds by default, unless of course there is another CF input along 
to renew the memory setting. So, we hypothesise that the membrane potential is not the 
Purkinje cell’s only computational element, but that its intracellular Ca2+ concentration is 
a computational element as well. These two interact, with the Ca2+ memory being 
encoded and decoded by the membrane potential. Encoding is by way of CF input 
causing membrane depolarisation, which then opens voltage-gated Ca2+ channels to raise 
the intracellular Ca2+ concentration. Decoding is by way of this Ca2+ concentration 
modulating the membrane potential via Ca2+-activated K+ channels. So, again this 
investigation hypothesises the importance of ion concentrations to neural functioning - a 
major theme of our work. We suggest that neural behaviour is not simply a function of 
ion channel kinetics, as in the Hodgkin-Huxley paradigm, but is also set by pumps, 
exchangers and changing ion concentrations.  

What/where is the seat of memory in the brain? The membrane potential could 
conceivably act as a memory element through a persistent change in its potential or firing 
(Durstewitz, 2000). This persistence could be endowed by reverberating activity within a 
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“cell assembly” - a reciprocally/recurrent wired network (Hebb, 1949). Or it could be 
conferred by activity circulating in connectivity loops (“synfire chains”) of feedforward-
connected subgroups of neurons, with no direct feedback links between successive 
groups (Abeles, 1991). Or it could be endowed via single cell bistability, where the cell 
potential can be set to the alternate state for storage of information (Marder, 1996; 
Lisman, 1998). Such persistence could be the basis for short-term memory, as distinct 
from synaptic plasticity, which might underlie long-term memory. This short-term 
memory can be termed “working memory” - “the ability to transiently hold and 
manipulate goal-related information to guide forthcoming actions” (Durstewitz, 2000). 

For Purkinje cells, we boldly propose that the intracellular Ca2+ concentration is their 
fundamental short-term memory store, as opposed to the membrane potential. Ca2+ 
memory has been proposed before, for other cell classes, with models distinguished by 
Ca2+ release from stores (Teramae, 2005), by propagating Ca2+ wave-fronts along 
dendritic processes (Loewenstein, 2003; Wang, 2003), by an intracellular Ca2+ handling 
subsystem whose dynamics depend upon the level of the IP3 secondary messenger (Fall, 
2006), or by the involvement of a Ca2+ activated K+ channel that has two distinct states, 
analogous to phoshorylated and unphosphorylated (Connors, 2002; Egorov, 2002; 
Dudman, 2006; Fransen, 2006). So, the Ca2+ memory proposed in this work is very 
different to that proposed previously and sets a new theory of Ca2+/working memory. It is 
also operational in a biophysically detailed setting, which is not the case for a number of 
these models. 

Spikes are frequently taken as the basic unit of neural coding. However, silences in 
spiking may be just as meaningful for the Purkinje cell as its firing output is inhibitory to 
the downstream deep cerebellar nuclei (DCN), and so a pause in its spiking would convey 
disinhibition (Jaeger, 2007; Steuber et al., 2007) . We suggest that the patterning and 
lengths of quiescent periods might be salient to how the Purkinje cell encodes 
information. And we have shown that CF input, in interaction with intracellular Ca2+ 
dynamics, can dictate the timing and duration of quiescent periods. This system might be 
modulated in the physiological setting by signalling cascades that regulate intracellular 
Ca2+ dynamics (Falcke and Malchow, 2003).  

In this chapter we propose the intracellular Ca2+ concentration to be a memory element, 
dictating the timing and duration of quiescent periods. And in chapter 2 we proposed the 
intracellular Na+ concentration to be a memory element, dictating the timing and duration 
of quiescent periods. Thus, we propose that the Purkinje cell has two memory systems in 
parallel. These may cross-talk through the action of the Na+/Ca2+ exchanger. Looking at 
the frequency of CF prompted silences, via Ca2+ computation, and the lesser frequency of 
sodium pump conferred silences, via Na+ computation, we could propose that these two 
memory systems are specialised for, and operating on, different time scales.        
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Figure 4.1 Simulated climbing fiber (CF) input blocks the Purkinje cell model’s 
trimodal pattern of activity. Panel A, The somatic membrane potential (vs. Time). 
Panel B, The membrane potential at a dendritic location (for the same window of time). 
Panel C relates to the labelled part of panel A. Panel D relates to the labelled part of 
panel B. The scaling of panels A and B is encoded in the first scale bar (30 mV, 3 s). The 
scaling of panels C and D is encoded in the second scale bar (30 mV, 0.5 s). 

With synaptic inputs absent, the Purkinje cell model fires in the trimodal pattern of 
activity. However, simulated CF input (1 Hz) can block this pattern and replace it with 
the activity pattern presented in panel A. Every second, CF input generates a Ca2+ spike 
in the dendrites (panel B) that drives a complex spike at the soma (panel A). These 
complex spikes toggle the cell between a tonic firing and a quiescent state at a frequency 
of 1 Hz (panel A). When the cell is firing, a CF input toggles it to quiescence. When the 
cell is quiescent, a CF input toggles it to firing. 

With CF input, Na+/K+ pump generated silences still occur and one can be observed in 
panel A (the longer quiescent period). This Na+/K+ pump generated quiescence is 
punctuated by CF driven spikes at the frequency of CF input (1 Hz). |During this 
quiescent period, the CF input cannot evoke a state transition into the firing state. 
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Figure 4.2
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Figure 4.2 The model’s capture of toggling behaviour is made possible by its novel 
account of intracellular calcium dynamics. All panels relate to the same window of 
time. A, Somatic membrane potential. B, Model parameter y (refer methods) at a dendritic 
point. C, Intracellular Ca2+ concentration, [Ca2+]i, at the same dendritic point. D, Panel C 
at higher resolution. 

This figure shows the model cell being toggled on (tonic firing) and off (quiescence) by 
CF input at a frequency of 1Hz. Observe the cross-correlation between a Ca2+ spike event 
in the dendrites (panel C) and a toggle of state at the soma (panel A). Model parameter y 
rises during tonic firing, rises at a greater rate of change during a CF induced Ca2+ spike 
and decreases during quiescence (panel B). These changes in y drive corresponding 
changes in [Ca2+]i, as [Ca2+]i is mathematically linked to y (refer methods). Thus, [Ca2+]i 
rises during tonic firing, rises at a greater rate of change during a CF induced Ca2+ spike 
and decreases during quiescence (panels C and D). The [Ca2+]i increase during tonic 
firing, and decrease during quiescence, is clear in the resolution of panel D where it is 
highlighted by green and yellow arrows respectively. During these phases, [Ca2+]i rises 
and falls by way of it set point, the equilibrium [Ca2+]i value (model parameter y), rising 
and falling. The rising set point during the tonic firing phase is apparant in panel D – the 
[Ca2+]i value that [Ca2+]i is returned to after a calcium spike event increases over time.

It is the changes in [Ca2+]i, that allow an identical, stereotypical CF input to produce very 
different effects - flipping the model cell from [quiescence to firing] or from [firing to 
quiescence]. CF input is both depolarising and hyperpolarising. It is depolarising because 
it prompts depolarising Ca2+ influx. Yet, at the same time it is hyperpolarising because 
this Ca2+ then activates hyperpolarising Ca2+-gated SK channels. Which process is 
dominant dictates as to whether the CF input is net depolarising or hyperpolarising. 

The firing state responds differently to CF input than the quiescent state because it has a 
higher [Ca2+]i, level. The CF conferred rise in [Ca2+]i,, added to the firing state's higher 
[Ca2+]i, level, recruits enough hyperpolarising SK activation to outweigh the depolarising 
force of CF input – there is net hyperpolarisation - and the cell is switched to quiescence. 
By contrast, the CF conferred rise in [Ca2+]i,, added to the quiescent state's lower [Ca2+]i, 
level, does not recruit enough SK activation to outweigh the depolarising force of CF 
input – there is net depolarisation and the cell is excited to the firing mode. 

76

Figure 4.3 Simulated climbing fiber (CF) input blocks the Purkinje cell model’s 
trimodal pattern of activity (2). Panel A, The somatic membrane potential (vs. Time). 
Panel B, The membrane potential at a dendritic location (for the same window of time). 
Panel C relates to the labelled part of panel A. Panel D relates to the labelled part of 
panel B. The scaling of panels A and B is encoded in the first scale bar (30 mV, 3 s). The 
scaling of panels C and D is encoded in the second scale bar (30 mV, 0.5 s).  

Simulated CF input (1 Hz) blocks the trimodal activity pattern and replaces it with a 
nonbursting pattern of tonic firing interrupted, at a frequency of 1 Hz, by a complex spike 
and its short evoked after-pause (after-pauses can be most easily distinguished in the 
resolution of panel C). The model generates this pattern in response to CF input, as 
opposed to the toggled pattern of figure 4.1, when the model parameter gsk (refer methods) 
is 0.62 as opposed to 0.72. 

Na+/K+ pump generated silences still occur and one can be observed in panel A. This 
Na+/K+ pump generated quiescence is punctuated by CF driven spikes at the frequency of 
CF input (1 Hz). During this quiescent period, the CF input cannot evoke a state 
transition into the firing state. 
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Figure 4.4 Experimental data from McKay et al., 2007 (presented with permission). 
CF input (arrows) at 1 Hz abolishes the burst phase of trimodal output. 

CF input switches Purkinje cells from their trimodal pattern of activity to sustained tonic 
firing (top panel, lettered B) OR periodic transitions between up and down states (middle 
panel, lettered C).
 
CF input abolishes the trimodal pattern’s burst phase but not its quiescent phase, which it 
punctuates with CF driven spikes at the frequency of CF input (1 Hz) (bottom panel, 
lettered D). During this quiescent phase, the CF input cannot evoke a state transition into 
the firing state. 
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                                                 Chapter 5
The cerebellar Purkinje cell has two distinct bursting modes.  

5.1   Introduction
Purkinje behaviour is often studied in a dissociated soma preparation in which the 
dendritic projection has been cleaved. A fraction of these dissociated somas are quiescent 
whilst others spontaneously fire simple spikes (Khaliq et al., 2003) or spontaneously 
burst (Swensen and Bean, 2003). 

The mechanism of the isolated soma’s spontaneous bursting is unknown. However, given 
its lack of dendrites, we can conclude that the drive to bursting must be of somatic origin 
and hence must be distinct from the somatic bursting previously described, which was 
shown to be dendritically driven (chapter 2). Indeed, their bursts have different 
characteristics (figure 5.1). Dendritically driven bursts follow a stereotypical waveform 
with an ongoing increase in firing rate and termination by a more rapid increase in firing 
rate, with a decrease in spike height. The burst rides upon a slow wave of depolarisation 
and ends with a rapid depolarization. This depolarization is followed by a rapid 
hyperpolarization that persists through the interburst interval. Somatically driven bursting 
is, by contrast, without any systematic change in firing rate or spike height upon burst 
progression. The burst’s final spike height is not dramatically smaller and the burst does 
not ride upon a wave of depolarisation. In addition, somatically driven bursts tend to be 
shorter (two to four spikes per burst) than dendritically driven bursts (which can have 
hundreds of spikes per burst, although most typically have under ten).

We have constructed a biophysical Purkinje soma model, guided and constrained by 
experiments, which can replicate the somatically driven bursting pattern and which 
hypothesises persistent Na+ current (INa-p) to be its burst initiator and SK K+ current to be 
its burst terminator. This is the first time that this type of bursting (INa-p vs. SK) has been 
reported for any neuron class and is a new bursting paradigm. The emergence of the 
model’s bursting is regulated by the BK and SK K+ currents in combination/redundancy. 

Current abbreviations used in this chapter: Persistent Na+ current (INa-p), fast Na+ 

current (INa-f), resurgent Na+ current (INa-r), hyperpolarisation activated cation current 
(Ih), P-type voltage-gated Ca2+ current (P/Q). 

5.2   Materials and methods
Numerical simulations. Our aim was to build an isolated somatic model that could 
replicate the bursting pattern experimentally observed in some isolated Purkinje somata. 
As our starting point we removed the somatic compartment from the Purkinje cell model 
of chapter 2. This isolated somatic compartment spontaneously fired in a simple spiking 
form, as many isolated Purkinje somata do. We then set about modifying this isolated 
model compartment so that it spontaneously bursts instead. 
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The completed model soma has highly TEA sensitive, moderately TEA sensitive and 
TEA insensitive K+ currents, a resurgent Na+ current, a P-type Ca2+ current, a 
hyperpolarisation activated cation current, a BK voltage-and-Ca2+-gated K+ current, a 
leak current  and an intracellular Ca2+ dynamics abstraction – all with descriptions 
sourced from Khaliq et al. (2003). With just these incorporated mechanisms, the model 
soma fires simple spikes. It can be switched to bursting (4 spikes per burst) by adding a 
persistent Na+ current (INa-p, density = 0.004 S/cm2; description from D'Angelo et al., 
2001) and an SK Ca2+-gated K+ current (SK, density = 0.004 S/cm2; description from 
Destexhe et al., 1994). 

5.3   Results
5.3.1   The Purkinje soma model can replicate the somatically driven bursting 
pattern (figure 5.1).
The model’s depolarising persistent Na+ current (INa-p) produces the sustained 
depolarization that initiates and maintains a somatic burst; INa-p is the “burst initiator” 
(figure 5.1C). Whilst the model's hyperpolarising Ca2+-activated SK K+ current builds in 
magnitude with burst progression, until it attains enough strength to terminate the burst, 
and produce the period of hyperpolarization before the next burst; SK is the burst 
“terminator” (figure 5.1D). So, this bursting can be described as having a [INa-p vs. SK] 
basis and it has the following characteristics: 

1) INa-p alone is not sufficient for bursting, SK is also required. If INa-p (0.004 S/cm2) 
is introduced, without SK, then the model soma doesn’t burst – it is depolarisation 
blocked. This is because the introduced INa-p initiates a burst, but there is no SK to 
terminate it. So, the soma gets “stuck” mid-burst at a depolarised membrane 
potential (figure 5.2A).  

2) Increasing the density of INa-p (from 0.004 S/cm2 to 0.005 S/cm2) increases the 
number of spikes per burst (from 4 to 7) - increasing the density of the burst 
initiator increases the number of spikes per burst (figure 5.2B). 

3) Increasing the density of SK (from 0.004 S/cm2 to 0.008 S/cm2) decreases the 
number of spikes per burst (from 4 to 2) - increasing the density of the burst 
terminator decreases the number of spikes per burst (figure 5.2C). 

4) Increasing the density of resurgent Na+ current (INa-r) (from 0.156 S/cm2 to 0.3 
S/cm2) increases the number of spikes per burst (from 4 to 7). INa-r is not the burst 
initiator and cannot generate bursting de novo. However, it can promote INa-p 
established bursting (figure 5.2D). 

5) Increasing the density of SK sufficiently (from 0.004 S/cm2 to 0.02 S/cm2) can 
switch the model out of bursting and into simple spiking (figure 5.3A)

6) Increasing the density of BK sufficiently (from 0.0728 S/cm2 to 10 S/cm2) can 
switch the model out of bursting and into simple spiking (figure 5.3B) 

7) Increasing the density of both SK and BK (to 0.02 S/cm2 and 10 S/cm2 
respectively) can switch the model out of bursting and into simple spiking (figure 
5.3C)

So, INa-p and SK can confer bursting. Raising the BK, and/or SK, density can “mask” this 
bursting and switch the model to simple spiking activity. So, BK and/or SK “gate” the 
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[INa-p vs. SK] bursting. In conclusion, the soma model generates either simple spikes or 
bursts, the activity expressed being dependent on just two variables – the BK and SK 
current densities.  

5.3.2   The Purkinje soma model is a product of, and can replicate, a number of 
pharmacological/electrophysiological experiments upon Purkinje somata.
We set SK as the model’s burst terminator because its importance to somatic bursting has 
been shown experimentally: “SK increases progressively during bursts and plays an 
important role in regulating burst duration” (Swensen and Bean, 2003). SK is likely the 
burst terminator, and not BK, because "BK current progressively decreases during the 
burst, whereas SK current progressively increases" (Swensen and Bean, 2003). Our 
model replicates this rising SK current, and falling BK current, during burst progression 
(figure 5.1 D & E). 

We set a Na+ current, rather than a Ca2+ current, as the depolarising force that initiates 
and maintains a somatically driven Purkinje burst because Na+ channel block, by cobalt 
or TTX, prevents this bursting (Swensen and Bean, 2003). By contrast, Ca2+ channel 
block actually promotes burst firing - “Blocking voltage-dependent Ca2+ entry by 
cadmium or replacement of external Ca2+ by Mg2+ enhanced burst firing” (Swensen and 
Bean, 2003). This promotion is likely manifested by Ca2+ channel block decreasing the 
intracellular Ca2+ concentration, which then results in less activation of the hypothesised 
burst terminator, the Ca2+-activated SK channel. 

So, the depolarising current that initiates and maintains somatic bursting is likely a Na+ 
current. Model tuning of persistent Na+ (INa-p), fast Na+ (INa-f) and resurgent Na+ (INa-r) 
current densities showed only INa-p able to generate bursts. The final model version 
includes only INa-p and INa-r. INa-f is omitted for brevity. With this modelling result, we 
hypothesise that INa-p is the burst initiator.  

Our “INa-p hypothesis” should be tested pharmacologically. Tetrodotoxin (TTX) is not 
ideal as it blocks not just INa-p, but INa-f as well. The anti-epileptic drug, Phenytoin, has 
been shown to preferentially reduce INa-p in CA1 Hippocampal Pyramidal neurons (Segal, 
1997). Assuming this holds for Purkinje neurons, it would be a good tool to test the “INa-p 
hypothesis”. In addition, Protein Kinase C (PKC) activation suppresses INa-p in CA1 
Hippocampal Pyramidal neurons (Alroy, 1999). PDB is a phorbol ester that potently 
activates PKC (Castagna, 1982) and so this should likely inhibit INa-p in Purkinje neurons. 
This would be another good tool to apply. INa-p is regulated by Nitric Oxide 
(Hammarstrom, 1999) and external Ca2+ concentration (Su, 2001) - these relationships 
provide further leverage for investigating this “INa-p hypothesis”.

The hyperpolarisation activated cation current (Ih) contributes to bursting in a number of 
neuron types (Pape, 1996; Luthi, 1998). However, Swensen and Bean (2003) do not find 
it involved in Purkinje somatic bursting. The modelling concurs with this as Ih block has 
no consequence upon model bursting. 
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5.3.3   The bursting of the Purkinje soma model is gated by the BK and SK 
conductances.
In dissociated soma recordings, some Purkinje somata spontaneously fire simple spikes 
and others spontaneously burst (Khaliq et al., 2003; Swensen and Bean, 2003). The 
Purkinje soma model can be switched from bursting to simple spiking by raising the BK 
and/or SK densities (figure 5.3). In this way the model hypothesises that a Purkinje 
somata that spontaneously fires simple spikes is identical to a Purkinje somata that 
spontaneously bursts, save the setting of just two variables: the BK and SK current 
densities. 

Bursting occurs when the depolarisation capacity exceeds the repolarisation capacity, and 
so the potential cannot be repolarised to the resting potential before the onset of the next 
spike. Raising BK and/or SK density, both repolarising entities, can correct this 
imbalance and set a simple spiking pattern. Conceivably the raising of any repolarising 
current can act similarly to switch bursting to simple spiking – to gate the bursting/simple 
spiking duality. However, we specifically hypothesise BK and SK in this role. At this 
point it is interesting to note that SK has a dual function, both being a gate to bursting and, 
upon bursting onset, the mechanism to burst termination. Higher SK densities block 
bursting, while lower SK densities permit bursting and act as the burst terminator.

Model bursting can be gated by BK and/or SK. Our final model version has gating by 
both BK and SK in combination and hence for bursting to be “unlocked”, both BK and 
SK activation must be reduced. The reduction of just one is not sufficient because of this 
functional redundancy. The concept of somatic bursting having this dual, redundant BK 
& SK gating axis comes from a novel interpretation of experimental data. This data is not 
from the study of isolated Purkinje somata but from full Purkinje morphologies. If the 
Purkinje cell’s P-type voltage-gated Ca2+ current (P/Q) is blocked by agatoxin then its 
inherent trimodal firing pattern is switched to bursting (Womack 2002 & 2004). Given 
the waveform of this bursting (bursts are short [2 to 4 spikes per burst] without the 
systematic depolarisation and stereotypical change in firing rate/spike height [upon burst 
progression] that characterises dendritically generated bursting), we hypothesise that it is 
somatically driven and corresponds to the bursting observed in some isolated Purkinje 
somata. Thus, we believe its study can be used to derive insight into isolated somata 
bursting, and vice-versa. This bursting, reasoned as somatic, occurs upon P/Q block. We 
hypothesise that this P/Q block translates to a combined BK and SK block, as BK and SK 
activation is selectively coupled to P/Q activation - experiment has shown that Ca2+ for 
activating BK and SK is provided solely by P/Q in the Purkinje cell (Womack, 2004) i.e. 
BK and SK do not “read” the global intracellular Ca2+ concentration but singly the Ca2+ 
flux through P/Q. So, the gate to somatic bursting is ultimately P/Q activation, exerting 
its control through BK and SK. Individual experimental block of BK or SK in a Purkinje 
cell is not observed to induce bursting (Womack 2003 & 2004). From this we hypothesise 
that combined BK and SK block is required, and P/Q block services this requisite. 

This hypothesis has 2 dimensions that both require experimental testing: 1) The bursting 
of a trimodal cell, upon P/Q block, is somatic in origin and equivalent to the bursting 
observed in some dissociated Purkinje somata; 2) The distinction between an isolated 
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soma that fires simple spikes and one that bursts is the level of BK and SK activation, 
which is set by the level of P/Q activation. The following are some recommended 
experimental tests to explore this hypothesis:

1) Can P/Q block switch an isolated, simple spiking Purkinje soma to bursting?
2) Can parallel BK and SK block switch an isolated, simple spiking Purkinje soma to 

bursting?
3) Can parallel BK and SK block switch a full morphology Purkinje cell to bursting? 

5.3.4   The Purkinje soma model can replicate Swensen and Bean's (2003) elicited 
burst protocol.
The focus of the bursting study of Swensen and Bean (2003) is not spontaneously 
bursting somata. Instead they study a rather artificial form of somatic bursting. They take 
an isolated soma that spontaneously fires simple spikes and hold it at a hyperpolarised 
silence (-90mV) with a maintained hyperpolarising current injection. This “held” cell is 
then driven to fire a single burst by a very short (1 ms) depolarising current injection. 
Although the cell intrinsically generates simple spikes it fires a burst in this protocol. 
Hence the studied burst is elicited rather than spontaneous. This raises the concern that 
the mechanisms elucidated for the generation of such an elicited burst are not relevant for 
spontaneous bursts. Modelling can help address this issue. Our model's bursting 
mechanism (INa-p vs. SK) comes from an analysis of observations that Swensen and Bean 
(2003) made for elicited bursts. Indeed, this mechanism allows the model to replicate 
their elicited burst results (figure 5.4). But importantly, it also allows the model to fire 
bursts spontaneously. This demonstrates that elicited and spontaneous bursts have an 
equivalent basis, which vindicates the value of experiments that employ the elicited burst 
protocol. 

In the elicited burst experiments, block of SK current (by apamin or scyllatoxin) 
increases the number of spikes per burst and prolongs burst duration (Swensen and Bean, 
2003). However, with the model's spontaneous bursting, SK block can have a much more 
dramatic effect. Whilst partial SK block simply increases the number of spikes per burst 
and prolongs burst duration, as with the elicited burst experiment, complete SK block 
actually terminates bursting and renders the model cell to silence (figure 5.2A). When a 
spontaneously bursting model cell has SK completely blocked, the first initiated burst 
cannot be terminated as it is now missing the SK burst terminator - without SK, the 
membrane potential cannot be repolarised to a potential where another burst can be 
initiated. The cell is committed to “depolarisation block”, which is a cell silence that is 
not at the resting potential, which would reflect a lack of depolarising capacity, but 
instead at a depolarised potential, indicating a lack of repolarising capacity. So, upon 
complete SK block in the spontaneously bursting model, just one more burst occurs that 
can't terminate and which reverberates into depolarisation block.   The elicited burst 
experimental technique cannot foresee this effect upon spontaneous bursting because of 
its study of a single burst rather than a train of bursts.  
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SK block switching a spontaneously bursting soma to a depolarised silence is a model 
prediction that needs to be experimentally tested. And it needs to be tested directly, by 
applying an SK blocker (apamin or scyllatoxin) to a spontaneously bursting soma. 

As stated earlier, when P/Q is blocked by agatoxin the Purkinje cell’s inherent trimodal 
firing pattern is lost to bursting (Womack 2002 & 2004). And eventually this bursting 
cedes to “depolarisation block” silence, which is somewhat paradoxical given that it is a 
depolarising entity (P/Q) being lost. However, this outcome is well accounted for by the 
novel reasoning outlined above. P/Q block reduces BK and SK activation, and somatic 
bursting behaviour is unlocked. As BK and SK fall further, and specifically as SK falls 
further, these bursts cannot be terminated and depolarisation block silence ensues.

It is important to note that SK block alone cannot drive a Purkinje cell to a 
“depolarisation block” silence. Combined BK and SK block (as occurring upon P/Q 
block) is first needed to unlock somatic bursting behaviour. Then the SK block can go on 
to cause “depolarisation block” silence. If the cell is not in a somatic bursting state, then 
SK block cannot cause silence. To reiterate, combined BK and SK block is needed to 
unlock the somatic bursting state, from which SK block can cause silence. 

5.3.5   P/Q can initiate somatic bursts in the absence of INa-p.
In our bursting model, omitting INa-p switches it from bursting to simple spiking (figure 
5.5A) and replacing the resurgent Na+ current with a non-resurgent equivalent switches it 
from bursting to simple spiking. However, this does not correlate with experiments. 
Swensen and Bean (2005) studied isolated Purkinje somata of mutant mice that lack the 
Scn8a gene, which encodes the NaV1.6 Na+ channel protein. These somata have transient 
Na+ current reduced by 40%, with even more dramatic reductions in the persistent and 
resurgent Na+ currents. However, they have a maintained bursting capability. Swensen 
and Bean (2005) show that this robustness of bursting is due to compensatory channel 
density changes that offset the lesser Na+ current. These density changes are likely 
chronic, developmental adaptations. There is 1) an upregulation in T-type and P-type 
Ca2+ currents and 2) a change in the balance of Ca2+ current and Ca2+-activated potassium 
currents such that their combined net influence shifts from being inhibitory during bursts, 
as with wild-type, to being excitatory. The model soma loses its bursting upon dramatic 
Na+ current reduction, unlike an experimental soma, because it doesn't make these needed 
compensatory changes. If we afford the model these compensatory changes upon 
dramatic Na+ current loss, then it can maintain its somatic bursting. For instance, INa-p 
loss switches a spontaneously bursting model soma to simple spiking. However, a 
compensatory rise in P/Q density (0.00052 to 0.00092 S/cm2) can recapture the bursting 
behaviour (figure 5.5B). P/Q is then the depolarising agent that initiates and maintains 
bursts rather than INa-p. So, we note that a large change in one conductance may produce 
little change in firing properties if accompanied by suitable changes in other 
conductances. This may be a general feature of neurons – that, where possible, they 
respond to a “channel density challenge” to their firing with compensatory channel 
density changes that maintain their characteristic firing properties. The cause of such a 
“channel density challenge” can be a pharmacological or genetic knockdown/knockout. 
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In conclusion, there may be multiple “solutions” (current density combinations) that yield 
a particular firing pattern or character. The model can capture this.       

 5.3.6   Experimental validation of the Purkinje soma model.
When P/Q is blocked in the Purkinje cell, it is switched into a phase of bursting before 
entering depolarisation block (Womack 2002 & 2004). Our Purkinje soma model predicts 
that this reaction occurs because P/Q block results in a concurrent compromise of BK and 
SK activation. So, we hypothesise that experimentally blocking BK and SK will produce 
a switch into the same series – bursting and depolarisation block. In vitro Purkinje cell 
recordings were performed by Mark Wall (University of Warwick) to test this prediction, 
with Charybdotoxin (100 nM) and Apamin (100 nM) applied to concurrently block the 
BK and SK currents respectively. These blocks switched the firing pattern into bursting 
and depolarisation block (figures 5.6 and 5.7) - validating the Purkinje soma model. 

5.4   Discussion
In this chapter we establish the biophysical basis to bursting in isolated Purkinje somata. 
Although an isolated Purkinje soma is a severely reduced system it is used heavily for 
experimental Purkinje cell research and thus we sought to understand it in order to 
potentiate the value of these experiments. 

We do not believe that the observed bursting is an artefact of the isolated soma 
preparation, because we hypothesise that the full Purkinje morphology exhibits the same 
bursting pattern upon P/Q block. Although this display is in a pharmacological reaction, 
we speculate that the Purkinje cell may use this bursting mode physiologically. So we 
propose that the Purkinje cell has two separate and distinct modes of bursting - 
somatically generated and dendritically generated - which have dramatically different 
waveforms. We venture that the Purkinje cell leverages this in information coding 
strategies.
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Fig
ure 5.1 The isolated Purkinje soma model bursts (4 spikes per burst) if the INa-p and 
SK conductances are both set to 0.004 S/cm2. These somatically driven bursts have a 
different waveform than dendritically driven bursts. Panel A, Dendritically driven bursts 
in our full Purkinje cell model (described in chapter 2) have a very stereotypical 
waveform with an ongoing increase in firing rate and termination by a more rapid 
increase in firing rate, with a decrease in spike height. Each burst rides upon a slow wave 
of depolarisation (highlighted by the yellow arrow) and ends with a quick depolarization, 
followed by a rapid hyperpolarization that persists through the interburst interval. Panel B, 
Somatically driven bursts in our isolated Purkinje soma model are, by contrast, without 
any systematic change in firing rate or spike height upon burst progression and do not 
ride upon a wave of depolarisation. In addition, somatically driven bursts tend to be 
shorter (two to four spikes per burst) than dendritically driven bursts (which can have 
hundreds of spikes per burst, although more typically have under ten). Panel C, INa-p 
initiates and maintains the bursts in the Purkinje soma model. The Na+ current conducted 
by the somatic INa-p channel (following convention INa-p, as an inward current, is 
represented as negative) is persistent and does not return to baseline after each spike in 
the burst. This persistence produces the sustained depolarization that initiates and 
maintains each somatic burst. Panel D, SK is responsible for burst termination in the 
Purkinje soma model. During a burst, the K+ current conducted by the somatic SK 
channel builds in magnitude until it ultimately attains enough strength to terminate it. 
This SK current then resets during the inter-burst interval. Panel E, In contrast to the SK 
current, the BK current (except for an increase at the second spike) declines in magnitude 
with burst progression and is not responsible for burst termination. 
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Figure 5.2 The bursting of the Purkinje soma model is dependent on a number of 
factors. Panel A, INa-p alone is not sufficient for bursting, SK is also required. With INa-p 
present (the burst initiator) and SK absent (the burst terminator) a burst initiates but 
cannot terminate. So, the membrane potential becomes “stuck” mid-burst at a depolarised 
membrane potential. Panel B, Increasing the INa-p density (0.004 to 0.005 S/cm2) 
increases the number of spikes per burst (4 to 7). Panel C, Increasing the SK density 
(0.004 to 0.008 S/cm2) decreases the number of spikes per burst (4 to 2). Panel D, 
Increasing the INa-r density (0.156 to 0.3 S/cm2) increases the number of spikes per burst 
(4 to 7). 
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Figure 5.3. The bursting of the Purkinje soma model is gated by the BK and SK 
conductances. Panel A, Increasing the SK density (0.004 to 0.02 S/cm2) switches the 
model from bursting to simple spiking. Panel B, Increasing the BK density (0.0728 to 10 
S/cm2) switches the model from bursting to simple spiking. Panel C, Increasing both the 
SK and BK densities (SK from 0.004 to 0.02 S/cm2. BK from 0.0728 to 10 S/cm2) 
switches the model from bursting to simple spiking. In this condition bursting is 
prevented by both BK and SK in a redundancy - removing BK does not permit bursting  
because the SK block to bursting is still present (Panel D); removing SK does not permit 
bursting because the BK block to bursting is still present (Panel E). However, concurrent 
BK and SK removal does permit bursting - decreasing the BK and SK densities by an 
empirical function of time (t) [density(t) = density(0)- 0.00001*t] shifts the somatic 
activity from simple spiking, into bursting and then depolarisation block silence (Panel 
F). This matches the experimental response of real Purkinje cells to concurrent BK and 
SK block (refer figures 5.6 and 5.7). Panels G, H, I, J relate to the labelled parts of Panel 
F and highlight the transition from simple spiking to bursting. 
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Figure 5.4 The Purkinje soma model can replicate Swensen and Bean's (2003) 
elicited burst protocol. A, The model soma spontaneously fires simple spikes because it 
has an elevated BK and SK density that blocks bursting. At 100 ms it is driven to a 
hyperpolarised silence, and held there, by a maintained hyperpolarising current injection 
(-0.5nA). This “held” cell is then driven to fire a single burst by a very short (1 ms) 
depolarising current injection (2nA). Although the cell intrinsically fires simple spikes, it 
fires a burst in this protocol. So, the studied burst is elicited rather than spontaneous. B, 
The elicited burst at higher resolution.  
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Figure 5.5 P/Q can initiate somatic bursts in the absence of INa-p. Figure 5.1 shows 
how the Purkinje soma model bursts if the INa-p and SK conductances are both set to 
0.004 S/cm2. Panel A, However, if INa-p is then removed the soma model no longer bursts, 
firing simple spikes instead. Panel B, But bursting character can be recaptured, in the 
absence of INa-p, by raising the P/Q density from 0.00052 to 0.00092 S/cm2. In this case, 
P/Q is the burst initiator in place of INa-p.
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Figure 5.6 Experimental data. Concurrent BK and SK block switches the Purkinje 
cell from a repeating bimodal activity pattern (tonic firing and quiescence) to 
bursting and then depolarisation block. Whole cell patch clamp recording from a 
Purkinje cell following the application of Charybdotoxin (100 nM) and Apamin (100 nM) 
to block the BK and SK currents respectively (recording courtesy of Mark Wall at the 
University of Warwick, personal communication). Charybdotoxin and Apamin block BK 
and SK irreversibly and thus, after their application, the proportion of BK and SK 
molecules blocked increases in time until eventually all BK and SK activity is abolished. 
The red arrow denotes the time at which the rising BK and SK block starts to modify 
Purkinje cell firing. The initial firing mode, before any block, is bimodal (tonic firing and 
quiescence). With time, as an increasing proportion of BK and SK molecules become 
blocked, the quiescent periods get shorter and there is a switch into bursting and 
depolarisation block. 
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Figure 5.7 Experimental data (2). 

A, Concurrent BK and SK block switches the Purkinje cell from a repeating 
bimodal activity pattern (tonic firing and quiescence) to bursting and then 
depolarisation block. Whole cell patch clamp recording from a Purkinje cell following 
the application of Charybdotoxin (100 nM) and Apamin (100 nM) to block the BK and 
SK currents respectively (recording courtesy of Mark Wall at the University of Warwick, 
personal communication). 

B, Component of panel A at higher resolution. Early on, the Purkinje cell fires simple 
spikes. 

C, Component of panel A at higher resolution. Later on, as a greater proportion of BK 
and SK channels become blocked, the Purkinje cell bursts with waveforms that indicate a 
somatic drive to bursting.
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                                Chapter 6
                                                       Discussion

6.1   Introduction
Our contribution is primarily methodological, with us having built detailed and simplified 
in silico Purkinje cell preparations that other investigators can utilise in their research. 
We have shown the value of these models by using them ourselves to gain a further 
insight into Purkinje computation and coding.     
 
6.2   The detailed Purkinje neuron model
Our detailed Purkinje cell model synthesises a lot of disparate electrophysiological and 
morphological data into a single, compact representation that can serve as an in silico 
experimental preparation. Although not a perfect simulacrum of a Purkinje cell, its detail 
in place of computationally attractive abstraction confers a good concordance between 
model and reality. 

The Purkinje cell model grants continuous access to all parameters and confers complete 
control over inputs, which can facilitate investigation of Purkinje cell properties and 
mechanisms that are presently inaccessible to experimental procedures.   For example, 
studies using the model face no issues with small dendrites, which at this time are 
impossible to patch experimentally, or incomplete specificity of current/channel blockers. 

Modelling cannot provide an absolute answer to experimental questions but can endow a 
useful narrowing of possible scenarios and can guide the direction of future experiments. 
Neuroscience research can be highly effective when structured as an iterative back and 
forth between experimentation and modelling – with experimental data founding models 
and the investigation of these models prompting new experimental directions and data. 

At the time of research, parallelization was not feasible for single neuron models. 
However, this has recently changed (Hines et al., 2008). Running the model on a cluster 
or grid will permit a faster model run time, which will make it more accessible as an in 
silico experimental preparation. Although at the time of writing there is a practical upper 
limit of ~16 processors.

6.3   The reduced Purkinje neuron model
Previous theories of cerebellar functioning (Marr, 1969; Albus, 1971) have considered its 
component neurons to be linear summing devices (integrate and fire), ignoring their 
complexity, nonlinearity and computations. This is perhaps too abstractive because there 
is evidence that the richness of biophysical properties on the single neuron scale can 
supply mechanisms that serve as building blocks for network dynamics (Getting, 1989). 
We believe that to understand the cerebellar network, researchers should employ network 
simulations that incorporate more detailed neuron descriptions. Our Purkinje cell model 
is an intricate in silico experimental preparation. It favors detail over abstraction but this 
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makes it very computationally intensive and unsuitable for use in network simulations. 
With this in mind, we have used mathematical transforms to produce a simpler, surrogate 
version with the same electrical properties, but a lower computational overhead, which 
we hope researchers will deploy in future cerebellar network studies. Indeed, we hope 
that this model, of intermediate biological fidelity and medium computational complexity, 
will be used in the future to bridge cellular and network studies and identify how 
distinctive Purkinje cell behaviours are important to network and system function.

6.4   Our findings
Our detailed biophysical model replicates the Purkinje cell’s trimodal and bimodal firing 
patterns with the mechanisms that we hypothesise to be responsible for their firing in real 
Purkinje cells. And these predictions are forceful given the model’s level of detail, with 
its faithfully reconstructed morphology and current, synapse and pump equations 
parameterized to experimental data. The model’s methods of generating the trimodal and 
bimodal firing patterns are validated by endowing the model with the ability to replicate a 
range of other experimentally observed Purkinje cell operating states. For example, they 
permit the model to replicate the complex Purkinje cell response to an ouabain block of 
the Na+/K+ pump, both on its own and in combination with a TTX block of Na+ channels.

Although previous work has reported and characterised different patterns of intrinsic 
Purkinje firing (Womack and Khodakhah, 2002, 2003, 2004; McKay and Turner, 2005) 
this thesis is the first study that moves beyond their description and investigates the basis 
of their generation. The model suggests that the Na+/K+ pump fixes the Purkinje cell’s 
intrinsic operating state, dictating whether the cell fires in a trimodal or bimodal pattern 
and setting the length of their constituent modes (tonic, burst, quiescent). We hence 
demonstrate that the isolated Purkinje cell’s multimodality might be controlled by just a 
single molecular species. 

Our work suggests that the Na+/K+ pump can generate quiescent periods in Purkinje cell 
activity and we propose that their patterning and length is salient to how the Purkinje cell 
encodes information (especially given that Purkinje output is inhibitory to the 
downstream deep cerebellar nuclei [DCN] and so quiescence actually conveys 
downstream disinhibition; Jaeger, 2007; Steuber et al., 2007)  We suggest that 
intracellular Na+ concentration provides memory in the Purkinje cell, integrating firing 
history and setting Na+/K+ pump activity to dictate silence length and patterning, with 
potential modulation by signalling cascades convergent on the pump. So, we hypothesise 
that the Na+/K+ pump is more than just a homeostatic mechanism to ionic gradients. We 
propose that it is a computational element in Purkinje information coding. In support, a 
mutation in the Na+/K+ pump causes rapid-onset dystonia-parkinsonism (RDP), which 
has symptoms to indicate that it is a pathology of cerebellar computation (Cannon, 2004; 
de Carvalho et al., 2004).

Climbing fiber (CF) input can toggle a Purkinje cell between an up (firing) and down 
(quiescent) state and can set the gain of its response to parallel fiber (PF) input (McKay 
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et al., 2007). Our Purkinje cell model can perform these toggle and gain computations, 
with mechanisms that we hypothesise to be responsible in real Purkinje cells. This has a 
wider importance because there are not many biophysical models of single neuron 
computation, despite an intense interest in the computational repertoire and power 
available to individual neurons (Sejnowski et al., 1988; Koch, 1999; Zador, 2000; 
London and Hausser, 2005; Herz et al., 2006; Mel, 2006). The model incorporates the 
hypothesis that these computations are a function of an underlying Ca2+ computation; that 
the intracellular Ca2+ concentration provides memory, recording the history of firing and 
inputs, to dictate how the cell responds to future inputs. For example, the model’s Ca2+ 
system memorizes a CF input, which causes the model to then respond differently to a PF 
input than it would otherwise and CF input, in interaction with intracellular Ca2+ 
dynamics, can dictate the timing and duration of quiescent periods. So, again we show the 
importance of an ion concentration to neural functioning, whilst reconciling biophysics 
with computation and information processing. 

Our modelling indicates that the Purkinje cell has two different bursting modes. One 
generated by Ca2+ spikes in the dendrites and the other by an interaction of somatic 
conductances. For the latter, we model persistent Na+ current (INa-p) to be the burst 
initiator and SK K+ current to be the burst terminator. This is a novel bursting form with 
no previous reports in the literature (for any neuron class). In our model, this bursting is 
gated by the BK and SK currents in combination/redundancy, and we provide supporting 
in vitro Purkinje cell recordings that affirm the gate is of this character. 

6.5   A proposal that reconciles the long temporal dimension of 
some Purkinje cell behaviours with the much shorter time scale 
of motor coordination. 
Motor coordination is achieved with precise timing signals for augmentation and 
inhibition of appropriate agonist and antagonist muscles, and this timing information is 
believed to be encoded in the rate of firing and pattern of activity of Purkinje cells (Ito, 
1984). The millisecond time scale of motor coordination in the behaving animal (e.g. 
average reaction time of normal subjects in a button pressing task is 180 milliseconds; 
Doyon et al., 1998) is a contrast to the wider spectrum of time scales associated with 
Purkinje cell behaviour. For example, whilst Purkinje cells can fire fast, millisecond-long 
sodium action potentials they can also exhibit slow, second-long transitions between the 
up and down states in CF associated toggling. This raises the question of how the 
Purkinje cell’s slower physiological processes (such as CF toggling) can affect motor 
behaviour, which has much faster dynamics. 

One possibility is spatial averaging. Each DCN neuron receives an input from hundreds 
of Purkinje cells and so assuming their activity is asynchronous, even slow events in 
single Purkinje cells will likely affect each DCN neuron many times per second. 
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However, this asynchronicity assumption is not supported by data showing that the 
complex spike activity of neighbouring Purkinje cells is synchronized (Lang et al., 1999). 

Our view is that these slower processes are relevant and computationally advantageous 
because, by conferring an access to longer time scales, they permit short-term processing 
and storage of sensory information in the cerebellar cortex. In essence, the Purkinje cell’s 
slower processes permit a large number of different dynamical states to be sustained in 
the cerebellar cortex for extended periods. Each of these states is associated with a 
specific configuration of up (firing; tonic/bursts) and down (quiescent) states in different 
Purkinje cells. These network states could store information. In our proposal, these 
hypothesised network computations sit upon the aforementioned, asserted intracellular 
ion computations (Na+, Ca2+) that dictate the activity state of individual Purkinje neurons. 

In short, as regards function, we venture that these slower, longer processes in the 
Purkinje cell might be involved in the integration of sensory information, gain 
modification and motor planning rather than the direct control of fast movements.  

6.6   A future research direction
A useful test of our work would be to research how Na+/K+ pump block affects behaviour 
in the intact animal, using intraventricular administration of the Na+/K+ pump blocker 
ouabain. Whilst earlier studies have assayed ouabain's effects on learning tasks (Rogers, 
1977; Zhan, 2004) it would be interesting to test ouabain impaired animals in motor co-
ordination and motor learning tasks, because these are attributed to the cerebellum where 
we propose Na+/K+ pump function to be especially important. 

6.7   Conclusion
In the classical rate coding postulate, the firing rate of neurons is considered to be the 
significant variable in neural coding. However, it is becoming increasingly clear that this 
view is overly simplistic. For example, in our work we reach the conclusion that Purkinje 
neurons encode information not just in their spiking but in the patterning and length of 
quiescent periods, which are in turn dictated by computations performed by intracellular 
ion systems (Na+ and Ca2+). Although we have only studied Purkinje neurons, there is the 
possibility that this finding might be more general and could relate to the dynamics of 
other neural units. 
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                                              APPENDIX
                          Hodgkin-Huxley equations used 

A.1   Hodgkin-Huxley equations for a voltage-dependent current 

(This is a brief recap. There is a section of chapter 1 that describes the Hodgkin-Huxley 
model in detail. Please to refer to this if a fuller explanation is required)

)( m
A EVmgI −=

−

Where I is the current, is the maximal conductance of the current, V is the membrane 
−

g
potential, A is a constant, Em is the reversal potential for this current and m is a voltage 
dependent “particle”:

m

mm
dt
dm

τ
−

= ∞

m is voltage dependent because and are voltage dependent, which are set by:∞m mτ

mm

mm
βα

α
+

=∞

mm
m βα

τ
+

=
1

and are voltage dependent because and are voltage dependent. and ∞m mτ mα mβ mα
are empirical functions of voltage (or intracellular calcium concentration) mβ

So, to detail a Hodgkin-Huxley current one needs to specify:

1) The maximal conductance/current density ( ) 
−

g
2) The reversal potential. This depends on which ion the current permeates. Na+ 

(+65 mV), K+ (-88 mV), Ca2+ (+135 mV).
3) How many “particles” it has (mA, hB, zC)
4) The equations describing how its alpha and beta functions are dictated by voltage 

(or intracellular calcium concentration). OR the equations describing how its 
steady state and time constant are dictated by voltage (or calcium concentration) *
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* [ , ] and [ , ] are interchangeable through the relations m  = m/( m + m), mα mβ ∞m mτ
and m = 1/( m

 + m). Thus specification of [ , ] OR [ , ]  are equivalent.mα mβ ∞m mτ

In this section we detail (3) and (4) for each current used in our modelling. 
(1) for these currents has been detailed in earlier chapters. 

A.2   Hodgkin-Huxley equations for the currents of our Purkinje 
cell models 

In the following equations, V represents the membrane potential in mV as a 
dimensionless quantity.  

Kv1.2 K+ current (Akemann and Knopfel, 2006)
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Delayed rectifier type K+ current (Miyasho et al., 2001)
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Where [Ca2+]i is the intracellular Ca2+ concentration in a supra-membrane shell of depth = 
0.1 μm, F is the Faraday constant, is the Ca2+ membrane current, kt = 1e-4 mM/ms, +2CaI
kd = 1e-4 mM, taur = 1e10 ms and y = 2.4e-4 mM. 

Resurgent Na+ current (Khaliq et al., 2003)

This current is not described by a Hodgkin-Huxley formalism but by the following 
Markov scheme: 

C, I, O, and OB represent closed, inactivated, open, and blocked states, respectively.  The 
rate constants are α, β, γ, δ, ε, ζ, Con, Coff, Oon, and Ooff. For their values refer to 
Khaliq et al. (2003). 
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                                                     ADDENDUM

Some of the research presented in this book, and related research, has been published in international peer-reviewed 
journals:

1) Forrest MD, Wall MJ, Press DA, Feng J (2012) The Sodium-Potassium Pump Controls the Intrinsic Firing of 
the Cerebellar Purkinje Neuron. PLoS ONE 7(12): e51169. 
http://dx.doi.org/10.1371%2Fjournal.pone.0051169

2) Forrest MD (2014) Intracellular Calcium Dynamics Permit a Purkinje Neuron Model to Perform Toggle and 
Gain Computations Upon its Inputs. Frontiers in Computational Neuroscience 8:86. 
http://journal.frontiersin.org/Journal/10.3389/fncom.2014.00086/full

3) Forrest MD (2013) Mathematical Model of Bursting in Dissociated Purkinje Neurons. PLoS ONE 8(8): 
e68765. http://dx.doi.org/10.1371/journal.pone.0068765

These publications are freely available on the internet. Indeed - arguably - the research is much better presented in these 
journal publications than in this book. The book gives more context but the papers are tight with clarity. In addition, the 
research of this book was presented at a conference in 2009 - the abstract of which is in its conference proceedings:

4) Forrest MD, Wall MJ, Press DA (2009) The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar 
Purkinje Neuron. Poster session presented at: 16th International Conference on Neural Information Processing (ICONIP 
09); Bangkok, Thailand

Readers may also be interested to read a journal paper derivative of Dr. Forrest’s Master degree thesis:

5) Forrest MD (2014) Can the Thermodynamic Hodgkin-Huxley Model of Voltage-Dependent Conductance 
Extrapolate for Temperature? Computation 2(2):47-60.
http://www.mdpi.com/2079-3197/2/2/47

N.B. The cover picture of this book/thesis is largely a composite of pictures found in its body. Where a picture has been 
sourced from an outside party, the relevant permission is stated at its point of use in the main body. The Purkinje 
morphology component of the cover image is sourced from: Coop AD, Cornelis H, Santamaria F (2010) Dendritic 
excitability modulates dendritic information processing in a Purkinje cell model. Front Comput Neurosci 4:6. doi: 
10.3389/fncom.2010.00006   
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