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Abstract
Many real-world networks exhibit correlations between the node degrees. For instance, in social
networks nodes tend to connect to nodes of similar degree and conversely, in biological and
technological networks, high-degree nodes tend to be linkedwith low-degree nodes. Degree
correlations also affect the dynamics of processes supported by a network structure, such as the spread
of opinions or epidemics. The propermodelling of these systems, i.e., without uncontrolled biases,
requires the sampling of networks with a specified set of constraints.We present a solution to the
sampling problemwhen the constraints imposed are the degree correlations. In particular, we develop
an exactmethod to construct and sample graphs with a specified joint-degreematrix, which is amatrix
providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus
completely specifying all pairwise degree correlations, and additionally, the degree sequence itself.
Our algorithm always produces independent samples without backtracking. The complexity of the
graph construction algorithm is NM( ) whereN is the number of nodes andM is the number of
edges.

1. Introduction

Complex systems often consist of a discrete set of elements with heterogeneous pairwise interactions. Networks,
or graphs have proven to be a useful representational paradigm for the study of these systems [1–4]. The nodes,
or vertices, of the graphs represent the discrete elements, and the edges, or links, represent their interaction. In
empirical studies of real-world systems, however, for reasons ofmethodology, privacy, or simply lack of data,
frequently there is only limited information available about the connectivity structure of a network.When this is
the case, one has to take a statistical approach and study ensembles of graphs that conform to some structural
constraints. This statistical approach enables the computation of ensemble averages of network observables as
determined solely by the constraints, i.e., by the specified structural properties of the graphs. Ensemblemodeling
of this type is necessary to determine the relationship between the given structural constraints and the behavior
of the complex system as awhole. Calculating ensemble averages, though, requires the ability to construct all the
graphs that are consistent with the required structural constraints, a highly non-trivial problem.

Perhaps one of the simplest examples of structural constraints that occur in data-driven studies of real-world
systems is tofix the degree of each node, which is the number of edges that are connected to, or are incident on
the node. For an undirected graphwithNnodes this information is specified by a degree sequence

d d d{ , , , }N1 2 = ⋯ , where di is the degree of node i. Similarly, for a directed graph, a bi-degree sequence (BDS)
d d d d d d{( , ), ( , ), , ( , )}N N1 1 2 2 = ⋯− + − + − + specifies the number of incoming and outgoing edges for each node

OPEN ACCESS

RECEIVED

20March 2015

REVISED

29 June 2015

ACCEPTED FOR PUBLICATION

17 July 2015

PUBLISHED

26August 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft



where di
− denotes the in-degree, and di

+ the out-degree, of node i. The situation ofmost practical interest is
whenwe demand the graphwith a given degree sequence to be a simple graph, which has the additional
constraints that there can be atmost one link (in each direction, if directed) between any two nodes, and that no
link starts and ends on the same node (no self-loops). However, not all positive integer sequences can serve as the
sequence of the degrees of some simple graph. If such a graph does exist, then the sequence is said to be graphical.
Any simple graph (just ‘graph’ fromhere on)with the prescribed node degrees is said to realize the degree
sequence, and it is called a graphical realization of the sequence. The twomain results used to test the graphicality
of an undirected degree sequence are the Erdős–Gallai theorem [5] and theHavel–Hakimi theorem [6, 7]. For
directed networks, instead, themain theorem characterizing the graphicality of a BDS is due to Fulkerson [8].
More recently, exploiting a formulation based on recurrence relations, newmethodswere introduced to
implement these tests with aworst case computational complexity that is only linear in the number of nodes [9–
11]. The advantage of thesemethods over others with similar complexity [12] is that they also allow a
straightforward algorithmic implementation.

While the above results provide complete andpractical answers to thequestion of the graphicality of sequences
of integers, they donot suffice to solve the problemof constructing graphswithprescribeddegrees.Oneof the
main issueswith constructing graphs for thepurpose of ensemblemodeling is that, except for networks of just a
fewnodes, thenumber of graphs realizing a degree sequence, or other possible constraints, is generally so large that
their complete enumeration is impractical. Therefore, one has to resort to sampling the space of realizations by
randomly generating networkswithprescribednodedegrees [9, 11]. For the case of degree-based graph sampling,
the existing approaches generally fall into twoclasses that canbroadly be referred to as ‘rewiring’ and ‘stub-
matching’. Rewiringmethods start froma graphwith the requireddegrees anduseMarkov chainMonteCarlo
(MCMC) schemes to swap repeatedly the ends of pairs of edges to produce newgraphswith the samedegree
sequence [13–16]. Stub-matchingmethods, instead, are direct construction algorithms that build the graphs by
sequentially creating the edges via the joining of two stubs of twonodes [17–21]. A stub represents a non-
connected, ‘dangling half-edge’ and anodehas asmany stubs as its degree.Unfortunately, these techniques can
provide biased results, or are ill-controlled. In the case of theMCMCmethod themixing time is in general
unknownand thus one cannot know a priori the number of swapsneeded to produce two statistically independent
samples. Proofs showing polynomialmixing of theMCMCmethodhavebeen recently developed for special
degree sequences [22–25], and for the case of balanced realizations of joint-degreematrices (JDMs) [26].However,
none of thesemethods allows the determinationof the exponent of the polynomial scaling.

Among the stub-matchingmethods, themost commonly used algorithm, which is also ill controlled, is
known as the configurationmodel. The configurationmodel was proposed in [17] as an algorithmic equivalent
of the results from [27, 28], themselves based on priormodels [29, 30]. The algorithm randomly extracts two
stubs from the set of all stubs not yet connected into edges, and connects them into an edge. If amulti-edge or a
self-loop has just been created, the process is restarted from the very beginning to avoid biases. However,
depending on the degree sequence, this process can become very inefficient with an uncontrolled running time,
just like theMCMCmethod. Alternatively, one can ignoremulti-edges and self-loops, and fix them ‘by hand’ at
the end of the process. However, doing so produces significant biases even in the limit of large system size [31].
Recently, a novel family of stub-matching algorithmswas introduced for both undirected [9] and directed [11]
degree sequences (reproduced here inA), based on the so-called star-constrained graphicality theorems [32, 33].
These algorithms generate statistically independent samples with aworst case polynomial time of (NM),
whereM is the total number of edges. The samples are not generated uniformly. However, their statistical
weights are computable and can be used to obtain results in an importance sampling framework [9, 11, 34, 35].
Note that the solution for the directed sequences also solves the problem for bipartite sequences because a
bipartite graph can always be represented as a directed one inwhich one of the two sets of nodes has only
outgoing edges, and the other set has only incoming ones.

Graph construction and sampling becomes evenmore difficult when there are structural constraints of
higher order, such as correlations amongst the node degrees. Degree correlations can be expressed in several
ways, for examplewith the help of the conditional probability P d d( )′∣ that a node of degree dwill have a
neighbor of degree d′, ormore simply, by the average degree of the neighbors of a nodewith degree d,
d d d P d d¯ ( ) ( )

d
∑′ = ′ ′∣′ [36]. The properties of d d¯ ( )′ characterize the so-called assortativity of a graph, which is a

measure of the tendency of a node to connect to nodes of similar degree. If d d¯ ( )′ is increasing in d, the graph is
degree-assortative, if it is decreasing the graph is degree-disassortative, and if it is constant, the graph is degree-
uncorrelated. Evenmore coarse-grainedmeasures of degree correlations are possible, including the Pearson
coefficient [37], the Spearman coefficient [38] and theKendall coefficient [39]. These coefficients assume values
ranging from 1− , for highly disassortative graphs, to 1, for highly assortative ones.

Amore precise way to express degree correlations is via the use of a JDM. The JDMof a given undirected
simple graph is a symmetricmatrix whose ( , )α β element is the number of edges between nodes of degree α and

2
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nodes of degree β. The dimensions of the JDMare Δ × Δ, whereΔ is the largest degree of a node in the graph.
The degree correlationmeasures discussed above specify the correlations only statistically, but they do notfix the
number of edges between nodes of given degrees, whereas the JDMs do. In this sense, the relationship between
JDMs and the statistical degree correlationmeasures is similar to the relationship between degree sequences and
degree distributions.

Degree correlations have generated considerable interest, as they are known to affectmany structural and
dynamical properties of graphs and the processes they support [40–47].Nevertheless, even though their
importance is well established, it has heretofore not been possible to perform ensemblemodeling of graphswith
prescribed JDMs. In this Article, we solve this problemby developing an algorithmbased on the stub-matching
method to construct and sample ensembles of graphswith a specified JDM.

2.Mathematical foundations

2.1. Graphicality of JDMs
The problemof graphicality for JDMs asks whether a specified symmetricmatrix can be the JDMof a simple
graph.Our starting point is an Erdős–Gallai-like theorem that gives the requirements for a JDM to be graphical
[48–50].

Before stating the theorem, though, note that a JDM specifies uniquely the degree sequence of the graphs that
realize it [48]. Given a JDM J, the number of nodes with degree α is

V J J
1

,
1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑

α
= +α αα

β
αβ

=

Δ

whereVα is the set of nodes, or degree class, with degree α. As a general rule of notationwewill use lowercase
Greek letters to indicate degree values and lowercase Latin letters for node indices. In the equation above the sum
of each rowα of J is the number of connections involving nodes of degree α (i.e., all nodes in classVα). As each
node of degree αhas exactly α stubs the total number of nodes of degree α is given by the notal number of stubs
from all nodes in classVα divided by α.Moreover, each edge between nodes of the same degree involves 2 stubs.
Thus, the diagonal elementsmust be double-counted. Note thatmultiple JDMs can specify the same degree
sequence and thus prescribing a JDM ismore constraining than only prescribing a degree sequence.With the
definitions above, the necessary and sufficient conditions for a JDM to be graphical can be stated as follows
[48–50]:

Theorem1. JDMgraphicality. A symmetric Δ × Δmatrix J with non-negative integer elements is a graphical JDM
if and only if:

1) V is an integer 1 ,α∣ ∣ ∀ ⩽ ⩽ Δα

2) J
V

and
2

1 ,⎜ ⎟⎛
⎝

⎞
⎠ α⩽ ∣ ∣ ∀ ⩽ ⩽ Δαα

α

3) J V V and1 , .α β α β⩽ ∣ ∣∣ ∣ ∀ ⩽ ⩽ Δ ≠αβ α β

It is important to observe that any graphical realization of a JDMcan be decomposed into the disjoint union
of a set of subgraphs Gαβ that are bipartite (α β≠ ) with node setsVα andVβ and Jαβ edges between themor
unipartite (α β= ) with node setVα and Jαα edges within that set.We are going to call such representation of a
graphical realization a degree class representation. A simple example of a graphical JDMwithN= 10 and 4Δ =
is given by thematrix:

J

0 0 0 1
0 0 4 4
0 4 1 3
1 4 3 0

. (1)

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟=

Panels (a) and (b) offigure 1 show a graphical realization of J in degree-class representation and regular
representation, respectively. Panels (d) and (e) of the samefigure show another realization of J in the two
representations. The color of the edges indicate the subgraph they belong to. For example,G24 is a bipartite
graph between nodes of degree 2 (V2) and 4 (V4), respectively, having J 42,4 = edges drawn in green color,
whereasG33 is unipartite with a single J 133 = edge drawn in blue.Note that while both graphical realizations
have the same JDM, they are very different graphs. To see this, consider the counts nℓ of cycles Cℓ of lengthℓ (a
cycle is a closed pathwithout repeated nodes). The graph infigure 1(b) has n 13 = , n 24 = , n 15 = , n 26 = ,
n 37 = and n 38 = , whereas the one infigure 1(e) has n 13 = , n 14 = , n 25 = , n 36 = , n 47 = and n 18 = .
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Theorem 1 is an existence theorem, just like the Erdős–Gallai theorem for the case of degree sequences, and
as such it does not provide an algorithm that can generate simple graphswith a given JDM.More importantly,
we also need an algorithm that does not exclude classes of graphical realizations of a given JDM, but that can
construct in principle any such realization. The situation is similar to that of degree sequences. In that case the
Havel–Hakimimethod [6, 7] is always able to create a graphical realization of a graphical degree sequence, but
cannot construct them all, i.e., there will be some realizations that can never be built by this algorithm. This was
the reason for the introduction of the notion of star-constrained graphicality in [32, 33] and the subsequent
construction algorithms in [9, 11]. Here aswell, wewant to have a direct construction algorithm and ultimately
an exact sampler that does not exclude any realization of a JDM.Due to the different nature of the constraints
from the degree-sequence-based case, we need to develop a novel approach.

The idea of the approach is based on the degree-class representation above. Since the edges of the subgraphs
Gαβ are disjoint, we could build a graphical realizationG of the JDM J by building all these subgraphs, while
respecting the constraints. For a Gαβ subgraphwe know its node set(s) and its total number of edges Jαβ.
Consider then a node v V∈ α.We are not given its degree in Gαβ for any β, but we know that the sumof its
degrees within every one of these subgraphsmust add up toα. For example, the sumof the number of the purple,
green and red edges coming out of node 2 infigure 1(b)must add to 4. In addition, we also have the constraints
that the sumof the degrees of one color of all nodes withinVα must equal to the corresponding given JDMentry.
Indeed, for example, the sumof all green edges infigure 1(a) orfigure 1(b) is J 42,4 = , for orange is 4, red is 3, etc.
Thus, the idea of the algorithm is tofirst determine the degree of a given color respecting the constraints for all
nodes and all colors, then use ourmethods introduced earlier [9, 11] (see A) to build the Gαβ subgraphs based on
the corresponding degree sequences of their nodes. Different graphical realizationswill be obtained from
different assignments of color degrees and, of course, from the different graphical realizations of the same set of
degrees. Note that for the bipartite subgraphs Gαβ we are specifying degree sequences for nodes in both
partitionsVα andVβ and thuswe can use our graph constructionmethod for directed graphs [11], because a
bipartite graph can be represented as a directed graph if nodes in one partition have only outgoing edges and in
the other only incoming edges. In the following it will be useful to introduce the notion of degree spectra,
representing the degrees of different colors of a node, as described above.

2.2.Degree spectra
Consider a single rowα of a graphical JDM J. The information contained in the rowdetermines the precise
number of edges needed between nodes of degree α and nodes of every degree. In other words, of all the stubs
coming fromVα , J ,1α of themmust end in a node of degree 1, J ,2α of themmust end in a node of degree 2, and so

Figure 1.Graphical realizations of a simple JDM, given in (1). Panels (a) and (d) are degree-class representations, while panels (b) and
(e) are regular representations. The color of the edges indicates the subgraph Gαβ they belong to. Panels (c) and (f) show the
corresponding degree-spectramatrices for the two realizations; they differ in the bold red entries.

4
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on.However, thesematrix elements do not specify how to distribute these edges within and between the degree
classes. To better specify these connections one introduces the notion of the degree spectra, which can be
conveniently represented as amatrix. The degree spectrum of a node is the sequence of its degrees towards all the
degree classes, including its own degree class. A degree-spectramatrix S is a NΔ × matrix whose i( , )α element
S iα is the number of edges between node i and degree class α (the set of nodes of degree α). The ith column of S
defines the degree spectrumof node i. Panels (c) and (f) offigure 1show two representations of the same JDM
given in equation (1). In general, there aremany degree-spectramatrices that correspond to the same JDM.As
described in the previous section, we employ a two-step process in order to randomly sample graphs that realize
a given JDM. First, we generate a randomdegree-spectramatrix from the JDM. Second, we construct a random
graph that realizes the JDMand that obeys or is consistent with the chosen spectramatrix. This approach creates
the need for amethod to guarantee that the spectra generated from a JDMare graphical.

The generation of a graphical degree-spectramatrix proceeds systematically, node by node. Therefore, at
each step, some nodeswill have an already fixed number of linkswithin some of the subgraphs (links of a given
color), while for the rest these numbers will not have been determined yet. Thus, at any time during this process
we have a partial degree sequence of a bipartite graph. As the subgraphsmust be simple graphs (realizable), one
must be able to decide whether a partial bipartite degree sequence is graphical. The sufficient and necessary
criterion for the graphicality of a partial bipartite degree sequencewill be given in theorem2below.However,
that will not necessarilymean that thewhole JDM J is still realizable, in otherwords, howdowe know that by
guaranteeing the graphicality for a subgraph Gαβ we have not precluded graphicality of some other subgraph Gγδ,
and ultimately of J? The answer to this questionwill be given by theorem3, later on. Together, these theorems
form the basis for our algorithm to generate graphical degree spectra.

Before proving a theorem that provides a graphicality test for partial bipartite degree sequences, we need to
set some notations. LetA,B,H andK be four sets of nodes:

{ }
{ } { }

A a a a B b b b A B

H h h h K k k k H K

{ , , , } , , , with

, , , , , , with

A B

H K

1 2 1 2

1 2 1 2

∩
∩

= ⋯ = ⋯ = ∅
= ⋯ = ⋯ = ∅

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

and letU A B∪= andV H K∪= (see figure 2). The sets can be of different size, but neitherUnorV can be
empty.Now, let p p p{ , , , }A1 2 = ⋯ and q q q{ , , , }H1 2 = ⋯ be two given sequences of integers. Theywill
represent the partial bipartite degree sequences that have already been fixed by the algorithmup to that point.
The degrees of the other nodes, specifically those in the setsB andK, are not yet specified.What is specified is the
total number of edges ε in the bipartition, i.e., the total number edges running between the setsU andV. Then,
the partial bipartite degree sequence triplet ( , , )  ε , hereafter simply called a triplet, is graphical if there exists a
bipartite graph onU andVwith ε edges and degree sequences U V( ) and ( )A H   ∣ = ∣ = . In otherwords,
the bipartite graphmust be such that the nodes inA have degree sequence  and those inH have degree
sequence . The partial degree sequence problem is to decide whether one can choose the degrees of the nodes
in the setsB andK such that the above constraints are satisfied and the bipartite degree sequence  is graphical.

Since the graph realizing a triplet is bipartite, the number of edges ε equals the number of stubs in either set of
nodes:

d d .
i

U

u

i

V

v

1 1

i i∑ ∑ε = =
=

∣ ∣

=

∣ ∣

Figure 2. Schematic for the partial degree sequence problem.
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The imposed partial sequences  and  prescribe a certain number of stubs in thefirst A∣ ∣nodes ofU and in the

first H∣ ∣nodes ofV. Let these be P p
i

A

i1
∑= = and Q q

i

H

i1
∑= = , respectively. Then, the setBmust contain

exactly Pε − stubs; similarly, the setKmust contain exactly Qε − stubs.With these considerations, we first
define the concept of a balanced realization of a triplet. Let P

B
μ ≡ ε −

∣ ∣ and
Q

K
ν ≡ ε −

∣ ∣ . A realization of a triplet is

defined to be balanced if and only if the degree of any node inB is either μ⌊ ⌋or μ⌈ ⌉, and the degree of any node in
K is either ν⌊ ⌋or ν⌈ ⌉. Notice that thismeans that if μ or ν are integers, then all the nodes inB orKmust have
exactly degree μ or ν, respectively. Conversely, if they are not integers, then the degrees of any two nodes inB or
inK, respectively, can differ atmost by 1. That is, a realization is balanced if and only if all the degrees of the
nodes that one is free to choose (those inB andK) are as close as possible to their averages μ and ν. The definition
can be equivalently formalized by introducing a functional f acting onB andK:

f B d f K d( ) and ( ) .
i

B

b

i

K

k

1 1

i i

⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦∑ ∑μ ν≡ − ≡ −
=

∣ ∣

=

∣ ∣

Then, a realization of a triplet is balanced if and only if both f B( ) and f K( ) vanish.
An important theorem about the graphicality of triplets can nowbe proven.

Theorem2.The triplet ( , , )  ε is graphical if and only if it admits a balanced realization.

Proof. Sufficiency is obvious. If the triplet admits any realization, balanced or not, it is graphical by definition.
To prove necessity, suppose the triplet is graphical. Then, it admits a realizationG. IfG is balanced, then

there is nothing to do. Conversely, ifG is not balanced, then f B( ), f K( ), or both, are greater than 0.Without
loss of generality, assume that f B( ) 0> . Then, there exists a node b Bi ∈ such that either dbi

μ< ⌊ ⌋or
dbi

μ> ⌈ ⌉. Againwithout loss of generality, assume that dbi
μ< ⌊ ⌋(the other cases are treated analogously). Then,

since the number of stubswithinB isfixed, theremust exist a node b Bj ∈ such that dbj
μ> ⌊ ⌋and thus d db bj i

> .
But then, theremust exist a node v Vk ∈ such that vk is connected to bj but not to bi. Now, remove the edge
v b( , )k j and replace it with v b( , )k i . This yields a different realizationwith the same degrees for the nodes inV, and
inwhich f B( ) is decreased by at least 1, as the degrees ofBmoved towards the balanced condition. The
procedure can be repeated until f B( ) 0= , resulting in a balanced realization. □

Akey consequence of this theorem is the following.

Corollary 1. Let ( , , )  ε be a graphical triplet, and let x be a node inB or inK. If there is a realization of the triplet
inwhich dx α= and another in which dx β= , with α β< , then for all γwith α γ β⩽ ⩽ there exists a realization
inwhich dx γ= .

Proof.Without loss of generality, assume x B∈ . Then, there are several cases, each determined by the relative
values ofα, β and μ⌊ ⌋. Themost general case is α μ β< ⌊ ⌋ < , so consider only this situation. Start from the
realizationwith dx β= . Repeated applications of themethod in the proof of theorem2will eventually yield a
realization inwhich dx μ= ⌊ ⌋. For each step, the degree of xwill have decreased by 1. Therefore, one realization
of the triplet will have been foundwith dx γ= for all μ γ β⌊ ⌋ ⩽ ⩽ .

Now, start from the realizationwith dx α= . Applying the same step from the proof of theorem 2 repeatedly
will eventually yield a realization inwhich dx μ= ⌊ ⌋. For each of these steps, the degree of xwill have increased by
1. Therefore, one realization of the triplet will have been foundwith dx α= for all α γ μ⩽ ⩽ ⌊ ⌋. □

Notice that, given a graphical triplet, corollary 1 also implies the existence ofminimumandmaximum
allowed degrees for each nodewhose degree has not yet been fixed in that triplet (namely, inB andK). That is, a
realization of the triplet exists with a node having either itsminimumormaximumdegree, or any degree
between these two values. Of course, the value of theminimumandmaximumdegreewill depend onwhich
degrees have beenfixed up to that point, so these need to be computed on thefly.How to calculate these degree
boundswill be explained in section 3.1.

2.3. Building a degree-spectramatrix
Corollary 1 suggests the possibility of a direct, sequential way to build a degree-spectramatrix from a JDM.
However, building the degree-spectramatrix node by node is a local process, which guarantees via theorem 2
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only that the bipartite graph inwhich the nodewhose degree spectrum is being set resides is graphical. There is a
global constraint, however, on every node, namely that the sumof their degree-spectrum elementsmust add up
to the degree of the class they belong to.We have tomake sure that the local construction process also respects
the global constraints, i.e., it is feasiblewith it. The theorembelowwill show that this sequential construction
process is feasible, and just as importantly, all graphical realizations of a JDM J can be constructed in this way,
i.e., all graphical degree-spectramatrices can be obtained by this sequential construction process.

Theorem3. Let  be the subset of all the nodes with fixed spectra; then, there exists a realization of a JDM J consistent
with the fixed spectra if and only if for every ( , )α β pair with , {1, , }α β ∈ … Δ there exists a graph Gαβ with J ,α β
edges also satisfying the fixed spectra of  .

Proof.Necessity is obvious. If there exists a realization of J satisfying the spectra, then each subgraph between
any pair of degree classes both satisfies the spectra and has the right number of edges.

To prove sufficiency, assume that we have afixed degree spectrum for all the nodes in  andwe have
guaranteed the graphicality of all the subgraphs Gαβ. They have the right number of edges J ,α β and their nodes
satisfy the fixed spectra specified in the subset  . Sincewe have guaranteed graphicality for all the Gαβ subgraphs
with these constraints, let us consider some graphical realization for each such subgraph and consider their
union graphG. If the ‘free’nodes, i.e., thosewithout a fixed spectrum, have all the correct degree inG (i.e., every
node v V∈ α has dv α= for allα), then there is nothing to do.Now, assume they don’t. Since the total number of
edges in each Gαβ is correct by hypothesis, theremust exist a degree α and two free nodes v andw belonging toVα
such that dv α< and dw α> . Thus, theremust exist a node u connected tow but not to v. Then, erase the edge
(u,w), and replace it with (u, v). This leaves the numbers of edges in all Gαβ unchanged, and does not change the
degree spectrumof u, because v andw belong to the same degree class. Repeating this procedure results
eventually in all the nodes having the correct degree. □

Theorem 3 is fundamentally important as it justifies a systematic, node-by-node approach in building a
graphical degree-spectramatrix. In fact, so long as one guarantees the possibility of subgraphswith the correct
number of edges, a partial degree-spectramatrixmaintains the graphicality of the JDM.

The only detail left is specifying how to choose the numbers that form the degree spectra. Fortunately, this is
straightforward. Asmentioned in the previous section, an implication of corollary 1 is the existence ofminimum
andmaximumallowed degrees for nodes in partial degree sequences. Let thembem (minimum) andM
(maximum). But a partial degree sequence is nothing else than a partially built degree spectrum, if one
recognizes the node setsU andV as two degree classes. Then, a condition thatmust be satisfied in building a
degree-spectramatrix is that any newnumber chosen to augment a partially built degree spectrumhas to be
within these bounds.However, onemust also consider that if a node belongs to a certain degree class, itmust
have the correct total degree.

To state both conditions, assume the degree spectrumof node v V∈ α is being built. LetΓ be the set of degree
classes for which a spectrum element has already been chosen, and let S vβ be the element to determine next.
Then, a valid value k for S vβ must satisfy the two conditions

m k M , (2)⩽ ⩽β β

m k S M . (3)v

( ) ( )

∑ ∑ ∑
∪ ∪

α⩽ − − ⩽
η β

η
η

η
η β

η
∉ Γ ∈Γ ∉ Γ

Below, in section 3.1we describe how to compute themin andmax values for degree spectra elements.

3. The algorithm

3.1.Description
Weare now ready to describe our JDM sampling algorithm. The algorithm is composed of two parts. Thefirst is
a spectra sampler that randomly generates degree-spectramatrices from a graphical JDM J:

(i) Initialize i=1.

(ii) Set 1α = .

(iii) Let l be the number of the residual, unallocated stubs of node i. If l 0≠ :

(a) If J 0d ,i ≠α :
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(1) For all α β⩽ ⩽ Δ, if J 0d ,i ≠β ,findMk andmk; otherwise, set m M 0k k= = .

(2) Compute t m
1

∑=
β α β= +
Δ

andT M
1

∑=
β α β= +
Δ

.

(3) Find the actual minimum and maximum allowed for the degree-spectrum element:
r m l Tmax { , }= −α and R M l tmin { , }= −α .

(4) Extract an integer S i,α uniformly at randombetween r andR.

(b) Increase α by 1, and go to step (iii).

(iv) Increase i by 1. If i N⩽ , go to step (ii).

Tofind the values ofm andM in step (iii).a.1 above, consider the degrees of the nodes belonging toVα andVβ
in Gαβ. In the formalismof section 2.2, the already fixed spectra elements are equivalent to the sequences  and
. Then, to test the viability of a given value as a degree-spectrum element, assign it to the element being
determined, complete the degree sequencemaking it balanced, and test it for graphicality, see figure 3. If the
sequence is graphical, then the triplet has a balanced realization, which by theorem2 is a necessary and sufficient
condition for the existence of a subgraph corresponding to the spectrum element being determined. If Gαβ is
unipartite, the graphicality test can be done using the fastmethod described in [9]. The situation ismarginally
different if Gαβ is bipartite. In this case, as previouslymentioned, the degree sequence can be built as a BDS in
which nodes of degree α only have incoming edges, and nodes of degree β only have outgoing ones. This
sequence can then be testedwith the fast directed graphicality test described in [11].

Thus, tofind theminimumvaluem one can simply run a sequential test, checking for valid spectrumvalues
from0 onwards. Thefirst successful value ism. Then, tofindM, use bisection to test all the values from m 1+ to
the theoreticalmaximum, looking for the largest number allowed. Clearly, the theoreticalmaximumat that
stage is the degree of the class the node belongs tominus the sumof the already fixed spectra values for that
degree.

These considerations also clarify the nature of the second part of the algorithm,which samples realizations of
the JDM from an extracted degree spectramatrix. Summarizing,

• JDM realizations can be decomposed into a set of independent unipartite and bipartite graphs.

• The degree spectra define the degree sequences of the component subgraphs.

Then, to accomplish the actual sampling, extract the degree sequences from the degree spectra and use them
in the graph sampling algorithms for undirected and directed graphs presented in [9, 11] and in here inA. Every
time a sample is generated, it constitutes a subgraph of a JDM realization. All that is needed in the end is simply to
list the edges correctly, since the graph realizing the JDM is the union of all the unipartite and bipartite subgraphs
intowhich it has been decomposed.

3.2. Samplingweights
Our algorithmdoes not extract all degree-spectramatrices from a JDMwith the same probability. However, the
relative probability for the extraction of each spectramatrix is easily computed, and it can be used to reweight the
sample and obtain unbiased sampling. If every new element of a degree-spectramatrix is extracted uniformly at
randombetween r andR, its probability of being chosen is simply

R r

1

1− + . Therefore, the probability of

Figure 3. Sequentially determining graphical degree spectra consistent with a given JDM J.
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extracting a given spectramatrix S is p S( )
i

m

R r1

1

1
∏= = − + , wherem is the total number of elements

extracted. Then, an unbiased estimator for a network observableQ on an ensemble ofZ spectramatrices can be
computed using theweighted average

Q
Q w

w
. (4)i

Z
i i

i

Z
i

1

1

∑
∑〈 〉 = =

=

In the expression above,Qi is the value thatQ assumes on the ith sampledmatrix. Indicating by rj andRj the
values that r andR assume for the jthmatrix element extracted, theweights are

( )w R r 1 . (5)i

j

m

j j

1

∏= − +
=

Of course, besides the spectramatrix, every subgraph has its own sampling weight. Thus, the total weight of a
single JDM sample is the product of the corresponding spectrumweight and all the subgraphweights. To
describe the distribution of the sampleweights, first recall that the individual subgraphweights are log-normally
distributed [9, 11]. Thus, as the sample weights are their product, we expect them to be log-normally distributed
too. Also, for large JDMs, where 12Δ ≫ , them factors in equation (5) are effectively random. Thus, our
expectation is that the spectraweights are log-normally distributed aswell. To verify this, we extracted the JDM
of a random scale-free networkwith 1000 nodes and power-law exponent of 2.5, and used it to generate an
ensemble of 105 degree-spectramatrices and one of 108 JDMsamples of a single spectramatrix. Figure 4 shows
that the histograms of the logarithms of spectramatrix weights and sampleweights arewell approximated by a
Gaussianfit, supporting our assumptions.

A simple and small example is provided in B. There, we analytically compute the JDMensemble averages of
the local clustering coefficients of nodes of all degrees, based on unweighted sampling and also based on
weighted sampling, with theweights provided by the algorithm. In table B.1 , we show the results of simulations
using our algorithm, taking into account the sample weights (as described above), and simply computing the
averages of the clustering coefficients over the samples generated. The results between theoretical and simulated
measures agree verywell. The differences betweenweighted and unweighted versions can be also appreciated,
andwhile they are small in this example, they aremeasurable and need to be taken into account in general.

Figure 4. Log-normal distribution ofweights. The top panel shows the histogramof the natural logarithms of the weights for an
ensemble of 105 degree-spectramatrices; the bottompanel shows the histogram for an ensemble of 108 sampleweights. Both
distributions (solid black lines) are wellfitted by aGaussian curve (dashed red line).
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3.3. Computational complexity
Todetermine the computational complexity of the algorithm, first note that themain cost in creating a spectra
matrix comes from the repeated graphicality tests. LetA be the number of non-empty degree classes in the JDM

{ }A V: .α= ≠ ∅α

Then, for each of theNAnon-trivial elements in the degree-spectramatrix,A tests are needed, eachwith a
computational complexity of the order of the number of nodes in the corresponding degree class. Thus, the total
computational complexity for the spectra construction part of the algorithm is

C N V . (6)S

1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∑∑=

α β α
β

=

Δ

=

Δ

Notice that in our treatment one is free to choose the order of the degree classes. Thus, tominimize the
complexity, one can simply determine the degree-spectra elements in descending order of degree-class size.
Then, theworst case corresponds to the equipartition of the nodes amongst degree classes, V N

A
∣ ∣ =α . In this

case, it is

( )C NA
N

A
N A ,S

2 2⎜ ⎟⎛
⎝

⎞
⎠ = =

which reduces to

( )C NS
3=

if the number of degree classes is of the same order as the number of nodes.
Amore precise estimate for a given JDMcan be obtained by rewriting equation (6) as

C N P ( ) ,S
2

1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∑∑ β=

α β α=

Δ

=

Δ

where the degree distribution P d V N( ) d= ∣ ∣ is the probability that a randomly chosen node has degree d. It is
easy to see, then, that theworst case is unlikely to occur. Consider for instance systems of widespread insterest,
such as scale-free networks, for which P d d( ) ∼ γ− with 2γ > . Then, in the limit of large networks, the equation
above becomes

( )C N k
N

Ndx dk( 1)
2

.S
x

2

1

2
2⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟  ∫ ∫ γ

γ
= − = − =γ

∞ ∞ −

Thus, in this case, the complexity leading order for spectramatrix extraction is only quadratic.
Given a degree-spectramatrix, to construct a JDM realization one then needs to build A( )2 subgraphs,

eachwith ( )N

A
 nodes and ( )M

A
 edges. For each subgraph, the computational complexity is of the order of the

number of nodesmultiplied by the number of edges. Thus, the total sampling complexity is
A NM( ) ( )N

A

M

A
2 = . Therefore, the total complexity of the graph construction part of ourmethod is N( )2

for sparse networks, and N( )3 for dense ones. Oncemore, we do not expect theworst case complexity to occur
often. For example, in the alreadymentioned case of scale-free networks, which are always sparse [51], the total
complexity of our algorithmwould only be quadratic. A less efficient samplingmethod has been developed
recently [52], but it is based on backtracking, producing results containing biases that are uncontrolled and that
cannot be estimated. An alternative algorithm, that does not involve backtracking, has been proposed [53].
However, despite having a computational complexity that is comparable to ours, being (N2) on highly
heterogeneous networks, it is not an exact sampling algorithm.

Table B.1.Comparison between analytical and simulated averaged local clus-
tering coefficients.

Coeff.

Theor.

unweigh.

Simul.

unweigh.

Theor.

weigh.

Simul.

weigh.

c2 0.25309 0.25320 0.25641 0.25664

c3 0.32510 0.32483 0.31624 0.31570
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4. Conclusions

In summary, we have solved the problemof constrained graphicality when degree correlations are specified,
developing an exact algorithm to construct and sample graphswith a specified JDM.A JDM specifies the
number of edges that occur between degree classes of nodes (nodes of given degrees), and thus completely
determines all pairwise degree correlations in its realizations. Our algorithm is guaranteed to successfully build a
random JDMsample in polynomial time, systematically, andwithout backtracking. It is also guaranteed to be
able to build any of the graphical realizations of a JDM. Each graph is constructed independently and thus there
are no correlations between samples. Although the algorithmdoes introduce a sample bias, the relative
probability for the construction of each sample is computable, which allows the use of weighted averages to
obtain unbiased sampling (importance sampling). However, importance sampling is only exact in the limit of an
infinite number of samples. This raises the issue of convergence. The log-normal distribution of weightsmakes
convergence slow, but for small- tomedium-sized networks good accuracy can be achieved, and quantities
computed as if fromuniform sampling. Improving the speed of convergence is a challenging problem, partly
because it depends on the constraining JDM, andwill be addressed in future publications.

Degree correlations in real-world systems have beenwidely observed. Social networks are known to be
positively correlated, and the concept of assortativity was known to the sociological literature before it was
employed in appliedmathematics. Technological networks are also characterized by particular correlation
profiles.Moreover, correlations significantly affect the dynamics of spatial processes, such as the spread of
epidemics [3]. Thus, with our algorithm, one canmodel correctly complex systems of general interest with
desired degree assortativity. For the first time, this enables the study of networks inwhich the correlations are not
determined solely by the nodes’ degrees. For instance, there existmany studies about social networks, consisting
of a comparison between some specific real-world network and a randomized ensemble of networks with the
same degree sequence or degree distribution. As social networks are scale-free, these studies often just sample the
same sequence or the same type of power-law sequences to produce null-model results. However, social
networks are assortative, while random scale-free networks are on average disassortative. Thus, the average
correlations of scale-free networksmake degree-sequence and degree-distribution sampling problematic if one
is trying to consider a randommodel of a social network. Ourmethod allows one to avoid this problemby
directly imposing the correlations, rather obtaining only those imposed by the degree sequence.

Upper bounds on the computational complexity of our algorithm show that in theworst case it is cubic in
the number of nodes. However, we provide away to compute the expectedworst-case complexity if the degree
distribution of the networks considered is known. This shows that, for commonly studied cases such as scale-
free networks, themaximum complexity is only of the order ofN2,making the algorithm evenmore efficient.
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AppendixA.Direct construction of randomdirected andundirected graphswith
prescribed degree sequence

In order to fully describe our algorithm for sampling graphswith prescribed degree correlations, we include in
this appendix succinct descriptions of our algorithms for sampling randomundirected [9] and directed [11]
graphswith a prescribed degree sequence. Both are used in our algorithm to sample graphswith a prescribed
JDM, and bothwork by directly constructing the graphs. So long as the prescribed degree sequence is graphical,
both algorithms are guaranteed to successfully construct a graphwithout backtracking. They accomplish this by
building the graph an edge at a time, connecting pairs of stubs,maintaining the graphicality of the residual stubs
throughout the construction process. The algorithmsmake use of our fastmethods for testing the graphicality of
degree sequences, which are also described below. Theworst case complexity is N( ) for the graphicality tests,
and NM( ) for both sampling algorithms. Both algorithms generate biased samples, butwe also state the
relative probability of generating a sample, which can be used to calculate unbiased statistical averages. See our
previous publications for proof of the correctness of these algorithms [9, 11]; they are statedwithout proof or
detailed explanation here.
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A.1. Undirected graphs

Anon-increasing sequence of integers d d d{ , ,..., }N1 1 = is graphical if and only if d
i

N
i

1
∑ = is even, and

L Rk k⩽ for all k N1 ⩽ < , where Lk andRk are given by the recurrence relations

L d (A.1)1 1=
L L d (A.2)k k k1= +−

and

R N 1 (A.3)1 = −

R
R x k k
R k d k k

2 *

2( 1) *
(A.4)k

k k

k k

1

1

⎧⎨⎩= + − ∀ <
+ − − ∀ ⩾

−
−

andwe defined the crossing indices x i d kmin { : }k i= < , and k i x i* min { : 1}i= < + . Thus, to test the
graphicality of :

(i) Sum the degrees to determine if d
i

N
i

1
∑ = is even. If false, then stop;  is not graphical. If true, continue.

While summing the degrees, also calculate the crossing indices xk for each k and determine k*.

(ii) Test if L R N 11 1⩽ = − . If false, then stop;  is not graphical. If true, set k=2 and continue.

(iii) Test if L Rk k⩽ . If false, then stop;  is not graphical. If true, increase k by one and repeat. Continue until
k N 1= − , then stop;  is graphical.

Given a non-increasing graphical degree sequence , a randomundirected graph that realizes  can be
constructed by:

(i) To each node, assign a number of stubs equal to its degree.

(ii) Choose a hub node i. Any node can in principle be chosen, for example, the nodewith the largest degree.

(iii) Create a set of forbidden nodesX, which initially contains only i.

(iv) Find the set of allowed nodes A to which i can be linked preserving the graphicality of the remaining
construction process. TofindA, first determine the fail degree κ using themethod described below. ThenA
will consist of all nodes j X∉ that have remaining degree greater than κ.

(v) Choose a randomnode m A∈ and connect i to it.

(vi) Reduce the value of di and dm in  by 1, and reorder it.

(vii) Ifm still has unconnected stubs, add it to the set of forbidden nodesX.

(viii) If i still has unconnected stubs, return to step (iv).

(ix) If nodes still have unconnected stubs, return to step (ii).

To determine the fail degree in a degree sequence  being sampled, build the residual degree sequence ′, by
connecting the hub node iwith remaining degree di to the d 1i − nodeswith the largest degrees that are not in
the forbidden setX and reducing the elements of  accordingly. Then, compute the graphicality test
inequalitites. Each inequality potentially yields a fail-degree candidate, depending on the values of Lk andRk. For
each value of k there are only 3 possibilities:

(a) Lk=Rk.

(b) L R 1k k= − .

(c) L R 2k k⩽ − .

In case (a), the degree of the first non-forbidden nodewhose index is greater than k is the fail-degree
candidate. In case (b), the degree of the first non-forbidden nodewhose index is greater than k andwhose degree
is less than k 1+ is the fail-degree candidate. In case (c), there is no fail-degree candidate. The sequence of
candidate nodes is non-decreasing until the fail-degree is found. Thus, one can stop the calculationwhen either
the current fail-degree candidate is less than the previous one, or when a case (a) happens.
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This algorithm generates graph samples biasedly. However, the relative probability of generating a particular
sample μ is

p d
A

¯ !
1

, (A.5)
i

m

i

j

d

i1 1

¯
i

j

∏ ∏=μ
= =

where d̄i is the residual degree of node iwhen it is chosen as a hub,m is the total number of hubs used, and Aij
is

the allowed set for the jth link of hub i. Thus, an unbiased estimator for a network observableQ for any target
distribution P is theweighted average

Q
Q w P

w P

( )

( )
, (A.6)i

M

i

i

M

i

1

1

i i

i

∑
∑

μ

μ
〈 〉 = μ μ

μ

=

=
whereM is the number of samples and w p 1

i i
=μ μ

− . For uniformly sampling the networks, P is constant and it

cancels out of the formula.

A.2.Directed graphs
ABDS d d d d d d{( , ), ( , ) ,...,( , )}N N1 1 2 2 = − + − + − + of integer pairs, ordered so that the first elements of each pair

form a non-increasing sequence, is graphical if and only if d d
i

N

i i

N

i1 1
∑ ∑==

−
=

+, and L Rk k⩽ for all

k N1 1⩽ ⩽ − , where Lk andRk are given by the recurrence relations

L d , (A.7)1 1= −

L L d (A.8)k k k1= +− −

and

R N G1 (0), (A.9)1 1= − −

R
R N G k d k

R N G k d k

¯ ( 1)
¯ ( 1) 1 ,

(A.10)k
k k k

k k k

1 1

1 1

⎧⎨⎩= + − − ∀ <
+ − − − ∀ ⩾

− − +

− − +

andGk and Ḡk are defined as follows. Let

g k
d i k

d i k
( )

1

.
(A.11)i

i

i

⎧⎨⎩= + ∀ ⩽
∀ >

+
+

Then

G p( ) , (A.12)k

i

N

p g k

1

, ( )i
∑δ=
=

where δ is the Kronecker delta, and Ḡ is given by the recurrence relation

G G G¯ (1) (0) (1), (A.13)1 1 1= +
G k G k G k S k¯ ( ) ¯ ( 1) ( ) ( ), (A.14)k k 1 1= − + +−

where

S k( ) . (A.15)
t

k

k d

t

k

k d

2

1

, 1

2

,t t∑ ∑δ δ≡ −
=

−
+

=
+ +

To efficiently test the graphicality of a BDS :

(i) Sum the in- and out-degrees to determine if d d
i

N

i i

N

i1 1
∑ ∑==

−
=

+. If false, then stop;  is not graphical. If

true, continue.While summing the degrees, also calculate Lk for each k.

(ii) Compute G k( )1 for each k.

(iii) Compute S k( ) for all k:

(a) Initialize S k( ) to 0 for all k. Set i=2.

(b) If d ii ⩾+ , decrease S d( )i
+ by 1.

(c) If d i1i + >+ , increase S d( 1)i ++ by 1.

(d) Increase i by 1. If i N⩽ , repeat from step (b).

13

New J. Phys. 17 (2015) 083052 KEBassler et al



(iv) Test if L R1 1⩽ . If false, then stop;  is not graphical. If true, set k=2 and continue.

(v) Test if L Rk k⩽ . If false, then stop;  is not graphical. If true, increase k by one and repeat. Continue until
k N 1= − , then stop;  is graphical.

Given a graphical BDS of integer pairs  in lexicographic order, a randomdirected graph that realizes  can
be constructed by:

(i) Assign in-stubs and out-stubs to each node according to its degrees.

(ii) Define as current hub the lowest-index node iwith non-zero out-degree.

(iii) Create a set of forbidden nodesX, which initially contains i and all nodes with zero in-degree.

(iv) Find the set of allowed nodes A to which an out-stub of i can be connected without breaking graphicality.
TofindA,first determine the fail in-degree κ using themethod described below. ThenAwill consist of all
nodes j X∉ that have remaining in-degree greater than κ.

(v) Choose a randomnode m A∈ and connect an out-stub of i to one of its in-stubs.

(vi) Reduce the value of di
+ and dm

− in  by 1, and reorder it accordingly.

(vii) Addm to the set of forbidden nodesX.

(viii) If i still has unconnected out-stubs remaining, return to step (iv).

(ix) If nodes still have unconnected out-stubs, return to step (ii).

The following simple procedure can be used to efficiently find the fail-in-degree in step (iv) of the sampling
algorithm.

(i) Create a new BDS ′ obtained from  by reducing the in-degrees of the first d 1i −+ non-forbidden nodes
by 1, and reducing the out-degree of i to 1.

(ii) If i=1, set k=2; otherwise, set k=1.

(iii) Compute Lk and Rk of the BDS ′.
(iv) If L Rk k≠ : increase k by 1; if k =N, there is no fail-in-degree, and all the non-forbidden nodes are allowed,

so stop; otherwise, go to step (iii).

(v) Find thefirst non-forbidden node in ′whose index is greater than k.
(vi) Identify this node in the original BDS . Its in-degree is the fail-in-degree. Stop.

As in the case of the sampling algorithm for undirected graphs, this algorithm generates directed
graph samples biasedly. However, an unbiased estimator for a network observableQ for any target distribution P
is theweighted average given by equation (A.6). In this case theweights are

w A , (A.16)
i j

d

i

1 1

i

j∏ ∏=μ

ν

= =

+

where ν is the total number of hubs used, Aij
∣ ∣ is the size of the allowed set immediately before placing the jth

connection coming from the ith hub, and di
+ is the out-degree of the ith node chosen as a hub.Note that, unlike

the case for undirected networks, there is no factorial combinatorial factor in theweights. This is becausewhile
the particular sequence of hub nodes chosen depends on the links placed, every nodewith non-zero out-degree
will be selected, sooner or later, as the hub. Therefore, all the samples producedwould have an extra, identical,

multiplicative factor of
i

N

d1

1

!i
∏ = + . As only the relative probabilities are needed for estimating an observable,

and this factor is the same for every possible sample, it is eliminated from the formula for theweights.

Appendix B. An explicit example

To illustrate the samplingmechanism and the difference betweenweighted and unweighted estimation, we
consider the realizations of the JDM
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J
0 0 0
0 2 4
0 4 1

, (B.1)
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

and explicitly compute the average local clustering coefficients cd〈 〉of the nodes of degree d, for all values of d.
This JDM induces the degree sequence {2, 2, 2, 2, 3, 3} = , and, up to isomorphism, has only three possible
realizations, shown infigure B1 . From the figures, it is easy to see that, for the pentagon graphs, c 1 4P2〈 〉 = and
c 1 3P3〈 〉 = . Also, for the hexagon graphs c c 0H H2 3〈 〉 = 〈 〉 = , while for the bow tie graphs c 1B2〈 〉 = and
c 1 3B3〈 〉 = .

B.1. Unweighted estimate
To calculate the theoretical results for the unweighted case, we need to consider the probability withwhich our
algorithm generates each degree-spectramatrix from J. To this purpose, first note that there are several degree-
spectramatrices whose realizations are all pentagon graphs. Also, all the hexagon and bow tie graphs have the
same degree-spectramatrix

S
0 0 0 0 0 0
1 1 1 1 2 2
1 1 1 1 1 1

. (B.2)HB

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

This allows us to compute just the probability of generating S, as all the othermatrices will yield the same
contribution to c P2〈 〉 and c P3〈 〉 .

Ourmethod chooses the elements of the degree-spectramatrix S being created in a systematic way, node by
node. As there are no nodes of degree 1, all the element in the first rowof thematrix are fixed to 0. Then, thefirst
element to choose is S2,1, that is, the number of edges between node 1 and nodes of degree 2. The possible choices
for this element are 0, 1, and 2. Choosing 0 or 2will result necessarily in a degree-spectramatrix whose
realizations are all pentagon graphs. In fact, from figure B1 one can see that, amongst the realizations of J, the
pentagon graphs are the only ones inwhich a node of degree 2, such as node 1, has either no edges or 2 edges with
nodes of degree 2. Thus, choosing the value of S2,1with uniform probability, at this stage one generates pentagon
graphswith probability 2 3.

The remaining choice, S 12,1 = , happenswith probability1 3. In this case, S3,1 is forced to be 1, since the
elements in thefirst columnof Smust sumup to the degree of the node 1, which is 2. The next element to
determine is then S2,2. Similarly to the previous case, the possible values are 0, 1, and 2. Choosing 0 or 2will
always result in pentagon graphs, whose probability of being generated increases by 1 3 · 2 3 2 9= .

Choosing S 12,2 = , which occurs with total probability 1 3 · 1 3 1 9= , forces S 13,2 = . The next value to
determine is that of S2,3. As before choosing 0 or 2 yields pentagon graphs, whose total probability of being
generated increases by 1 3 · 1 3 · 2 3 2 27= .

The choice of S 12,3 = , which has a total probability 1 3 · 1 3 · 1 3 1 27= of happening, implies that
S 12,3 = . Then, the degree-spectramatrix being built can only be SHB. In fact, as it is evident from figure B1, the
only graphs realizing J inwhich at least 3 nodes of degree 2 are linked exactly to one other node of degree 2 and
one of degree 3, are hexagon and bow tie graphs.

Figure B1. Possible realizations of the JDM in equation (B.1), up to isomorphism.
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This shows that the degree-spectramatrix SHB occurs with probability 1 27; conversely, degree-spectra
matrices yielding pentagon graphs occurwith probability 26 27.

The next step in our evaluation is to compute the probabilities of generating any of the hexagon and bow tie
graphs from the degree-spectramatrix SHB. The graph-construction part of our algorithm consists in generating
all the Gαβ subgraphs between nodes of degree α and nodes of degree β. In the current example, there are three
such subgraphs, namely G2,2, G2,3, and G3,3. Of these, G3,3 consists simply in a single edge between the two nodes
of degree 3. Thus, the only variability is given by the choices for the two remaining subgraphs.

The possible realizations of G2,2 are illustrated in panels (a), (b) and (c) offigure B2 . Each is determined by
the placement of a single edge, which forces the choice for the remaining one. Thus, each is produced by our
algorithmwith the same probability of1 3. Similarly, each of the possible realizations for G2,3, shown in panels
(d)–(i) offigure B2, is determined by the edges incident to node 5 or node 6. As these are chosen by our
algorithm fully randomly, all the possible realizations occurwith the same probability of1 6. The particular type
of graph that is produced depends on the specific realizations of the subgraphs. As there are 3 realizations for G2,2

and 6 for G23
, the total number of graphs is 18. Of these, 1 3 are bow tie graphs, and the remaining 2 3 are

hexagon graphs. In particular, the bow tie graphs correspond to the subgraph choices (a, d), (a, i), (b, e), (b, h),
(c, f) and (c, g), as it is easy to see fromfigure B2.Note that this indicates that, for this specific degree-spectra
matrix, the sampling is already uniform.

It is possible, now, to compute the average clustering coefficients for the unweighted estimation. To do so,
first compute their average over the realizations of SHB:

c
1

3
· 1

2

3
· 0

1

3
, (B.3)

HB
2 = + =

Figure B2.Degree-class subgraphs realizing the degree-spectramatrix SHB of equation (B.2). Panels (a), (b) and (c) show the possible
realizations of G2,2; panels (d)–(i) show the possible realizations of G2,3.
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c
1

3
·

1

3

2

3
· 0

1

9
. (B.4)

HB
3 = + =

Then, knowing that SHB is sampledwith probability 1 27, and the remaining degree-spectramatrices always
yield pentagon graphs, it is

c
1

27
·

1

3

26

27
·

1

4

41

162
, (B.5)2

unweighted
= + =

c
1

27
·

1

9

26

27
·

1

3

79

243
. (B.6)3

unweighted
= + =

B.2.Weighted estimate
In order to obtain an analytical result for theweighted estimate, rather than computing the probability of
occurrence of each degree-spectramatrix as sampled by our algorithm,we need to compute their actual number.
From the previous section, we already know that all the hexagon and bow tie graphs come from the same degree-
spectramatrix SHB, which is unique. Then, we only need to compute the number of degree-spectramatrices
corresponding to pentagon graphs.

To do so, remember that the first choice in the construction of a degree-spectramatrix from J is the value of
the element S2,1. If S 02,1 = or S 22,1 = , thenwe are guaranteed to get a pentagon graph.However, while each of
these two choices fixes the value of S3,1, we are still free to select a value for the next ‘free’ element, S2,2.

If S 02,1 = , the allowed values for S2,2 are 1 and 2. Choosing 2 fixes all the other elements of the degree-
spectramatrix. Conversely, choosing 1 results in S2,3 still to be determined. Its possible values are 1 and 2. Thus,
there are 3 different degree-spectramatrices with S 02,1 = .

If, instead, S 22,1 = , the situation is very similar to thefirst case. The possible choices for S2,2 are 0 and 1.
Choosing 0fixes the entirematrix; choosing 1 requires to select a value for S2,3, which can be either 0 or 1. Thus,
there are 3matrices with S 22,1 = .

The third possibility of S 12,1 = still allows degree-spectramatrices corresponding to a pentagon graph.
Similarly to the previous case, the simplest way to construct one is to impose S 02,2 = or S 22,2 = . In both cases,
onemust then choose a value for S2,3. The possibilities are 1 and 2, if S 02,2 = , or 0 and 1, if S 22,2 = . Any choice
for S2,3 fixes all the remaining elements of thematrix.

Finally, it is still possible to choose S 12,1 = and S 12,2 = , and still constructmatrices corresponding to a
pentagon graph. The choice is again on S2,3. Choosing S 02,3 = or S 22,3 = fixes all the other elements of the
matrix, whose realizationswill be pentagon graphs. Imposing S 12,3 = , instead results in thematrix SHB,
exhausting all possibilities. This shows that there are 6 differentmatrices with S 12,1 = that generate pentagon
graphs.

The decisional tree we just described is shown infigure B3 as a visual aid. In summary, there are 12 different
degree-spectramatrices that realize J andwhose realizations are always pentagon graphs. Knowing c P2〈 〉 , c P3〈 〉 ,
c HB2〈 〉 and c HB3〈 〉 , whichwe computed before, we canfinally calculate theweighted average clustering
coefficients:

c
12

13
·

1

4

1

13
· 13

10

39
, (B.7)2

weighted
= + =

Figure B3.Decisional tree for the construction of degree-spectramatrices realizing J and corresponding to pentagon graphs. The 12
leaves of the tree are shown in red.

17

New J. Phys. 17 (2015) 083052 KEBassler et al



c
12

13
·

1

3

1

13
· 19

37

117
. (B.8)3

weighted
= + =

B.3.Numerical verification
Tovalidate our algorithmagainst the analytical results presented in the two sections above,weperformed extensive
numerical simulations, generating 104 degree-spectramatrices, and 104 samples permatrix, for a total of 108

graphs. For each graph generated, we saved the average local clustering coefficients for nodes of bothdegrees. Then,
weobtainedbothweighted andunweighted results by averaging the datafirst naively, and thenwith a proper use of
theweights according to equation (4). The results, shown in table B.1, show that theweighted averages obtained
using our algorithmconverge to the correct result. Also, the difference betweenweighted andunweighted results
can be appreciated evenwhen it is quite small, as inour example. This illustrate the sensitivity of ourmethod, as
well as thenecessity of using proper samplingwhenperforming this kind of studies.
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