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Abstract

Many real-world networks exhibit correlations between the node degrees. For instance, in social
networks nodes tend to connect to nodes of similar degree and conversely, in biological and
technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree
correlations also affect the dynamics of processes supported by a network structure, such as the spread
of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases,
requires the sampling of networks with a specified set of constraints. We present a solution to the
sampling problem when the constraints imposed are the degree correlations. In particular, we develop
an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix
providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus
completely specifying all pairwise degree correlations, and additionally, the degree sequence itself.
Our algorithm always produces independent samples without backtracking. The complexity of the
graph construction algorithm is @ (NM) where N is the number of nodes and M is the number of
edges.

1. Introduction

Complex systems often consist of a discrete set of elements with heterogeneous pairwise interactions. Networks,
or graphs have proven to be a useful representational paradigm for the study of these systems [ 1-4]. The nodes,
or vertices, of the graphs represent the discrete elements, and the edges, or links, represent their interaction. In
empirical studies of real-world systems, however, for reasons of methodology, privacy, or simply lack of data,
frequently there is only limited information available about the connectivity structure of a network. When this is
the case, one has to take a statistical approach and study ensembles of graphs that conform to some structural
constraints. This statistical approach enables the computation of ensemble averages of network observables as
determined solely by the constraints, i.e., by the specified structural properties of the graphs. Ensemble modeling
of this type is necessary to determine the relationship between the given structural constraints and the behavior
of the complex system as a whole. Calculating ensemble averages, though, requires the ability to construct all the
graphs that are consistent with the required structural constraints, a highly non-trivial problem.

Perhaps one of the simplest examples of structural constraints that occur in data-driven studies of real-world
systems is to fix the degree of each node, which is the number of edges that are connected to, or are incident on
the node. For an undirected graph with N nodes this information is specified by a degree sequence
D = {d,, dy, ---, dy}, where d;is the degree of node i. Similarly, for a directed graph, a bi-degree sequence (BDS)
D = {(d], d"), (d5, d), -, (dy, d)} specifies the number of incoming and outgoing edges for each node

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft



I0P Publishing

NewJ. Phys. 17 (2015) 083052 K E Bassler et al

where d;” denotes the in-degree, and d;* the out-degree, of node i. The situation of most practical interest is
when we demand the graph with a given degree sequence to be a simple graph, which has the additional
constraints that there can be at most one link (in each direction, if directed) between any two nodes, and that no
link starts and ends on the same node (no self-loops). However, not all positive integer sequences can serve as the
sequence of the degrees of some simple graph. If such a graph does exist, then the sequence is said to be graphical.
Any simple graph (just ‘graph’ from here on) with the prescribed node degrees is said to realize the degree
sequence, and it is called a graphical realization of the sequence. The two main results used to test the graphicality
of an undirected degree sequence are the Erds—Gallai theorem [5] and the Havel-Hakimi theorem [6, 7]. For
directed networks, instead, the main theorem characterizing the graphicality of a BDS is due to Fulkerson [8].
More recently, exploiting a formulation based on recurrence relations, new methods were introduced to
implement these tests with a worst case computational complexity that is only linear in the number of nodes [9-
11]. The advantage of these methods over others with similar complexity [12] is that they also allow a
straightforward algorithmic implementation.

While the above results provide complete and practical answers to the question of the graphicality of sequences
of integers, they do not suffice to solve the problem of constructing graphs with prescribed degrees. One of the
main issues with constructing graphs for the purpose of ensemble modeling is that, except for networks of just a
few nodes, the number of graphs realizing a degree sequence, or other possible constraints, is generally so large that
their complete enumeration is impractical. Therefore, one has to resort to sampling the space of realizations by
randomly generating networks with prescribed node degrees [9, 11]. For the case of degree-based graph sampling,
the existing approaches generally fall into two classes that can broadly be referred to as ‘rewiring’ and ‘stub-
matching’. Rewiring methods start from a graph with the required degrees and use Markov chain Monte Carlo
(MCMC) schemes to swap repeatedly the ends of pairs of edges to produce new graphs with the same degree
sequence [13—-16]. Stub-matching methods, instead, are direct construction algorithms that build the graphs by
sequentially creating the edges via the joining of two stubs of two nodes [17-21]. A stub represents a non-
connected, ‘dangling half-edge’ and a node has as many stubs as its degree. Unfortunately, these techniques can
provide biased results, or are ill-controlled. In the case of the MCMC method the mixing time is in general
unknown and thus one cannot know a priori the number of swaps needed to produce two statistically independent
samples. Proofs showing polynomial mixing of the MCMC method have been recently developed for special
degree sequences [22-25], and for the case of balanced realizations of joint-degree matrices (JDMs) [26]. However,
none of these methods allows the determination of the exponent of the polynomial scaling.

Among the stub-matching methods, the most commonly used algorithm, which is also ill controlled, is
known as the configuration model. The configuration model was proposed in [17] as an algorithmic equivalent
of the results from [27, 28], themselves based on prior models [29, 30]. The algorithm randomly extracts two
stubs from the set of all stubs not yet connected into edges, and connects them into an edge. If a multi-edge or a
self-loop has just been created, the process is restarted from the very beginning to avoid biases. However,
depending on the degree sequence, this process can become very inefficient with an uncontrolled running time,
justlike the MCMC method. Alternatively, one can ignore multi-edges and self-loops, and fix them ‘by hand’ at
the end of the process. However, doing so produces significant biases even in the limit of large system size [31].
Recently, a novel family of stub-matching algorithms was introduced for both undirected [9] and directed [11]
degree sequences (reproduced here in A), based on the so-called star-constrained graphicality theorems [32, 33].
These algorithms generate statistically independent samples with a worst case polynomial time of O (NM),
where M is the total number of edges. The samples are not generated uniformly. However, their statistical
weights are computable and can be used to obtain results in an importance sampling framework [9, 11, 34, 35].
Note that the solution for the directed sequences also solves the problem for bipartite sequences because a
bipartite graph can always be represented as a directed one in which one of the two sets of nodes has only
outgoing edges, and the other set has only incoming ones.

Graph construction and sampling becomes even more difficult when there are structural constraints of
higher order, such as correlations amongst the node degrees. Degree correlations can be expressed in several
ways, for example with the help of the conditional probability P (d’|d) that a node of degree d will have a
neighbor of degree d’, or more simply, by the average degree of the neighbors of a node with degree d,

d(d) = Zd, d'P(d'|d) [36]. The properties of d’ (d) characterize the so-called assortativity of a graph, which is a

measure of the tendency of a node to connect to nodes of similar degree. If d’ (d) is increasing in d, the graph is
degree-assortative, if it is decreasing the graph is degree-disassortative, and if it is constant, the graph is degree-
uncorrelated. Even more coarse-grained measures of degree correlations are possible, including the Pearson
coefficient [37], the Spearman coefficient [38] and the Kendall coefficient [39]. These coefficients assume values
ranging from — 1, for highly disassortative graphs, to 1, for highly assortative ones.

A more precise way to express degree correlations is via the use of a JDM. The JDM of a given undirected
simple graph is a symmetric matrix whose (a, f) element is the number of edges between nodes of degree a and
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nodes of degree . The dimensions of the JDM are A X A, where A is the largest degree of a node in the graph.
The degree correlation measures discussed above specify the correlations only statistically, but they do not fix the
number of edges between nodes of given degrees, whereas the JDMs do. In this sense, the relationship between
JDMs and the statistical degree correlation measures is similar to the relationship between degree sequences and
degree distributions.

Degree correlations have generated considerable interest, as they are known to affect many structural and
dynamical properties of graphs and the processes they support [40—47]. Nevertheless, even though their
importance is well established, it has heretofore not been possible to perform ensemble modeling of graphs with
prescribed JDMs. In this Article, we solve this problem by developing an algorithm based on the stub-matching
method to construct and sample ensembles of graphs with a specified JDM.

2. Mathematical foundations

2.1. Graphicality of JDMs
The problem of graphicality for JDMs asks whether a specified symmetric matrix can be the JDM of a simple
graph. Our starting point is an Erd6s—Gallai-like theorem that gives the requirements for a JDM to be graphical
[48-50].

Before stating the theorem, though, note that a JDM specifies uniquely the degree sequence of the graphs that
realize it [48]. Given a JDM J, the number of nodes with degree ar is

1 A
= _[](m + ZIaﬂ}
a —

Va

where V,, is the set of nodes, or degree class, with degree a. As a general rule of notation we will use lowercase
Greek letters to indicate degree values and lowercase Latin letters for node indices. In the equation above the sum
of each row a of ] is the number of connections involving nodes of degree a (i.e., all nodes in class V,,). As each
node of degree a has exactly a stubs the total number of nodes of degree a is given by the notal number of stubs
from all nodes in class V, divided by a. Moreover, each edge between nodes of the same degree involves 2 stubs.
Thus, the diagonal elements must be double-counted. Note that multiple JDMs can specify the same degree
sequence and thus prescribing a JDM is more constraining than only prescribing a degree sequence. With the
definitions above, the necessary and sufficient conditions for a JDM to be graphical can be stated as follows
[48-50]:

Theorem 1. JDM graphicality. A symmetric A X A matrix ] with non-negative integer elements is a graphical JDM
ifand only if:

1) |V, is an integer V1 < a < A,
| Val
2) Ja S| Vi<a<A, and
3 Jy <IVallVyl Vi<ap<Aandap
Itis important to observe that any graphical realization of a JDM can be decomposed into the disjoint union
ofaset of subgraphs G, that are bipartite (a # ) with node sets V, and Vj and J,5 edges between them or
unipartite (@ = f) with node set V, and J,, edges within that set. We are going to call such representation of a

graphical realization a degree class representation. A simple example of a graphical [JDM with N=10and A = 4
is given by the matrix:

(1

_— o O O
> b O O
W= O

W s -

0

Panels (a) and (b) of figure 1 show a graphical realization of ] in degree-class representation and regular
representation, respectively. Panels (d) and (e) of the same figure show another realization of ] in the two
representations. The color of the edges indicate the subgraph they belong to. For example, G,, is a bipartite
graph between nodes of degree 2 (V,) and 4 (V,), respectively, having J, 4 = 4 edges drawn in green color,
whereas Gs; is unipartite with asingle ;3 = 1 edge drawn in blue. Note that while both graphical realizations
have the same JDM, they are very different graphs. To see this, consider the counts 7, of cycles Cy of length £ (a
cycleis a closed path without repeated nodes). The graph in figure 1(b) hasn; = 1, ny = 2,15 = 1, 16 = 2,

n; = 3and ng = 3, whereas the onein figure 1(e) has n; = 1,ny = 1,15 = 2,6 = 3, n; = 4and ng = 1.
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Figure 1. Graphical realizations of a simple JDM, givenin (1). Panels (a) and (d) are degree-class representations, while panels (b) and
(e) are regular representations. The color of the edges indicates the subgraph G, they belong to. Panels (c) and (f) show the
corresponding degree-spectra matrices for the two realizations; they differ in the bold red entries.

Theorem 1 is an existence theorem, just like the Erdos—Gallai theorem for the case of degree sequences, and
as such it does not provide an algorithm that can generate simple graphs with a given JDM. More importantly,
we also need an algorithm that does not exclude classes of graphical realizations of a given JDM, but that can
construct in principle any such realization. The situation is similar to that of degree sequences. In that case the
Havel-Hakimi method [6, 7] is always able to create a graphical realization of a graphical degree sequence, but
cannot construct them all, i.e., there will be some realizations that can never be built by this algorithm. This was
the reason for the introduction of the notion of star-constrained graphicality in [32, 33] and the subsequent
construction algorithmsin [9, 11]. Here as well, we want to have a direct construction algorithm and ultimately
an exact sampler that does not exclude any realization of a JDM. Due to the different nature of the constraints
from the degree-sequence-based case, we need to develop a novel approach.

The idea of the approach is based on the degree-class representation above. Since the edges of the subgraphs
Ggp are disjoint, we could build a graphical realization G of the JDM J by building all these subgraphs, while
respecting the constraints. For a G4 subgraph we know its node set(s) and its total number of edges J4.
Consider thenanode v € V,. Weare not given its degree in G, for any 3, but we know that the sum of its
degrees within every one of these subgraphs must add up to a. For example, the sum of the number of the purple,
green and red edges coming out of node 2 in figure 1(b) must add to 4. In addition, we also have the constraints
that the sum of the degrees of one color of all nodes within V,, must equal to the corresponding given JDM entry.
Indeed, for example, the sum of all green edges in figure 1(a) or figure 1(b) is J,4 = 4, for orange is 4, red is 3, etc.
Thus, the idea of the algorithm is to first determine the degree of a given color respecting the constraints for all
nodes and all colors, then use our methods introduced earlier [9, 11] (see A) to build the G4 subgraphs based on
the corresponding degree sequences of their nodes. Different graphical realizations will be obtained from
different assignments of color degrees and, of course, from the different graphical realizations of the same set of
degrees. Note that for the bipartite subgraphs G, we are specifying degree sequences for nodes in both
partitions V, and V; and thus we can use our graph construction method for directed graphs [11], because a
bipartite graph can be represented as a directed graph if nodes in one partition have only outgoing edges and in
the other only incoming edges. In the following it will be useful to introduce the notion of degree spectra,
representing the degrees of different colors of a node, as described above.

2.2.Degree spectra

Consider a single row a of a graphical JDM J. The information contained in the row determines the precise
number of edges needed between nodes of degree @ and nodes of every degree. In other words, of all the stubs
coming from V,, J, 1 of them must end in a node of degree 1, J, , of them must end in a node of degree 2, and so

4
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A B
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Figure 2. Schematic for the partial degree sequence problem.

on. However, these matrix elements do not specify how to distribute these edges within and between the degree
classes. To better specify these connections one introduces the notion of the degree spectra, which can be
conveniently represented as a matrix. The degree spectrum of a node is the sequence of its degrees towards all the
degree classes, including its own degree class. A degree-spectra matrix Sisa A X N matrix whose (a, i) element
Sei 1s the number of edges between node i and degree class & (the set of nodes of degree a). The ith column of
defines the degree spectrum of node i. Panels (¢) and (f) of figure 1show two representations of the same JDM
given in equation (1). In general, there are many degree-spectra matrices that correspond to the same JDM. As
described in the previous section, we employ a two-step process in order to randomly sample graphs that realize
a given JDM. First, we generate a random degree-spectra matrix from the JDM. Second, we construct arandom
graph that realizes the JDM and that obeys or is consistent with the chosen spectra matrix. This approach creates
the need for a method to guarantee that the spectra generated from a JDM are graphical.

The generation of a graphical degree-spectra matrix proceeds systematically, node by node. Therefore, at
each step, some nodes will have an already fixed number of links within some of the subgraphs (links of a given
color), while for the rest these numbers will not have been determined yet. Thus, at any time during this process
we have a partial degree sequence of a bipartite graph. As the subgraphs must be simple graphs (realizable), one
must be able to decide whether a partial bipartite degree sequence is graphical. The sufficient and necessary
criterion for the graphicality of a partial bipartite degree sequence will be given in theorem 2 below. However,
that will not necessarily mean that the whole JDM Jis still realizable, in other words, how do we know that by
guaranteeing the graphicality for a subgraph G,s we have not precluded graphicality of some other subgraph G5,
and ultimately of J? The answer to this question will be given by theorem 3, later on. Together, these theorems
form the basis for our algorithm to generate graphical degree spectra.

Before proving a theorem that provides a graphicality test for partial bipartite degree sequences, we need to
set some notations. Let A, B, H and K be four sets of nodes:

A={ay ay, = aa} B=1{by by -, bp} with ANB=0
H ={h, h, = by} K={ky ko, -, kix} with HNK=g

andletU = A U Band V = H U K (see figure 2). The sets can be of different size, but neither Unor V canbe
empty. Now, let P = {p,, p), =+, p4;}and Q = {q;, gy, -+, gy} be two given sequences of integers. They will
represent the partial bipartite degree sequences that have already been fixed by the algorithm up to that point.
The degrees of the other nodes, specifically those in the sets Band K, are not yet specified. What is specified is the
total number of edges € in the bipartition, i.e., the total number edges running between the sets Uand V. Then,
the partial bipartite degree sequence triplet (P, Q, ¢), hereafter simply called a triplet, is graphical if there exists a
bipartite graph on Uand V with ¢ edges and degree sequences D (U)| 4 = P and D (V) |y = Q. In other words,
the bipartite graph must be such that the nodes in A have degree sequence P and those in H have degree
sequence Q. The partial degree sequence problem is to decide whether one can choose the degrees of the nodes
in the sets Band K such that the above constraints are satisfied and the bipartite degree sequence D is graphical.

Since the graph realizing a triplet is bipartite, the number of edges € equals the number of stubs in either set of
nodes:

Ul V]

e=Ydy=Yd,
i=1 i=1




I0P Publishing

NewJ. Phys. 17 (2015) 083052 K E Bassler et al

The imposed partial sequences P and Q prescribe a certain number of stubs in the first |A | nodes of Uand in the
Y [H| . .
first |H | nodes of V. Let these be P = Z b and Q = Z i respectively. Then, the set B must contain
i= i=
exactly e — P stubs; similarly, the set K must contain exactly ¢ — Q stubs. With these considerations, we first
e—P _e—-Q

define the concept of a balanced realization of a triplet. Let u = TET and v ¥q

defined to be balanced if and only if the degree of any node in Bis either |y | or [ 1], and the degree of any node in
Kiseither |v] or [1]. Notice that this means that if u or v are integers, then all the nodes in B or K must have
exactly degree u or v, respectively. Conversely, if they are not integers, then the degrees of any two nodes in B or
in K, respectively, can differ at most by 1. That is, a realization is balanced if and only if all the degrees of the
nodes that one is free to choose (those in Band K) are as close as possible to their averages y and v. The definition
can be equivalently formalized by introducing a functional facting on Band K:

| B K]

F(B) = ZUdbi —y|J and f(K) = ZHdki - U\J

i=1 i=1

. Arealization of a triplet is

Then, a realization of a triplet is balanced if and only if both f (B) and f (K) vanish.
An important theorem about the graphicality of triplets can now be proven.

Theorem 2. The triplet (P, Q, €) is graphical if and only if it admits a balanced realization.

Proof. Sufficiency is obvious. If the triplet admits any realization, balanced or not, it is graphical by definition.
To prove necessity, suppose the triplet is graphical. Then, it admits a realization G. If G is balanced, then

there is nothing to do. Conversely, if G is not balanced, then f (B), f (K), or both, are greater than 0. Without

loss of generality, assume that f (B) > 0. Then, there exists anode b; € B such thateither dj, < |u]or

dp, > [u]. Again without loss of generality, assume that dj, < |u ] (the other cases are treated analogously). Then,

since the number of stubs within Bis fixed, there must existanode b; € Bsuch that d, > |u]and thus dj, > dj,.

But then, there must exista node v, € V such that v, is connected to b; but not to b;. Now, remove the edge

(V&> bj) and replace it with (v, b;). This yields a different realization with the same degrees for the nodes in V, and

inwhich f (B)isdecreased by atleast 1, as the degrees of B moved towards the balanced condition. The

procedure can be repeated until f (B) = 0, resulting in a balanced realization. O

A key consequence of this theorem is the following.

Corollary 1. Let (P, Q, €) beagraphical triplet, and let x be a node in B or in K. If there is a realization of the triplet
inwhich d, = a and another in which d, = §, with a < 3, then for ally with a < y < f there exists a realization
inwhich d, = y.

Proof. Without loss of generality, assume x € B. Then, there are several cases, each determined by the relative
values of @, fand | |. The most general caseis @ < |¢| < S, so consider only this situation. Start from the
realization with d, = f3. Repeated applications of the method in the proof of theorem 2 will eventually yield a
realization in which d, = |p|. For each step, the degree of x will have decreased by 1. Therefore, one realization
of the triplet will have been found with d, = y forall |u] < y < f.

Now, start from the realization with d, = a. Applying the same step from the proof of theorem 2 repeatedly
will eventually yield a realization in which d,, = |u|. For each of these steps, the degree of x will have increased by
1. Therefore, one realization of the triplet will have been found with d, = aforalla < y < |u]. n

Notice that, given a graphical triplet, corollary 1 also implies the existence of minimum and maximum
allowed degrees for each node whose degree has not yet been fixed in that triplet (namely, in Band K). That is, a
realization of the triplet exists with a node having either its minimum or maximum degree, or any degree
between these two values. Of course, the value of the minimum and maximum degree will depend on which
degrees have been fixed up to that point, so these need to be computed on the fly. How to calculate these degree
bounds will be explained in section 3.1.

2.3.Building a degree-spectra matrix
Corollary 1 suggests the possibility of a direct, sequential way to build a degree-spectra matrix from a JDM.
However, building the degree-spectra matrix node by node is a local process, which guarantees via theorem 2
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only that the bipartite graph in which the node whose degree spectrum is being set resides is graphical. Thereisa
global constraint, however, on every node, namely that the sum of their degree-spectrum elements must add up
to the degree of the class they belong to. We have to make sure that the local construction process also respects
the global constraints, i.e., it is feasible with it. The theorem below will show that this sequential construction
process is feasible, and just as importantly, all graphical realizations of a JDM J can be constructed in this way,
i.e., all graphical degree-spectra matrices can be obtained by this sequential construction process.

Theorem 3. Let S be the subset of all the nodes with fixed spectra; then, there exists a realization of a JDM ] consistent
with the fixed spectra if and only if for every (a, ) pairwith a, p € {1, ..., A} thereexists a graph G,z with J, g
edges also satisfying the fixed spectra of S.

Proof. Necessity is obvious. If there exists a realization of ] satisfying the spectra, then each subgraph between
any pair of degree classes both satisfies the spectra and has the right number of edges.

To prove sufficiency, assume that we have a fixed degree spectrum for all the nodes in S and we have
guaranteed the graphicality of all the subgraphs G, ;. They have the right number of edges J, 5 and their nodes
satisfy the fixed spectra specified in the subset S. Since we have guaranteed graphicality for all the G, subgraphs
with these constraints, let us consider some graphical realization for each such subgraph and consider their
union graph G. If the ‘free’ nodes, i.e., those without a fixed spectrum, have all the correct degree in G (i.e., every
node v € V, has d, = a for all @), then there is nothing to do. Now, assume they don’t. Since the total number of
edges in each G, is correct by hypothesis, there must exist a degree a and two free nodes v and w belonging to V,
suchthatd, < aand d,, > a.Thus, there must exist a node u connected to wbut not to v. Then, erase the edge
(u, ), and replace it with (u, v). This leaves the numbers of edges in all G,; unchanged, and does not change the
degree spectrum of u, because v and w belong to the same degree class. Repeating this procedure results
eventually in all the nodes having the correct degree. O

Theorem 3 is fundamentally important as it justifies a systematic, node-by-node approach in building a
graphical degree-spectra matrix. In fact, so long as one guarantees the possibility of subgraphs with the correct
number of edges, a partial degree-spectra matrix maintains the graphicality of the JDM.

The only detail left is specifying how to choose the numbers that form the degree spectra. Fortunately, this is
straightforward. As mentioned in the previous section, an implication of corollary 1 is the existence of minimum
and maximum allowed degrees for nodes in partial degree sequences. Let them be m (minimum) and M
(maximum). But a partial degree sequence is nothing else than a partially built degree spectrum, if one
recognizes the node sets Uand Vas two degree classes. Then, a condition that must be satisfied in building a
degree-spectra matrix is that any new number chosen to augment a partially built degree spectrum has to be
within these bounds. However, one must also consider that if a node belongs to a certain degree class, it must
have the correct total degree.

To state both conditions, assume the degree spectrum of node v € V,, is being built. Let I" be the set of degree
classes for which a spectrum element has already been chosen, and let S, be the element to determine next.
Then, a valid value k for S, must satisfy the two conditions

mp < k < Mg, (2)
Y my<a-k=YS,< DY M, (3)
g Up) ner g Up)

Below, in section 3.1 we describe how to compute the min and max values for degree spectra elements.

3. The algorithm

3.1. Description
We are now ready to describe our JDM sampling algorithm. The algorithm is composed of two parts. The first is
aspectra sampler that randomly generates degree-spectra matrices from a graphical JDM J:
(i) Initializei=1.
(i) Seta = 1.
(iii) Let/be the number of the residual, unallocated stubs of node i. If [ # 0:

(@) If Ja,o # 0:
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Figure 3. Sequentially determining graphical degree spectra consistent with a given JDM J.

(1) Foralla < f < A,if Jg,p # 0, find Myand my; otherwise, set my = My = 0.
A A
(2) Compute t = Z/}:a+l mpand T = Zﬁ=a+1 Mp.

(3) Find the actual minimum and maximum allowed for the degree-spectrum element:
r = max {m,, | — T}and R = min {M,, [ — t}.

(4) Extractan integer S, ; uniformly at random between rand R.
(b) Increase a by 1, and go to step (iii).

(iv) Increaseiby 1.1fi < N, go tostep (ii).

To find the values of 1 and M in step (iii).a.1 above, consider the degrees of the nodes belonging to V;, and Vj
in G,p. In the formalism of section 2.2, the already fixed spectra elements are equivalent to the sequences 7 and
Q. Then, to test the viability of a given value as a degree-spectrum element, assign it to the element being
determined, complete the degree sequence making it balanced, and test it for graphicality, see figure 3. If the
sequence is graphical, then the triplet has a balanced realization, which by theorem 2 is a necessary and sufficient
condition for the existence of a subgraph corresponding to the spectrum element being determined. If G4 is
unipartite, the graphicality test can be done using the fast method described in [9]. The situation is marginally
different if G, is bipartite. In this case, as previously mentioned, the degree sequence can be built asa BDS in
which nodes of degree a only have incoming edges, and nodes of degree f# only have outgoing ones. This
sequence can then be tested with the fast directed graphicality test described in [11].

Thus, to find the minimum value m one can simply run a sequential test, checking for valid spectrum values
from 0 onwards. The first successful value is m. Then, to find M, use bisection to test all the values from m + 1to
the theoretical maximum, looking for the largest number allowed. Clearly, the theoretical maximum at that
stage is the degree of the class the node belongs to minus the sum of the already fixed spectra values for that
degree.

These considerations also clarify the nature of the second part of the algorithm, which samples realizations of
the JDM from an extracted degree spectra matrix. Summarizing,

e JDM realizations can be decomposed into a set of independent unipartite and bipartite graphs.

e The degree spectra define the degree sequences of the component subgraphs.

Then, to accomplish the actual sampling, extract the degree sequences from the degree spectra and use them
in the graph sampling algorithms for undirected and directed graphs presented in [9, 11] and in here in A. Every
time a sample is generated, it constitutes a subgraph of a JDM realization. All that is needed in the end is simply to
list the edges correctly, since the graph realizing the JDM is the union of all the unipartite and bipartite subgraphs
into which it has been decomposed.

3.2. Sampling weights

Our algorithm does not extract all degree-spectra matrices from a JDM with the same probability. However, the
relative probability for the extraction of each spectra matrix is easily computed, and it can be used to reweight the
sample and obtain unbiased sampling. If every new element of a degree-spectra matrix is extracted uniformly at
random between rand R, its probability of being chosen is simply R+M' Therefore, the probability of

8
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Figure 4. Log-normal distribution of weights. The top panel shows the histogram of the natural logarithms of the weights for an
ensemble of 10° degree-spectra matrices; the bottom panel shows the histogram for an ensemble of 10® sample weights. Both
distributions (solid black lines) are well fitted by a Gaussian curve (dashed red line).

extracting a given spectra matrix Sis p (S) = Hm L where mis the total number of elements

i=1 R—-r + 1
extracted. Then, an unbiased estimator for a network observable Q on an ensemble of Z spectra matrices can be

computed using the weighted average

z
_ Qiw;
Q) = L’? : (4)

Wi
i=1

In the expression above, Q;is the value that Q assumes on the ith sampled matrix. Indicating by r;and R; the
values that r and R assume for the jth matrix element extracted, the weights are

Wi=ﬁ (Rj—f’j+ 1). (5)
j=1

Of course, besides the spectra matrix, every subgraph has its own sampling weight. Thus, the total weight of a
single JDM sample is the product of the corresponding spectrum weight and all the subgraph weights. To
describe the distribution of the sample weights, first recall that the individual subgraph weights are log-normally
distributed [9, 11]. Thus, as the sample weights are their product, we expect them to be log-normally distributed
too. Also, for large JDMs, where A% >> 1, the m factors in equation (5) are effectively random. Thus, our
expectation is that the spectra weights are log-normally distributed as well. To verify this, we extracted the JDM
of arandom scale-free network with 1000 nodes and power-law exponent of 2.5, and used it to generate an
ensemble of 10° degree-spectra matrices and one of 10° JDM samples of a single spectra matrix. Figure 4 shows
that the histograms of the logarithms of spectra matrix weights and sample weights are well approximated by a
Gaussian fit, supporting our assumptions.

A simple and small example is provided in B. There, we analytically compute the JDM ensemble averages of
the local clustering coefficients of nodes of all degrees, based on unweighted sampling and also based on
weighted sampling, with the weights provided by the algorithm. In table B.1 , we show the results of simulations
using our algorithm, taking into account the sample weights (as described above), and simply computing the
averages of the clustering coefficients over the samples generated. The results between theoretical and simulated
measures agree very well. The differences between weighted and unweighted versions can be also appreciated,
and while they are small in this example, they are measurable and need to be taken into account in general.

9
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Table B.1. Comparison between analytical and simulated averaged local clus-

tering coefficients.

Theor. Simul. Theor. Simul.
Coeft. unweigh. unweigh. weigh. weigh.
[ 0.25309 0.25320 0.25641 0.25664
c 0.32510 0.32483 0.31624 0.31570

3.3. Computational complexity
To determine the computational complexity of the algorithm, first note that the main cost in creating a spectra
matrix comes from the repeated graphicality tests. Let A be the number of non-empty degree classes in the JDM

A=Ha: va;ég}|.

Then, for each of the NA non-trivial elements in the degree-spectra matrix, A tests are needed, each with a
computational complexity of the order of the number of nodes in the corresponding degree class. Thus, the total
computational complexity for the spectra construction part of the algorithm is

A A
Cs=0|NY 3|Vl | (6)

a=1p=a

Notice that in our treatment one is free to choose the order of the degree classes. Thus, to minimize the
complexity, one can simply determine the degree-spectra elements in descending order of degree-class size.
Then, the worst case corresponds to the equipartition of the nodes amongst degree classes, | V,,| = %. In this
case, itis

Cs = @(NAZ%) = O(NZA),

which reduces to
Cs=0O (N3)

if the number of degree classes is of the same order as the number of nodes.
A more precise estimate for a given JDM can be obtained by rewriting equation (6) as

A A
Cs=0[N2Y 3P|

a=1pf=a

where the degree distribution P (d) = |V;|/N is the probability that a randomly chosen node has degree d. It is
easy to see, then, that the worst case is unlikely to occur. Consider for instance systems of widespread insterest,
such as scale-free networks, for which P (d) ~ d~7 with y > 2. Then, in the limit of large networks, the equation

above becomes
o0 o 2
Cs= O(NZ/ dx/ dk(y — l)k‘V) - O(L) = o(N?).
1 x y—2
Thus, in this case, the complexity leading order for spectra matrix extraction is only quadratic.

Given a degree-spectra matrix, to construct a JDM realization one then needs to build O (A?) subgraphs,
eachwith O (%) nodes and O (%) edges. For each subgraph, the computational complexity is of the order of the
number of nodes multiplied by the number of edges. Thus, the total sampling complexity is
O (Az%%) = O (NM). Therefore, the total complexity of the graph construction part of our method is @ (N?)
for sparse networks, and @ (N?) for dense ones. Once more, we do not expect the worst case complexity to occur
often. For example, in the already mentioned case of scale-free networks, which are always sparse [51], the total
complexity of our algorithm would only be quadratic. A less efficient sampling method has been developed
recently [52], but it is based on backtracking, producing results containing biases that are uncontrolled and that
cannot be estimated. An alternative algorithm, that does not involve backtracking, has been proposed [53].
However, despite having a computational complexity that is comparable to ours, being (?(N?) on highly
heterogeneous networks, it is not an exact sampling algorithm.

10
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4. Conclusions

In summary, we have solved the problem of constrained graphicality when degree correlations are specified,
developing an exact algorithm to construct and sample graphs with a specified JDM. A JDM specifies the
number of edges that occur between degree classes of nodes (nodes of given degrees), and thus completely
determines all pairwise degree correlations in its realizations. Our algorithm is guaranteed to successfully build a
random JDM sample in polynomial time, systematically, and without backtracking. It is also guaranteed to be
able to build any of the graphical realizations of a JDM. Each graph is constructed independently and thus there
are no correlations between samples. Although the algorithm does introduce a sample bias, the relative
probability for the construction of each sample is computable, which allows the use of weighted averages to
obtain unbiased sampling (importance sampling). However, importance sampling is only exact in the limit of an
infinite number of samples. This raises the issue of convergence. The log-normal distribution of weights makes
convergence slow, but for small- to medium-sized networks good accuracy can be achieved, and quantities
computed as if from uniform sampling. Improving the speed of convergence is a challenging problem, partly
because it depends on the constraining JDM, and will be addressed in future publications.

Degree correlations in real-world systems have been widely observed. Social networks are known to be
positively correlated, and the concept of assortativity was known to the sociological literature before it was
employed in applied mathematics. Technological networks are also characterized by particular correlation
profiles. Moreover, correlations significantly affect the dynamics of spatial processes, such as the spread of
epidemics [3]. Thus, with our algorithm, one can model correctly complex systems of general interest with
desired degree assortativity. For the first time, this enables the study of networks in which the correlations are not
determined solely by the nodes’ degrees. For instance, there exist many studies about social networks, consisting
of a comparison between some specific real-world network and a randomized ensemble of networks with the
same degree sequence or degree distribution. As social networks are scale-free, these studies often just sample the
same sequence or the same type of power-law sequences to produce null-model results. However, social
networks are assortative, while random scale-free networks are on average disassortative. Thus, the average
correlations of scale-free networks make degree-sequence and degree-distribution sampling problematic if one
is trying to consider a random model of a social network. Our method allows one to avoid this problem by
directly imposing the correlations, rather obtaining only those imposed by the degree sequence.

Upper bounds on the computational complexity of our algorithm show that in the worst case it is cubic in
the number of nodes. However, we provide a way to compute the expected worst-case complexity if the degree
distribution of the networks considered is known. This shows that, for commonly studied cases such as scale-
free networks, the maximum complexity is only of the order of N?, making the algorithm even more efficient.
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Appendix A. Direct construction of random directed and undirected graphs with
prescribed degree sequence

In order to fully describe our algorithm for sampling graphs with prescribed degree correlations, we include in
this appendix succinct descriptions of our algorithms for sampling random undirected [9] and directed [11]
graphs with a prescribed degree sequence. Both are used in our algorithm to sample graphs with a prescribed
JDM, and both work by directly constructing the graphs. So long as the prescribed degree sequence is graphical,
both algorithms are guaranteed to successfully construct a graph without backtracking. They accomplish this by
building the graph an edge at a time, connecting pairs of stubs, maintaining the graphicality of the residual stubs
throughout the construction process. The algorithms make use of our fast methods for testing the graphicality of
degree sequences, which are also described below. The worst case complexity is © (N) for the graphicality tests,
and O (NM) for both sampling algorithms. Both algorithms generate biased samples, but we also state the
relative probability of generating a sample, which can be used to calculate unbiased statistical averages. See our
previous publications for proof of the correctness of these algorithms [9, 11]; they are stated without proof or
detailed explanation here.
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A.1. Undirected graphs
A non-increasing sequence of integers D = {d,, di ..., dy} is graphical if and only if ZN X d;is even, and
1=

Ly € Riforall1 < k < N, where Lyand Ry are given by the recurrence relations

Li=d, (A.1)
Lk = Lk_1 + dk (AZ)
and
R=N-1 (A3)
_ J Re-r+ 2 =2 Vk < k*
Rk_{Rk—1+2(k— 1) — di Vk>kt (A.4)

and we defined the crossing indices x;, = min {i : d; < k},and k* = min {i : x; < i + 1}. Thus, to test the
graphicality of D:

N
(i) Sum the degrees to determine if E . d; is even. If false, then stop; D is not graphical. If true, continue.
i= .
While summing the degrees, also calculate the crossing indices x; for each k and determine k .

(ii) Testif L; < Ry = N — 1.Iffalse, then stop; D is not graphical. If true, set k = 2 and continue.
(iii) Testif Ly < Ry. If false, then stop; D is not graphical. If true, increase k by one and repeat. Continue until

k = N — 1, thenstop; D is graphical.

Given a non-increasing graphical degree sequence D, arandom undirected graph that realizes D can be
constructed by:
(i) To eachnode, assign a number of stubs equal to its degree.
(ii) Choose ahub nodei. Any node can in principle be chosen, for example, the node with the largest degree.
(iii) Create a set of forbidden nodes X, which initially contains only i.

(iv) Find the set of allowed nodes A to which i can be linked preserving the graphicality of the remaining
construction process. To find A, first determine the fail degree k using the method described below. Then A
will consist of all nodes j ¢ X that have remaining degree greater than «.

(v) Choosearandom node m € A and connectitoit.

(vi) Reduce thevalue ofd;and d,,, in D by 1, and reorder it.
(vii) If m still has unconnected stubs, add it to the set of forbidden nodes X.
(viii) Ifistill has unconnected stubs, return to step (iv).

(ix) Ifnodes still have unconnected stubs, return to step (ii).

To determine the fail degree in a degree sequence D being sampled, build the residual degree sequence D', by
connecting the hub node i with remaining degree d; to the d; — 1nodes with the largest degrees that are not in
the forbidden set X and reducing the elements of D accordingly. Then, compute the graphicality test
inequalitites. Each inequality potentially yields a fail-degree candidate, depending on the values of L, and Ry. For
each value of k there are only 3 possibilities:

(a) Li=Ry
(b) Ly = Ry — 1.
(¢) Ly < R — 2.

In case (a), the degree of the first non-forbidden node whose index is greater than k is the fail-degree
candidate. In case (b), the degree of the first non-forbidden node whose index is greater than k and whose degree
islessthan k + 1is the fail-degree candidate. In case (c), there is no fail-degree candidate. The sequence of

candidate nodes is non-decreasing until the fail-degree is found. Thus, one can stop the calculation when either
the current fail-degree candidate is less than the previous one, or when a case (a) happens.

12
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This algorithm generates graph samples biasedly. However, the relative probability of generating a particular
sample p is

p = H il — (A5)

where d; is the residual degree of node i when it is chosen as a hub, 1 is the total number of hubs used, and Ajis
the allowed set for the jth link of hub i. Thus, an unbiased estimator for a network observable Q for any target
distribution Pis the weighted average

ZlequfP(ﬂi)
M
D WP ()

where M is the number of samples and w,, = pﬂ__l. For uniformly sampling the networks, Pis constant and it

(Q) = , (A.6)

cancels out of the formula.

A.2. Directed graphs
ABDSD = {(d", d"), (d5, d) ,...,(dy, di)} of integer pairs, ordered so that the first elements of each pair

N N

form a non-increasing sequence, is graphical if and only if E ) d- = E ) d?,and L; < Ry forall
i= i=

1 < k < N — 1, where Ly and Ry are given by the recurrence relations

L1 = d1_> (A7)
Ly =L+ dy (A.8)
and
R] =N-1- G] (0), (A9)
Rioi+ N = G (k=1 Vdi<k
R, = -1+ 7k 1( ) < (A.10)
Re i+ N=-Gi i (k=1) -1 Vdl >k
and G and Gy are defined as follows. Let
df+1 Vi<k
(k=1 A1l
& {d,»* Vi>k (A0
Then
N
Gi(p) = Z‘Sp,gi(k)’ (A.12)
i=1
where & is the Kronecker delta, and G is given by the recurrence relation
Gi(1) = G1(0) + Gy (1), (A.13)
Gy (k) = Gr_1(k = 1) + Gy (k) + S(k), (A.14)
where
k-1 k
S(k) = ng,df'ﬂ - 25/@&1;. (A.15)
t=2 t=2

To efficiently test the graphicality ofa BDS D:

N N
(i) Sum the in- and out-degrees to determine if 24—1 d = Z'—1 d;*. If false, then stop; D is not graphical. If
true, continue. While summing the degrees, also calculate L, for each k.

(ii) Compute G (k) for each k.
(iii) Compute S (k) forall k:
(a) Initialize S (k) to O forall k. Seti=2.
(b) Ifd;* > i,decrease S (d;") by 1.
(c) Ifd;" + 1 > i,increase S(d;" + 1)by 1.

(d) Increaseiby 1.If i < N, repeat from step (b).
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(iv) Testif L; < Ry.Iffalse, then stop; D is not graphical. If true, set k = 2 and continue.
(v) Testif Ly < Ry. If false, then stop; D is not graphical. If true, increase k by one and repeat. Continue until

k = N — 1, thenstop; D is graphical.

Given a graphical BDS of integer pairs D in lexicographic order, arandom directed graph that realizes D can
be constructed by:
(i) Assign in-stubs and out-stubs to each node according to its degrees.
(ii) Defineas current hub the lowest-index node i with non-zero out-degree.
(iii) Create a set of forbidden nodes X, which initially contains i and all nodes with zero in-degree.

(iv) Find the set of allowed nodes A to which an out-stub of i can be connected without breaking graphicality.
To find A, first determine the fail in-degree k using the method described below. Then A will consist of all
nodes j ¢ X that have remainingin-degree greater than «.

(v) Choosearandom node m € A and connect an out-stub of i to one of its in-stubs.
(vi) Reduce the value of d;" and d,, in D by 1, and reorder it accordingly.

(vii) Add m to the set of forbidden nodes X.

(viii) Ifistill has unconnected out-stubs remaining, return to step (iv).
(ix) Ifnodes still have unconnected out-stubs, return to step (ii).

The following simple procedure can be used to efficiently find the fail-in-degree in step (iv) of the sampling
algorithm.

(i) Createanew BDS D’ obtained from D by reducing the in-degrees of the first d;* — 1non-forbidden nodes
by 1, and reducing the out-degree of i to 1.
(ii) Ifi=1, set k=2; otherwise,setk=1.
(iii) Compute Ly and Ry ofthe BDS D'.

(iv) If Ly # Ry:increase k by 1; if k = N, there is no fail-in-degree, and all the non-forbidden nodes are allowed,
so stop; otherwise, go to step (iii).

(v) Find the first non-forbidden node in D’ whose index is greater than k.
(vi) Identify this node in the original BDS D. Its in-degree is the fail-in-degree. Stop.
Asin the case of the sampling algorithm for undirected graphs, this algorithm generates directed

graph samples biasedly. However, an unbiased estimator for a network observable Q for any target distribution P
is the weighted average given by equation (A.6). In this case the weights are

> (A.16)

v od
w=1111 |A,-].

i=1 j=1

where v is the total number of hubs used, |A; | is the size of the allowed set immediately before placing the jth
connection coming from the ith hub, and d;" is the out-degree of the ith node chosen as a hub. Note that, unlike
the case for undirected networks, there is no factorial combinatorial factor in the weights. This is because while
the particular sequence of hub nodes chosen depends on the links placed, every node with non-zero out-degree
will be selected, sooner or later, as the hub. Therefore, all the samples produced would have an extra, identical,

. . . N
multiplicative factor ofI I X —dlﬂ
1= it

and this factor is the same for every possible sample, it is eliminated from the formula for the weights.

. As only the relative probabilities are needed for estimating an observable,

Appendix B. An explicit example

To illustrate the sampling mechanism and the difference between weighted and unweighted estimation, we
consider the realizations of the J]DM
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Figure B1. Possible realizations of the JDM in equation (B.1), up to isomorphism.

000
J=|0 2 4}, (B.1)
0 41

and explicitly compute the average local clustering coefficients (c;) of the nodes of degree d, for all values of d.
This JDM induces the degree sequence D = {2, 2, 2, 2, 3, 3},and, up to isomorphism, has only three possible
realizations, shown in figure B1 . From the figures, it is easy to see that, for the pentagon graphs, (¢ )p = 1/4 and
(c3)p = 1/3. Also, for the hexagon graphs (6 )y = (3 )y = 0, while for the bow tie graphs (¢ )s = 1and

<C3 >B = 1/3.

B.1. Unweighted estimate

To calculate the theoretical results for the unweighted case, we need to consider the probability with which our
algorithm generates each degree-spectra matrix from J. To this purpose, first note that there are several degree-
spectra matrices whose realizations are all pentagon graphs. Also, all the hexagon and bow tie graphs have the

same degree-spectra matrix
000
Swp=(111
111

This allows us to compute just the probability of generating S, as all the other matrices will yield the same
contribution to {¢ Yp and {3 )p.

Our method chooses the elements of the degree-spectra matrix S being created in a systematic way, node by
node. As there are no nodes of degree 1, all the element in the first row of the matrix are fixed to 0. Then, the first
elementto choose s S, j, that is, the number of edges between node 1 and nodes of degree 2. The possible choices
for this element are 0, 1, and 2. Choosing 0 or 2 will result necessarily in a degree-spectra matrix whose
realizations are all pentagon graphs. In fact, from figure B1 one can see that, amongst the realizations of ], the
pentagon graphs are the only ones in which a node of degree 2, such as node 1, has either no edges or 2 edges with
nodes of degree 2. Thus, choosing the value of S, ; with uniform probability, at this stage one generates pentagon
graphs with probability 2/3.

The remaining choice, S, ; = 1, happens with probability 1/3. In this case, S5 ; is forced to be 1, since the
elements in the first column of S must sum up to the degree of the node 1, which is 2. The next element to
determine is then S, ,. Similarly to the previous case, the possible values are 0, 1, and 2. Choosing 0 or 2 will
always result in pentagon graphs, whose probability of being generated increases by 1/3 - 2/3 = 2/9.

Choosing S, , = 1, which occurs with total probability 1/3 - 1/3 = 1/9, forces S;, = 1. The next value to
determine is that of S, 5. As before choosing 0 or 2 yields pentagon graphs, whose total probability of being
generated increasesby 1/3 - 1/3 - 2/3 = 2/27.

The choice of S, 5 = 1, which has a total probability 1/3 - 1/3 - 1/3 = 1/27 of happening, implies that
S»3 = 1. Then, the degree-spectra matrix being built can only be Sy. In fact, as it is evident from figure B1, the
only graphs realizing J in which at least 3 nodes of degree 2 are linked exactly to one other node of degree 2 and
one of degree 3, are hexagon and bow tie graphs.

— O

00
2 2| (B.2)
11
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Figure B2. Degree-class subgraphs realizing the degree-spectra matrix Sy of equation (B.2). Panels (a), (b) and (c) show the possible
realizations of G, ; panels (d)—(i) show the possible realizations of G, 3.

This shows that the degree-spectra matrix Syp occurs with probability 1/27; conversely, degree-spectra
matrices yielding pentagon graphs occur with probability 26/27.

The next step in our evaluation is to compute the probabilities of generating any of the hexagon and bow tie
graphs from the degree-spectra matrix Sgp. The graph-construction part of our algorithm consists in generating
all the G, subgraphs between nodes of degree @ and nodes of degree . In the current example, there are three
such subgraphs, namely G, ,, G, 3, and Gj ;. Of these, G; 5 consists simply in a single edge between the two nodes
of degree 3. Thus, the only variability is given by the choices for the two remaining subgraphs.

The possible realizations of G, ; are illustrated in panels (a), (b) and (c) of figure B2 . Each is determined by
the placement of a single edge, which forces the choice for the remaining one. Thus, each is produced by our
algorithm with the same probability of 1/3. Similarly, each of the possible realizations for G, 3, shown in panels
(d)-(i) of figure B2, is determined by the edges incident to node 5 or node 6. As these are chosen by our
algorithm fully randomly, all the possible realizations occur with the same probability of 1/6. The particular type
of graph that is produced depends on the specific realizations of the subgraphs. As there are 3 realizations for G, ,
and 6 for G, the total number of graphs is 18. Of these, 1/3 are bow tie graphs, and the remaining 2/3 are
hexagon graphs. In particular, the bow tie graphs correspond to the subgraph choices (a, d), (a, 1), (b, €), (b, h),
(¢, f) and (¢, g), asitis easy to see from figure B2. Note that this indicates that, for this specific degree-spectra
matrix, the sampling is already uniform.

Itis possible, now, to compute the average clustering coefficients for the unweighted estimation. To do so,
first compute their average over the realizations of S5

<Q>HB=§'1+§'0=§’ (B.3)
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Figure B3. Decisional tree for the construction of degree-spectra matrices realizing J and corresponding to pentagon graphs. The 12
leaves of the tree are shown in red.

1 1 2 1
c =_._+_.O=__ B.4
<3>HB 3 3 3 9 ( )

Then, knowing that Sy is sampled with probability 1/27, and the remaining degree-spectra matrices always
yield pentagon graphs, it is

1 1 26 1 41

) olami_w 5
unweighted 27 3 27 4 162
1 1 26 1 79

(¢) L.l 21 7 (B.6)
unweighted 27 9 27 3 243

B.2. Weighted estimate

In order to obtain an analytical result for the weighted estimate, rather than computing the probability of
occurrence of each degree-spectra matrix as sampled by our algorithm, we need to compute their actual number.
From the previous section, we already know that all the hexagon and bow tie graphs come from the same degree-
spectra matrix Sgp, which is unique. Then, we only need to compute the number of degree-spectra matrices
corresponding to pentagon graphs.

To do so, remember that the first choice in the construction of a degree-spectra matrix from J is the value of
theelement S, 1. If S, ; = 0 or Sp; = 2, then we are guaranteed to get a pentagon graph. However, while each of
these two choices fixes the value of S5 |, we are still free to select a value for the next ‘free’ element, S, ,.

If S5, = 0, the allowed values for S, , are 1 and 2. Choosing 2 fixes all the other elements of the degree-
spectra matrix. Conversely, choosing 1 resultsin S, ; still to be determined. Its possible values are 1 and 2. Thus,
there are 3 different degree-spectra matrices with S, ; = 0.

If, instead, S,; = 2, the situation is very similar to the first case. The possible choices for S, , are 0 and 1.
Choosing 0 fixes the entire matrix; choosing 1 requires to select a value for S, 3, which can be either 0 or 1. Thus,
there are 3 matrices with S, ; = 2.

The third possibility of S, ; = 1still allows degree-spectra matrices corresponding to a pentagon graph.
Similarly to the previous case, the simplest way to construct one is to impose S, , = 0 or S, , = 2. Inboth cases,
one must then choose a value for S, ;. The possibilities are 1 and 2,if S, , = 0,0or0and 1,if S, , = 2. Any choice
for S, ; fixes all the remaining elements of the matrix.

Finally, itis still possible to choose S, ; = 1and S, , = 1, and still construct matrices corresponding to a
pentagon graph. The choiceisagain on S, 5. Choosing S, 3 = 0 or S, 5 = 2 fixes all the other elements of the
matrix, whose realizations will be pentagon graphs. Imposing S, ; = 1, instead results in the matrix Sy,
exhausting all possibilities. This shows that there are 6 different matrices with S, ; = 1 that generate pentagon
graphs.

The decisional tree we just described is shown in figure B3 as a visual aid. In summary, there are 12 different
degree-spectra matrices that realize ] and whose realizations are always pentagon graphs. Knowing (¢ )p, {¢3 )p,
(& )yp and {c; )y, which we computed before, we can finally calculate the weighted average clustering
coefficients:

12 1 1 10
(o) == 13=—, (B.7)
weighted 13 4 13 39
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12 1 1 37
weighted 13 3 13 117

B.3. Numerical verification

To validate our algorithm against the analytical results presented in the two sections above, we performed extensive
numerical simulations, generating 10* degree-spectra matrices, and 10* samples per matrix, for a total of 10%
graphs. For each graph generated, we saved the average local clustering coefficients for nodes of both degrees. Then,
we obtained both weighted and unweighted results by averaging the data first naively, and then with a proper use of
the weights according to equation (4). The results, shown in table B.1, show that the weighted averages obtained
using our algorithm converge to the correct result. Also, the difference between weighted and unweighted results
can be appreciated even when it is quite small, as in our example. This illustrate the sensitivity of our method, as
well as the necessity of using proper sampling when performing this kind of studies.
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