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Precise control over the location of monomers in a polymer chain has been described as the ‘Holy Grail’ of 

polymer synthesis. Controlled chain growth polymerization techniques have brought this goal closer, 

allowing the preparation of multiblock copolymers with ordered sequences of functional monomers. Such 

structures have promising applications ranging from medicine to materials engineering. Here we show, 

however, that the statistical nature of chain growth polymerization places strong limits on the control that 

can be obtained. We demonstrate that monomer locations are distributed according to surprisingly simple 

laws related to the Poisson or beta distributions. The degree of control is quantified in terms of the yield of 

the desired structure and the standard deviation of the appropriate distribution, allowing comparison 

between different synthetic techniques. This analysis establishes experimental requirements for the design 

of polymeric chains with controlled sequence of functionalities, which balance precise control of structure 

with simplicity of synthesis. 
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Introduction 

How precisely can we control the location of a monomer in a synthetic polymer? This question is crucial 

to the synthesis of aperiodic copolymers: ‘copolymers in which monomer sequence distribution is not 

regular but follows the same arrangement in all chains.’1 Included in this definition are polymers that 

contain an ordered sequence of distinct blocks, and polymers that contain specific monomers at precisely 

defined locations.2-4 Such polymers could serve as a medium for information storage, as does DNA, or 

catalyze complex reactions, as do enzymes.5 But for these applications to be realized, precise control over 

structure is essential, and any deviation from the desired structure must be quantified. 

If only small quantities of polymer are required, near perfect control over structure can be obtained using 

stepwise synthesis on a solid6,7 or soluble polymer8,9 support, as in peptide synthesis. For the rapid 

preparation of moderate to large quantities of well-defined polymer, however, we must turn to living or 

controlled chain growth polymerizations.10-23 But unlike stepwise techniques, chain growth polymerization 

is a statistical process which produces a distribution of products. In this paper, we establish a lower bound 

to the structural variation that exists even under ideal conditions of living polymerization. Our results are 

applicable to all chain polymerizations which are carried out under living or near-living conditions, 

including ring-opening metathesis polymerization (ROMP),24 the various types of reversible deactivation 

radical polymerization (RDRP, also known as controlled/”living” radical polymerization),25 and ionic 

polymerizations.26,27 

The production of aperiodic copolymers requires control over the arrangement of monomers, which should 

be replicated in all chains. The degree of control required can be interpreted with varying degrees of 

severity, corresponding to the sequence-defined, multisite and multiblock copolymers considered by Lutz1 

(Fig. 1): (i) control over the absolute position of a monomer with respect to the chain end, or the absolute 

separation between two monomers (sequence-defined copolymers); (ii) control over the relative position of 

a monomer with respect to the total chain length, or the relative separation between two monomers 
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(multisite copolymers); or (iii) control over the number and order of blocks in a multiblock copolymer, 

without regard to the distribution of each individual block (multiblock copolymers). 

 

Figure 1 | Some aims of precision polymer synthesis. i. Absolute control of monomer position and/or 

separation in a sequence-defined copolymer. ii. Relative control of monomer position and/or separation in 

a multisite copolymer. iii. Control of number and order of blocks in a multiblock copolymer. Throughout 

this paper, the letters A, B, C and D refer to different types of monomer. A collection of polymer chains 

containing on average n units of A followed by m units of B is represented as {AnBm}, while a single polymer 

chain containing exactly N units of A followed by M units of B is represented as ANBM. 

 

The level of structural control that is actually achieved can be quantified in two ways: in terms of the 

fraction of chains that correspond to the desired structure (the yield); and in terms of the standard deviation, 

σ, of the distribution. High yields and low standard deviations imply high levels of control. In this article, 

we propose the standard deviation of the monomer distribution as a quantitative measure of precision; 
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derive simple expressions for these distributions under ideal chain growth polymerization conditions; and 

apply these expressions to a number of recent examples of multisite and multiblock copolymers. Our results 

demonstrate that the level of control over monomer placement is quite limited, even under ideal conditions,  

and that multiblock copolymers comprised of many short blocks will inevitably contain a large proportion 

of defective chains.   

Results 

Absolute position of monomers. Absolute control over the location of an individual monomer is the most 

demanding goal of polymer synthesis. However, techniques based on chain-growth polymerization lead, 

even in the best-controlled polymerizations, to a distribution of structures. For very short chains, separation 

of a single oligomeric structure may be possible, but requires extensive use of chromatography.28,29  

Under ideal conditions of living polymerization, the degree of polymerization obeys a Poisson 

distribution,30 whose probability mass function is given in Table 1 (full derivations of all results in Table 1 

may be found in Supplementary Note 1). In reality, unavoidable side reactions such as termination and 

chain transfer result in deviations from the Poisson distribution. The ideal is most closely approached by 

anionic polymerization,31 but this technique must be carried out in dry, nonprotic solvents and is 

incompatible with most functional groups. RDRP techniques32-39 tolerate a wide range of functionalities, 

but lead to broader distributions due to termination reactions and the addition of multiple monomers per 

activation/deactivation cycle.  

The highest level of control over monomer placement achievable using chain growth polymerization 

techniques is obtained by addition of a non-homopolymerizing monomer (B), such as maleic anhydride, to 

a polymer of average length n ({𝐴#}), followed by subsequent chain extension.10-13 As B cannot 

homopolymerize, only one monomer of B will be added to each chain. Use of an excess of B ensures that 

one monomer of B will be added to every chain, giving the average structure {An}B1. In a variation on this 
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technique, addition of B may occur by a step-growth reaction, such as via azide-alkyne coupling, followed 

by chain extension from a suitable functional group.40,41 

Numbering the monomers from the start of the chain, the expected position of B is n + 1. The probability 

that B will be found in this position is approximately %
&'#

, while the standard deviation of the distribution 

is 𝑛. For example, in a polymer with average structure {A10}B1{C10}, only 12.5% of the chains will contain 

monomer B as the 11th unit, while in 26.6% of the chains, B will appear before position 8 or after position 

14. 

In aperiodic copolymers prepared by sequential polymerizations of monomers of similar reactivity,14-20 or 

by addition of alternating21,22 or very rapidly polymerizing23 monomers at intervals during the 

polymerization, all blocks are Poisson-distributed, at best. Thus an {A10B1C10} polymer will include chains 

with no B units, as well as chains that contain 2 or more.5,42 The proportion of chains that contain a unit of 

B in position 11 (the midpoint) can be calculated by excluding all chains that contain 11 or more units of A 

(41.7% of chains), as well as all chains in which the sum of units of A and B is less than 11 (46.0% of 

chains). The 12.3% of chains that remain are not significantly fewer than the corresponding proportion of 

{A10}B1{C10}. In {A10}B1{C10}, however, each polymer chain contained a single copy of B. In {A10B1C10}, 

only 4.6% of chains contain one and only one unit of B in position 11.  

In general, the probability that the kth monomer of a multiblock copolymer is part of the nth block is given 

by the difference between two Poisson cumulative distribution functions (Table 1). As the average position 

of a block moves further along the polymer chain, its location becomes more diffuse. Shorter blocks are 

affected to a greater extent than longer blocks, as shown by Fig. 2 (a and c), which show the location 

distributions of each block of two ABACADACAB decablock copolymers. Those of the short blocks broaden 

rapidly and overlap significantly. The distributions of the longer blocks broaden more slowly and overlap 

less, but fewer changes in composition are possible in a given length of polymer. The standard deviation of 

the location of the block (Table 1) provides a quantitative measure of the attainable precision: in {A10B1C10}, 
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the expected location of B is 11.5, with a standard deviation of 3.3; B occurs before position 8 or after 

position 14 in 29.2% of chains.  

 

Figure 2 | Monomer distributions. Probability of finding monomers from each block of an 

{A5B5A5C5A5D5A5C5A5B5} (a, b) or {A20B20A20C20A20D20A20C20A20B20} (c, d) decablock copolymer as a 

function of absolute position (a, c) and relative position (b, d) along the polymer chain. 

Relative position of monomers. While absolute control over monomer placement is the ideal, it would 

often be acceptable to control only the relative position of a monomer with respect to the total chain length. 

In a diblock copolymer, {AnBm}, comprising two Poisson-distributed blocks, the relative length of the A 

block with respect to the entire polymer chain is closely approximated by a Beta(n,m) distribution (see 

Supplementary Fig. 1 and Supplementary Note 2). The beta distribution is one of the most widely-used 

distributions in statistics, and is often used to model random variables which are limited to a finite range, 

such as world cloud cover43 or the distribution of genetic variation.44  

In the {A10}B1{C10} copolymer, the distribution of B can be approximated as the distribution of the interface 

between A and C blocks in an {A10C10} diblock copolymer: a Beta(10,10) distribution with expected value 

0.50 and standard deviation 0.11. Thus, in approximately 30% of the chains, we expect to find B outside 
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the relative length range of 0.39-0.61 – that is, outside the central fifth of the polymer. In general, the 

distribution of the relative location of a single inserted monomer narrows as the total length of the polymer 

increases, and is broadest when the monomer is inserted at the midpoint of the chain (Supplementary Fig. 

2).  

In an {AnBmCp} copolymer whose inserted block {Bm} is also Poisson distributed, the probability that a 

monomer of type B will be found in a given relative position is given by the difference between two 

cumulative beta distribution functions with parameters (n, m + p) and (n + m, p), respectively (Table 1). 

Thus, in the {A10B1C10} copolymer, the expected relative position of the B block is 0.50, and its standard 

deviation is 0.11 – almost identical to that of the {A10}B1{C10} copolymer. Only 17.6% of chains contain a 

monomer of type B at the midpoint. Doubling the average length of the B block ({A10B2C10}) increases the 

proportion of chains which contain a monomer of type B at the midpoint to 33.6%, but the length must be 

increased to 11 ({A10B11C10}) to ensure that 95% of the chains contain a monomer of type B at the midpoint. 

The effects of average block length and position on relative position distributions are illustrated in Fig. 2 

for two decablock copolymers. 

The effect of Poisson broadening on the control that can be achieved over monomer location can be 

demonstrated using two recently reported multisite polymers.21 The polymers were prepared by successive 

additions of the non-homopolymerizing monomers N-benzyl maleimide (Bz-MI), N-propyl maleimide (Pr-

MI) and N-pentafluorophenyl maleimide (PFP-MI) to a single electron transfer living radical 

polymerization (SET-LRP) of styrene with targeted 𝑋# of 65.21 For the first polymer, maleimide solutions 

were added at intervals during the polymerization corresponding to 28%, 46% and 70% styrene conversion, 

leading to the insertion of short segments of copolymer containing on average 1 unit of Bz-MI, Pr-MI, or 

PFP-MI. The second polymer was prepared using a lower initial styrene to initiator ratio and delaying the 

addition of each type of maleimide until the styrene had reached high conversion. After each maleimide 

had been fully incorporated, additional styrene was added to generate the intervening polystyrene segments. 



8	
	

The effect was to halve the average length of the segments containing Bz-MI and Pr-MI, from 6 in the first 

synthesis to 3 in the second synthesis. The average length of the PFP-MI block was 3 in both syntheses. 

The distribution of each maleimide in the polymer was then calculated, making use of the following 

simplifying assumptions: 1. All segments were assumed to follow a Poisson distribution; 2. The maleimides 

were assumed to be evenly distributed within their respective segments. In this way, the approximate 

distribution of each maleimide could be obtained by calculating the distribution of each maleimide-

containing segment, then normalizing with respect to the segment’s maleimide content. Differences in 

homo- and cross-propagation rate constants of styrene and maleimide were not explicitly considered, as it 

was assumed that in all cases, the rate of reversible deactivation was much greater than that of propagation. 

If this assumption is invalid (for example as a result of very rapid cross-propagation occurring at a 

comparable rate to deactivation) broader distributions are obtained.  

Despite the much shorter segments obtained in the second synthesis, the maleimide distributions are nearly 

identical (Fig. 3, Supplementary Table 2). Their standard deviations are determined primarily by the length 

of the surrounding blocks, with only a small contribution from the length of the block itself. The calculated 

distributions underestimate the true degree of structural variation, as a Poisson-distributed copolymer with 

𝑋# of 53 has a dispersity of 1.02, while the measured dispersities of the copolymers were 1.16 (sequential 

maleimide additions) and 1.27 (alternating maleimide and styrene additions).  

We have applied similar analyses to an icosablock copolymer prepared by sequential reversible addition-

fragmentation chain transfer (RAFT) polymerizations14 (Supplementary Fig. 3), a multisite copolymer 

prepared by sequential additions of exo-functionalized norbornene monomers to the ROMP polymerization 

of an endo-functional norbornene monomer (Supplementary Fig. 4),23 and two undecablock copolymers 

prepared by sequential anionic polymerizations (Supplementary Fig. 5).15,16 In the RAFT and ROMP 

copolymers, the use of multiple short blocks (typical length 3 and 2, respectively) results in poorly-defined 

structures. The much longer blocks obtained using anionic copolymerization (minimum block lengths 3715 

and 13016) allow greater control over the relative position of a block within the chain. 
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Figure 3 | Comparison of multisite copolymers (a) containing benzyl maleimide (Bz-MI), propyl 

maleimide (Pr-MI) and pentafluorophenyl maleimide (PFP-MI) insertions, prepared using maleimide 

additions only (b, c, and d) or by alternating additions of maleimide and styrene (e, f, and g) to an SET-

LRP polymerization of styrene.21 The expected structures of each copolymer (a, b, e) consist of short 

regions containing a single maleimide unit, dispersed along a polystyrene chain. The distribution of each 

type of maleimide is shown in terms of absolute position (c and f) and position relative to the total chain 

length (d and g).   
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Existence of blocks in multiblock copolymers. The least restrictive goal of aperiodic polymer synthesis 

is simply to prepare a multiblock copolymer in which each polymer chain contains the desired number of 

blocks, in the correct order. If, for example, a block of monomer A encoded 1, a block of monomer B 

encoded 0, and monomer C served to separate consecutive blocks of A or B, a binary string could be 

represented using a multiblock copolymer, even without specifying the length of each block. The only 

condition to be fulfilled is that every chain must contain at least one monomer unit from each block. 

The probability that a Poisson-distributed block of average length l contains at least one monomer is 1 −

𝑒-.. For a polymer composed of n blocks, the proportion of chains that contain all blocks is obtained by 

multiplying the probabilities for each block. If all blocks are nominally of equal length l, the minimum 

block length required for a given proportion, α, of chains to contain all blocks is proportional to ln(n). 

𝑙 ≥ − ln 1 − 𝛼% # ≈ ln(𝑛) − ln(1 − 𝛼) (1) 

Thus polymers consisting of many short blocks will contain a significant proportion of defective chains 

(see Supplementary Fig. 3 and 4). Attempts to insert a block of average length 3 will fail in approximately 

5% of chains; in a copolymer containing 18 such blocks, the majority of chains will be defective 

(Supplementary Fig. 3). Doubling the targeted block length to 6 results in an exponential decrease in the 

proportion of missing blocks, which would allow a 20-block copolymer to be prepared with only 5% of 

defective chains (See Supplementary Fig. 6). These theoretical results were confirmed in a real system by 

quantifying the residual level of unreacted RAFT agent, corresponding to chains of length zero, after 

preparation of a series of oligomers of 4-acryloyl morpholine of average degree of polymerization 3-6 (see 

Supplementary Fig. 7). 

The validity of the Poisson distribution as a model for the number of units incorporated per chain was 

further demonstrated by adding a bismaleimide, bis(4-maleimidophenyl)methane, to the early stages of a 

RAFT polymerization of styrene (Fig. 4). The ratio of bismaleimide to RAFT agent was 1:2, such that on 

average one maleimide unit was added per chain. The polymerization was allowed to continue for one hour, 
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during which time the maleimide was entirely consumed. If exactly one maleimide had been added per 

chain, only the structure H shown in Fig. 4 would be obtained, with twice the molar mass of its constituent 

polystyrene chains. In fact, size exclusion chromatography of the resulting polymer revealed single polymer 

chains (L), the linked structure (H), and aggregates of multiple chains (M). Deconvolution of the low molar 

mass portion of the chromatogram allowed the proportions of L and H species to be estimated at 34.4% and 

15.1% respectively. The expected proportions for a Poisson-distributed number of maleimides per chain 

are 36.8% L and 13.5% H. We have assumed that no looped structures are formed – a more detailed analysis 

taking this possibility into account can be found in Supplementary Note 3, but leads to a similar level of 

non-functionalized chains. 

This result conflicts with previous reports that only 10% of chains contain no maleimide when an average 

of 1 maleimide is incorporated per chain.42,45 That value was obtained from a MALDI-TOF mass spectrum 

in which polystyrene species containing 1 or 2 units of Bz-MI formed the most intense peaks,45 while 

species containing zero or more than 3 units of Bz-MI accounted for 10% and 15% of the sequence 

distribution, respectively.42 This implies that the average number of maleimides per chain is greater than 1, 

however, and so it seems likely that the frequency of zero-maleimide chains was underestimated. The 

incorporation of a polar maleimide unit may affect the ability of the polymer to form a charged complex 

which can be observed by mass spectroscopy, biasing the results. 

These results, applied to the SET-LRP multisite polymers of Fig. 3,21 suggest that the yield of copolymer 

chains that contain at least one of each type of maleimide is only 25%, while 5% of chains contain no 

maleimide at all. Better results are obtained for the ROMP multisite polymer23 (Supplementary Fig. 4): the 

use of, on average, 2 functional monomers per site yields 56% of chains with all four types of functional 

monomer (the yield of chains with all nine blocks, including spacer blocks, is only 20%). A further increase 

in average block length to 3, as has been recommended by Lutz and coworkers,42,46 raises the yield of chains 

containing all four functionalities to over 81%, while an average block length of 6 allows the formation of 

20-block copolymers with 95% fidelity (Supplementary Fig. 6). 
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Figure 4 | Addition of bismaleimide to a RAFT polymerization of styrene (St). (a) After addition of the 

bismaleimide (0.5 eq), polymerization was allowed to continue for 1 h, during which time the conversion 

of St increased from 17% to 21% and the bismaleimide was completely consumed. The resulting copolymer 

contained, on average, 1 maleimide unit per polystyrene chain (with an estimated standard deviation of 1). 

The distribution of maleimide units resulted in the formation of a mixture of linear chains (L), double chains 

(H) and multiply linked structures (M). (b) Distribution of chain lengths obtained after addition of 0.5 

equivalents of bismaleimide. Linear chains and multiply linked structures are present in addition to H. The 

distribution immediately prior to bismaleimide addition is also shown. Deconvolution (c) of the low molar 

mass portion of the peak using Gaussian components (thick grey line represents best fit) allows estimation 

of the relative mass fractions of each structure (e), which are in good agreement with the predicted 

distribution assuming that the maleimide content of each chain follows a Poisson distribution (d). 
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Discussion. 

The results presented in this communication assume the ideal case of Poisson-distributed polymer 

segments, an approximation that has been validated for anionic polymerization, but which does not hold 

for all controlled chain-growth polymerization techniques. Side reactions such as radical coupling and chain 

transfer will lead to broader distributions, as will the addition of more than one monomer during each 

activation-deactivation cycle in RDRP. In such cases, more realistic distributions could be obtained through 

the use of simulations, or using alternate distribution functions such as the negative binomial distribution 

which allow for greater variability. An example is given in Supplementary Note 4 for a multiblock polymer 

with overall dispersity of 1.1. The idealized results presented here are valuable because they show the 

maximum level of precision that can be obtained using chain polymerization, and provide indications of 

how that precision can be maximized.  

We have quantified the maximum level of control over monomer placement that can be obtained using 

controlled chain growth polymerization techniques. The most ambitious goal of aperiodic polymer 

synthesis is precise control over the absolute position or separation of introduced monomers. We have 

shown that, regardless of the technique used, chain growth polymerization is poorly suited to this task, as 

uncertainty in the position of a given monomer grows in proportion to the square root of the length of the 

polymer chain. The less ambitious goal of controlling relative position with respect to the total chain length 

is more achievable, with improved control achieved for longer chains, and as the desired functionality 

approaches either chain end. Finally, if one desires simply that all blocks of a multiblock copolymer be 

present in a large majority of chains, this is possible so long as the individual blocks are of sufficient length. 

In all cases, we have given simple formulae for the probability distributions, expected values and standard 

deviations of the positions of inserted blocks.  

Our research clearly shows the limitations of chain polymerization in the synthesis of very precisely 

controlled structures—the synthetic analogues of DNA or enzymes. Fortunately, the natural world provides 

numerous examples of less precisely controlled structures—proteins such as mucins, collagens, and 
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elastins—which play vital physiological roles. These proteins are characterized by complex yet variable 

structures that present multiple functionalities. In many cases, structural complexity enables self-assembly, 

generating fibrils or gels via a bottom-up process. It is these biomolecules that should provide the inspiration 

for precision chain polymerization.  

Indeed, self-assembly of complex multiblock polymer architectures prepared via chain polymerization has 

already been used to develop biomimetic stress-stiffening gels,47 and thermoresponsive, flower-like 

micelles which display multiple functionalities.14 A recent review by Bates et al.48 highlights the enormous 

range of phase-separated structures that can be generated by polymers containing a relatively small number 

of blocks; faced with a bewildering array of possibilities, the challenge is to select the architecture which 

will give the desired properties. Having done so, it is equally important to know the precision with which 

that architecture can be prepared. This knowledge will allow the design of a new family of materials that 

offer an optimal balance of precision in the placement of functionalities and simplicity of production, for a 

wide range of chemical, biomedical and engineering applications. 

Methods. 

Chemicals and Reagents. Tetrahydrofuran (THF, Ajax Finechem, 99%), N,N-dimethylformamide 

(DMF, Merck, HPLC-grade), Dimethyl 2,2'-azobis(2-methylpropanoate) (V-601), 2,2’-Azobis[2-(2-

imidazolin-2-yl)propane]dihydrochloride (VA-044, Wako), 1,4-Dioxane (Sigma-Aldrich, ≥99%) and 4-

Acryloylmorpholine (NAM, Sigma-Aldrich, 97%) were used without further purification. Styrene (Sigma-

Aldrich, ≥99%) was filtered through a basic aluminium oxide (activated, basic, Brockmann I, standard 

grade, ~150 mesh, 58A) column before use. All polymerizations were carried out under a nitrogen 

atmosphere. The RAFT agent, 2-(((butylthio)carbonothiolyl)thio)propanoic acid (PABTC) was prepared 

according to a reported procedure.49 

Nuclear Magnetic Resonance (NMR) spectroscopy. 1H NMR spectra were recorded on Bruker DPX-

300 spectrometer using deuterated solvents obtained from Aldrich. Chemical shift values (δ) are reported 

in ppm. The residual proton signal of the solvent was used as internal standard. 
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Size Exclusion Chromatography (SEC). Number-average molar masses (Mn,SEC) and dispersity values 

(Ð) were determined using THF-SEC performed on an Agilent 390-MDS, comprising of an autosampler 

and a PLgel 5.0 µm bead-size guard column (50 × 7.5 mm), followed by two linear 5.0 µm bead-size PLgel 

Mixed D columns (300 × 7.5 mm) and a differential refractive index detector using THF (2% v/v TEA) as 

the eluent at 30 °C with a flow rate of 1 mL min-1. The SEC system was calibrated with linear PS EasiVial 

standards (Agilent Ltd.) ranging from 162 to 105 g mol-1. All samples were passed through 0.45 µm PTFE 

filter before SEC analysis. Molar masses were obtained by conventional calibration using ASTRA software. 

RAFT polymerization of styrene with a controlled addition of bismaleimide. PABTC (114 mg, 0.480 

mmol, 1 equiv.), styrene (2 g, 19.2 mmol, 40 equiv.), V-601 (11 mg, 0.048 mmol, 0.1 equiv.) and DMF 

(0.540 mL) were placed in a flask equipped with a magnetic stirring bar. The tube was then sealed with a 

rubber septum, degassed with nitrogen and then immersed in an oil bath thermostated at 65 °C. A degassed 

solution of bismaleimide (91 mg, 0.240 mmol, 0.5 equiv.) in 0.630 mL of DMF was added with a degassed 

syringe 3 h after the polymerization started (17% styrene conversion at this stage). After 1 more hour of 

polymerization, a sample was taken for NMR and THF-SEC analysis to ensure the full incorporation of the 

bismaleimide in the growing copolymer chain (around 4% of styrene conversion took place in this interval). 

The THF-SEC chromatogram shows multiple bismaleimide insertion. 

RAFT homopolymerization of NAM. Impact of the block chain length on the degree of fidelity. 

For a targeted DP of 3: RAFT agent (281 mg, 1.181 mmol, 1 equiv.), NAM (0.5 g, 3.541 mmol, 3 

equiv.), VA-044 (3.82 mg, 0.012 mmol, 0.01 equiv.), dioxane (0.477 mL) and H2O (0.257 mL) were 

placed in a flask equipped with a magnetic stirring bar. The tube was then sealed with a rubber septum, 

degassed with nitrogen and then immersed in an oil bath thermostated at 70 °C. After 2 h, a sample is 

withdrawn from the polymerization medium for 1H NMR (in DMSO-d6). Conversion was determined by 

1H NMR to be 94%, corresponding to an 𝑋# of 2.82.  

For a targeted DP of 4: RAFT agent (211 mg, 0.885 mmol, 1 equiv.), NAM (0.5 g, 3.541 mmol, 4 

equiv.), VA-044 (2.20 mg, 0.007 mmol, 0.0077 equiv.), dioxane (0.441 mL) and H2O (0.294 mL) were 
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placed in a flask equipped with a magnetic stirring bar. The tube was then sealed with a rubber septum, 

degassed with nitrogen and then immersed in an oil bath thermostated at 70 °C. After 2 h, a sample was 

withdrawn from the polymerization medium for 1H NMR (in DMSO-d6). Conversion was determined by 

1H NMR to be 97%, corresponding to an 𝑋# of 3.89. 

For a targeted DP of 5: RAFT agent (169 mg, 0.708 mmol, 1 equiv.), NAM (0.5 g, 3.541 mmol, 5 

equiv.), VA-044 (1.53 mg, 0.005 mmol, 0.007 equiv.), dioxane (0.404 mL) and H2O (0.331 mL) were 

placed in a flask equipped with a magnetic stirring bar. The tube was then sealed with a rubber septum, 

degassed with nitrogen and then immersed in an oil bath thermostated at 70 °C. After 2 h, a sample is 

withdrawn from the polymerization medium for 1H NMR (in DMSO-d6). Conversion was determined by 

1H NMR to be 98%, corresponding to an 𝑋# of 4.92. 

For a targeted DP of 6: RAFT agent (141 mg, 0.590 mmol, 1 equiv.), NAM (0.5 g, 3.541 mmol, 6 

equiv.), VA-044 (0.95 mg, 0.003 mmol, 0.005 equiv.), dioxane (0.367 mL) and H2O (0.367 mL) were 

placed in a flask equipped with a magnetic stirring bar. The tube was then sealed with a rubber septum, 

degassed with nitrogen and then immersed in an oil bath thermostated at 70 °C. After 2 h, a sample is 

withdrawn from the polymerization medium for 1H NMR (in DMSO-d6). Conversion was determined by 

1H nmr to be 99%, corresponding to an 𝑋# of 5.92. 
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Figure Legends 

Figure 1 | Some aims of precision polymer synthesis. i. Absolute control of monomer position and/or 

separation in a sequence-defined copolymer. ii. Relative control of monomer position and/or separation in 

a multisite copolymer. iii. Control of number and order of blocks in a multiblock copolymer. Throughout 

this paper, the letters A, B, C and D refer to different types of monomer. A collection of polymer chains 

containing on average n units of A followed by m units of B is represented as {AnBm}, while a single polymer 

chain containing exactly N units of A followed by M units of B is represented as ANBM. 

Figure 2 | Monomer distributions. Probability of finding monomers from each block of an 

{A5B5A5C5A5D5A5C5A5B5} (a, b) or {A20B20A20C20A20D20A20C20A20B20} (c, d) decablock copolymer as a 

function of absolute position (a, c) and relative position (b, d) along the polymer chain. 

Figure 3 | Comparison of multisite copolymers containing benzyl maleimide (Bz-MI), propyl maleimide 

(Pr-MI) and pentafluorophenyl maleimide (PFP-MI) insertions, prepared using maleimide additions only 

(a, b, and c) or by alternating additions of maleimide and styrene (d, e, and f) to a SET-LRP polymerization 

of styrene.21 The expected structures of each copolymer (a, d) consist of short regions containing a single 

maleimide unit, dispersed along a polystyrene chain. The distribution of each type of maleimide is shown 

in terms of absolute position (b and e) and position relative to the total chain length (c and f).   

Figure 4 | Addition of bismaleimide to a RAFT polymerization of styrene (St). (a) After addition of the 

bismaleimide (0.5 eq), polymerization was allowed to continue for 1 h, during which time the conversion 

of St increased from 17% to 21% and the bismaleimide was completely consumed. The resulting copolymer 

contained, on average, 1 maleimide unit per polystyrene chain (with an estimated standard deviation of 1). 

The distribution of maleimide units resulted in the formation of a mixture of linear chains (L), double chains 

(H) and multiply linked structures (M). (b) Distribution of chain lengths obtained after addition of 0.5 

equivalents of bismaleimide. Linear chains and multiply linked structures are present in addition to H. The 

distribution immediately prior to bismaleimide addition is also shown. Deconvolution (c) of the low molar 

mass portion of the peak using Gaussian components (thick grey line represents best fit) allows estimation 

of the relative mass fractions of each structure (e), which are in good agreement with the predicted 

distribution assuming that the maleimide content of each chain follows a Poisson distribution (d). 
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Tables 

Table 1 | Probability distributions of various properties of Poisson-distributed block copolymers.a  

property distribution p.m.f./p.d.f.b expected 

value standard deviation 

 

Number of 

monomers, N, per 

chain 

 

Poisson(L) 𝑃 𝑁 = 𝑘 =
𝐿<

𝑘!
𝑒->  𝐿 𝐿 

Absolute locations, 

k, contained in ith 

block 

 

difference of 

cumulative 

Poisson 

distributions 
 

𝑃 𝑀< ∈ 𝑏𝑙𝑜𝑐𝑘	𝑖

=
𝛤 𝑘, 𝐿H-% − 𝛤 𝑘, 𝐿H

𝛤 𝑘
 1 +

𝐿H + 𝐿H-%
2

 𝐿H + 𝐿H-%
2

+
𝑙H&

12
 

 

Relative position, r, 

of junction between 

ith and (i+1)th blocks 

 

Beta(Li, Ltotal – Li) 
𝑓 𝑟

=
𝑟>M-% 1 − 𝑟 >NONPQ->M-%

𝐵 𝐿H, 𝐿STSU. − 𝐿H
 

𝐿H
𝐿STSU.

 
1

𝐿STSU.
𝐿H 𝐿STSU. − 𝐿H
𝐿STSU. + 1

 

 

Relative locations, r, 

contained in ith 

block 

 

difference of 

cumulative beta 

distributions 

𝑃 𝑀V ∈ 𝑏𝑙𝑜𝑐𝑘	𝑖

= 𝐼V 𝐿H, 𝐿STSU. − 𝐿H 	

− 𝐼V 𝐿H-%, 𝐿STSU. − 𝐿H-%  

𝐿H + 𝐿H-% + 1
2(𝐿STSU. + 1)

 ≈
1

𝐿STSU.
𝐻 𝐿H-%, 𝐿STSU. − 𝐿H

2
+

𝑙H + 3 & − 4
12

 

 

Number of blocks in 

an N-block 

copolymer  

(all blocks of equal 

length, l) 

 

binomial 
𝑃 𝑛 = 𝑘

= 𝑁
𝑘 . 1 − 𝑒-. <. 𝑒-(\-<).  

𝑁 1 − 𝑒-.  𝑁𝑒-. 1 − 𝑒-.  

a
 Complete derivations of these results are given in Supplementary Note 1. Results for relative locations, 

r, are approximate. The functions Γ(x), Γ(x,y), B(x,y) and Iz(x,y), the binomial coefficient 
𝑥
𝑦  and the 

harmonic mean H(a,b) have their usual meanings and are defined in Supplementary Table 1. Li is the sum 

of the average lengths of the first i blocks of a copolymer of total average length Ltotal. The average length 

of the ith block is denoted li. b probability mass function (for discrete distributions)/probability density 

function (for continuous distributions).  
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