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Abstract 

We present the preparation of 11 nm polyacrylamide-stabilised polystyrene latex particles for 

conjugation to a microRNA model by surfactant-free RAFT emulsion polymerisation. Our 

synthetic strategy involved the preparation of amphiphilic polyacrylamide-block-polystyrene 

copolymers, which were able to self-assemble into polymeric micelles and ‘grow’ into 

polystyrene latex particles. The surface of these sterically stabilised particles was post-

modified with a disulfide-bearing linker for the attachment of the microRNA model, which 

can be released from the latex particles under reducing conditions. These nanoparticles offer 

the advantage of ease of preparation via a scaleable process, and the versatility of their 

synthesis makes them adaptable to a range of applications. 

Introduction 

Synthetic particles are a popular class of vectors for nucleic acid delivery. With the 

emergence of advanced synthetic techniques, these particles can be engineered to facilitate 
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non-viral nucleic acid delivery, targeting, cellular uptake and release.1-3 Polymeric particles 

are attractive materials for such purposes. These structures can be built from the 

corresponding polymeric components in order to attain the desired properties and 

functionalities, such as particle size, charge, morphology and surface chemistry.4-7  

Surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion 

polymerisation technique is an advantageous method to synthesise latex particles for potential 

bioapplications,8-10 since this approach does not required the use of particle-stabilising 

surfactants, which may desorb from particles overtime and hampered therapeutic 

applications.11 To act as particle stabiliser in the preparation of latex particles by surfactant-

free RAFT emulsion polymerisation, two strategies have already been employed: the use of 

surface-active amphiphilic RAFT-capped block copolymers,12-16 or a one-pot polymerisation 

of a hydrophobic monomer from a low molar mass surface-active RAFT agent.17 While the 

particles formation kinetics and their morphology control have been studied extensively, there 

are only a few scarce examples describing the use of this technique to engineer latex particles 

for the attachment of biomolecules or therapeutic agents. The most noteworthy examples to 

date are the work of Stenzel and co-workers, who prepared glucose-stabilised polystyrene 

latex particles as anti-infection agents,18 and that of Wang and co-workers, who prepared 

poly(2-(dimethylamino)ethyl methacrylate)-stabilised redox-sensitive polystyrene latex 

particles as hydrophobic drug carrier.19  

In this contribution, we demonstrate the synthesis of polystyrene (PS) latex particles as 

microRNA delivery vectors via surfactant-free RAFT emulsion polymerisation, using 

polyacrylamide (PAAm) as a particle steric stabiliser. On one hand, PS was chosen as the 

core-forming block for the particles since this inert material is suitable for a diverse range of 

biological applications.20 For instance, PS nanoparticles have been used for modelling the 
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interactions of serum protein-nanoparticle complexes with cells.21 Moreover, PS-based 

microspheres/microbeads have been employed for cell separation, immunoassays, drug 

delivery studies and biological imaging.22 PAAm, on the other hand, is an attractive polymer 

because of its high solubility in aqueous media, its low susceptibility to hydrolysis at neutral 

pH and is non-toxicity.23-25 It is also recognised as a potential material for therapeutic delivery 

and conjugation to genetic materials. For instance, Martínez-Ruvalcaba et al. prepared PAAm 

nanoparticle-based acrylic acid/chitosan hydrogel as a drug delivery model and studied its 

controlled release properties of ascorbic acid.26 Maeda and co-workers demonstrated the 

successful conjugation of PAAm to single-stranded DNA for measuring the genetic variations 

between individuals of a species.27 More recently, PAAm-stabilised iron oxide nanoparticles 

have been developed for the delivery of chemotherapy drugs into a solid tumour model.28  

The synthesis of PAAm-stabilised PS latex particles has previously been reported by Xie and 

co-workers, who copolymerised styrene monomer droplets dispersed in aqueous phase with 

PAAm macro-RAFT agent to form 58 nm latex particles in situ.29 Herein, we have designed a 

different surfactant-free RAFT emulsion polymerisation approach to prepare more uniform 

and smaller sized (11 nm) carboxyl-a-end HOOC-PAAm-stabilised PS latex particles, using 

pre-formed HOOC-polyacrylamide-block-polystyrene (HOOC-PAAm-b-PS) copolymer 

micelles as latex particle precursors. The use of an amphiphilic macro-RAFT agent permits to 

seed the particle formation and enables greater control over both the particle size, down to ca 

10nm, and their size distribution, both of which are key to most bioapplications of 

nanoparticles as delivery vectors. We have used miR-200b duplex as model microRNA 

(miRNA) payload to illustrate the ability of the particle to carry and deliver an active agent. 

miR-200b has been shown to suppress epithelial-mesenchymal transition in human renal 

proximal tubular cells by decreasing the production of fibronectin-one of the major proteins 

involved in fibrosis when abundantly expressed.30 The size of nanoparticles is particularly 
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relevant to the delivery of miR-200b, as it is targeted to human renal proximal tubular cells, a 

delivery process that is particularly known for requiring small delivery vectors. Indeed, 

delivery to human renal proximal tubular cells occurs through the glomerular filtration system, 

which is known to only allow through small particles, with a known cutoff of 14 nm, 

established by following protein pathways.31 The conjugation of the miRNA duplex to the 

particles was achieved by first post-polymerisation functionalisation of the carboxyl-a-end 

functional particles with a bioreducible disulfide ligand 2-(2-pyridyldithio)ethylamine (PDE), 

followed by coupling to the thiol terminal group of the miRNA (Scheme 1). 

 

Scheme 1. Schematic summary of the particle engineering for miRNA conjugation: HOOC-
PAAm-stabilised PS latex particle synthesis, post-polymerisation functionalisation with 2-(2-

pyridyldithio)ethylamine linker and conjugation to miRNA. 

Experimental 

Materials. Chain-transfer agent (CTA) 2-(((butylthio)carbonothiolyl)thio)propanoic acid 

(called (propanoic acid)yl butyl trithiocarbonate (PABTC) in this paper) was provided by 

Dulux Group Australia. Acrylamide (AAm, 98+%, Sigma-Aldrich), 4,4'-azobis(4-
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cyanovaleric acid) (V-501; Fluka), cysteamine hydrochloride (99+%, Sigma-Aldrich), 

Aldrithiol™-2 (98%, Sigma-Aldrich), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC, 98+%, purum, Sigma-Aldrich), N-hydroxysuccinimide (NHS, 99+%, 

Sigma-Aldrich), DL-dithiothreitol (DTT, 99+%, BioXtra, Sigma-Aldrich), tris(2-

carboxyethyl)phosphine hydrochloride (TCEP·HCl, 98+%, Sigma-Aldrich), L-glutathione 

reduced (GSH, 98+%, Sigma-Aldrich), magnesium sulfate (MgSO4, anhydrous, Merck), silica 

for column chromatography (40-63 µm; Grace Davison Discovery Sciences), sodium acetate 

buffer (NaOAc, 3M, pH 5.5, ultrapure, Affymetrix), UltraPure™ DNase/RNase-free distilled 

water (Thermo Fisher Scientific), sodium hydroxide (NaOH) pellets (Ajax Finechem), 

methanol for ESI-MS (MeOH, 99.80%, HPLC-grade, Merck), deuterium (D2O, 99.90%, 

Cambridge Isotope Laboratories ), deuterated chloroform (CDCl3, 99+%) (Cambridge Isotope 

Laboratories) and deuterated dimethyl sulfoxide (DMSO-d6, 99.5%, Cambridge Isotope 

Laboratories) were used as received. Styrene (99+%; Sigma-Aldrich) was purified by passing 

through a column of activated basic aluminium oxide (standard grade, 150 mesh, 58 Å; 

Sigma-Aldrich) to remove MEHQ inhibitor. 1,4-Dioxane (99+%; Merck) was purified by 

vacuum distillation. Water for reaction and particle dialysis was purified by Milli-Q® Integral 

Water Purification System (resistivity of water = 18.2 MΩ · cm at 25°C). 2-(N-

Morpholino)ethanesulfonic acid (MES, 99+%, Sigma-Aldrich) buffer stock solution (100 mM, 

pH 5.65) was prepared with Milli-Q water and the pH was adjusted with aqueous NaOH (100 

mM). Diethyl ether (Et2O), ethyl acetate (EtOAc), MeOH and ethanol (EtOH, 70% and 

absolute) for reaction and purification were used as received. Disulfide-modified microRNA 

(miRNA)-200b duplex (sense: 5’-OH–(CH2)6–S–S–(CH2)6–

UCAUCAUUACCAGGCAGUAUUUA[dT][dT]-3’ and antisense: 5’-

UAAUACUGCCUGGUAAUGAUGA-3’, Sigma-Aldrich) was reduced by DTT to reveal the 

thiol group and purified according to the procedure described below.  
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Characterisation 

Proton nuclear magnetic resonance (1H-NMR) spectroscopy. NMR spectrometers (200 

MHz and 300 MHz; Bruker Ultra Shield ™) were used for 1H-NMR analysis. D2O was used 

as the solvent for characterising HOOC-PAAm and PDE linker. DMSO-d6 was used to 

analyse HOOC-PAAm-b-PS copolymer. CDCl3 was used to characterise pyridinethione.  

Electrospray ionisation mass spectrometry (ESI-MS). PAAm synthesised was 

characterized on Fourier transform ion cyclotron resonance (FTICR) mass spectrometer 

(Bruker Apex-Qe 7 Tesla) equipped with an Apollo II dual ESI/matrix-assisted laser 

desorption/ionization (MALDI) source, with the electrospray voltage set at 4.5 kV. Crude 

PAAm was dissolved in MeOH (HPLC grade)/H2O (50:50, v/v) and run in negative ion mode 

via syringe pump. Mass spectra of PAAm were recorded in the range of 500-2000 m/z. PDE 

linker and pyridinethione synthesised were characterized on mass spectrometer detector 

(Finnigan™ LCQ™ Deca), using MeOH (HPLC grade) as the eluent at a flow rate of 0.2-0.4 

mL / min and nitrogen as the sheath gas, with the electrospray voltage set at 4.5 kV and 

capillary temperature at 300 °C. Purified samples were dissolved in MeOH (HPLC-grade), 

making a final sample concentration of ~ 0.1 mg·mL-1. Samples were injected and run in 

positive ion mode.  

Dynamic light scattering (DLS). Size distribution of micelles and PS latex particles was 

measured by dynamic light scattering (Malvern Zetasizer Nano). Particles were scatted by a 

helium-neon laser at 633 nm, 40mW and detected at an angle of 173 °. Samples were then 

filtered through 0.45 µm membranes, followed by equilibrating for 300 sec before 

measurement at 25 °C. Hydrodynamic diameter (dH) and particle size distribution (PSD) of 
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micelles and latex particles were reported by intensity size distribution, which is obtained 

from correlation functions. 

Hydrodynamic chromatography (HDC). Hydrodynamic volume (dvol) of latex particles was 

determined by a Particle Size Distribution Analyser (PSDA; Polymer Laboratories). 

Dispersity of particles was accessed by the coefficient of variation (CV). Elution was 

performed on Type 2 cartridge, using PL-PSDA surfactant as the eluent (flow rate = 1.7 

mL·min-1) and sodium 3-nitrobenzenesulfonate as the flow-rate marker. Samples were filtered 

through a 0.45 µm membrane before injection. The eluted samples were detected by a UV 

detector 254 nm. PS latexes standards (Duke Nanosphere™) were used for calibration. 

Transmission electron microscopy (TEM). PS nanoparticles were observed using 

transmission electron microscope (Philips CM120 Biofilter, accelerating voltage 120 kV). 

Particle samples were diluted in water and the dispersion was drop-cast onto a 400 meshed-

copper TEM grid. The grid has been coated with Formvar™, which was covered by a 10 nm 

carbon layer. Solvents from the sample on the TEM grid were evaporated before imaging 

under TEM. 

Ultraviolet-visible (UV-Vis) spectroscopy. UV-Vis absorbance of PS latex particles, 

pyridinethione and microRNA in solution state were measured using UV-Vis-NIR 

spectrometer (Varian Cary 5000, Agilent) at room temperature. Samples were scanned in the 

range of 230-400 nm at 600 nm·min-1. 
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Preparation of UV-Vis calibration curve of pyridinethione. Pyridinethione was dissolved 

in water to various concentrations in the range of 4-170 µM. UV-Vis absorbance of the 

pyridinethione solutions at 342 nm was measured for constructing the standard curve, using 

water as the blank. 

Procedures 

Synthesis of macro-RAFT agent HOOC-PAAm. Macro-RAFT agent HOOC-PAAm was 

synthesised according to literature.32 PABTC (0.81 g, 3.39 mmol), AAm (3.73 g, 52.4 mmol) 

and V-501 (0.10 g, 0.36 mmol) were dissolved in a mixture of 1,4-dioxane (6.62 g) and water 

(4.14 g). The reaction mixture was purged with nitrogen for 10 minutes, followed by stirring 

at 70 °C in an oil bath for 5 hours to give a clear, viscous and bright yellow liquid (AAm 

conversion = 93%, Mn,theo. ≈ 1300 g·mol-1, Mn,NMR ≈ 1400 g·mol-1, DPNMR ≈ 14). 1H-NMR 

(200 MHz, D2O, see Figure S1 for the protons attribution): δ (ppm) 0.95 (t, J = 9.2 Hz, 3H, 

RAFT ‘Z’ group CH3), 1.20 (m, 3H, RAFT ‘R’ group CH3), 1.37-1.98 (m, PAAm CH2 

backbone, RAFT ‘Z’ group CH2, 2.07-2.67 (m, PAAm CH backbone, RAFT ‘R’ group CH), 

3.44 (m, 2H, RAFT ‘Z’ group –CH2–S–), 4.8 (bs, 1H, –CH–S–, under the HDO peak), 7.01 

(bs, 2H, NH2); ESI-MS characterisation confirmed the synthesis of well-defined HOOC-

PAAm macro-RAFT agent (Figure S2).  
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Synthesis of HOOC-PAAm-b-PS diblock copolymer. HOOC-PAAm-b-PS diblock 

copolymer was prepared according to literature.32 1,4-Dioxane (10.86 g) and water (3.12 g) 

were added to the crude HOOC-PAAm macro-RAFT agent/dioxane/water solution (7.7 g of 

the solution above), followed by the addition of styrene (1.75 g, 16.8 mmol) and V-501 (0.18 

g, 0.64 mmol). Note: the polymerisation mixture appeared to be slightly turbid during the 

degassing process (10 minutes degassing); this could possibly be due to the evaporation of 

dioxane, which caused the hydrophobic styrene monomer to phase-separate from the 

hydrophilic HOOC-PAAm/water layer. The polymerisation mixture became clear again when 

heated at 70 °C and remained clear throughout the reaction. The yellow solution was degassed 

under nitrogen for 10 minutes before stirring at 70 °C in an oil bath overnight, yielding a clear 

viscous and bright yellow liquid (styrene conversion = 90%, Mn,theo. 2240 g·mol-1, Mn,NMR ≈ 

2200 g·mol-1, DPSty,NMR ≈ 8). 1H-NMR (200 MHz, DMSO-d6, see Figure S4 for the protons 

attribution): δ (ppm) 0.84 (m, 3H, RAFT ‘Z’ group CH3), 1.04 (m, 3H, RAFT ‘R’ group CH3), 

1.18-2.42 (m, PS and PAAm CH and CH2 backbone, RAFT ‘Z’ group CH and CH2, RAFT ‘R’ 

group CH), 3.20 (m, 2H, RAFT ‘Z’ group –CH2–S–), 6.29-7.38 (m, aromatic ring of PS). 

Styrene conversion and molecular weight distribution of diblock copolymer are summarised 

in Error! Reference source not found..  

Synthesis of PS latex particles. The crude HOOC-PAAm14-b-PS8 diblock copolymer 

dioxane/water solution above (1.00 g) was charged into a round-bottom flask and stirred 

continuously. Aqueous NaOH (0.3% w/w, 1.94 g, 0.15 mmol) was added to the stirring 

diblock copolymer solution, followed by dropwise addition of water (22.10 mL at 0.02 

mL·min-1) to give a clear yellow micelle solution. After the addition of styrene monomer 
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(0.06 g, 0.60 mmol), the solution was stirred  vigorously for 30 minutes at room 

temperature.V-501 (0.030 g, 0.11 mmol) and NaOH (3% w/w, 1.08 g, 0.81 mmol) were added 

to the solution, followed by stirring for a further 2 hours. The solution was then degassed 

under nitrogen for 15 minutes and heated in an oil bath at 70 °C for an hour. Conversion of 

styrene was determined by gravimetric analysis to be 99%. The particles were purified by 

dialysis against Milli-Q water (MW cut-off = 2000 g·mol-1). Solids content of particles after 

dialysis was established to be 0.37%. Size and dispersity of PS latex particles were obtained 

from DLS and HDC. The latex particles were also studied by TEM.  

PS latex particle stability in freeze-thaw cycles. PS latex particles were frozen by dry ice 

for an hour, followed by thawing at room temperature. The freeze-thaw procedure was 

repeated 10 times and the PSD of latex was monitored by DLS at the end of each thawing. 

Synthesis of 2-(2-pyridyldithio)ethylamine (PDE) linker. 2-(2-Pyridyldithio)ethylamine 

(PDE) linker was synthesised according to literature.33 Briefly, cysteamine · HCl (0.1315 g, 

1.16 mmol) was dissolved in a solution of Aldrithiol™ -2 (0.694 g, 3.14 mmol) in MeOH 

(2.57 mL). The clear yellow solution was stirred at room temperature for 20 hours under 

nitrogen. The product was purified by precipitation in Et2O. Precipitates were collected by 

vacuum filtration and washed by Et2O until the filtrate became colourless. The white solid 

obtained was dried under reduced pressure at 40 °C overnight to yield 0.202 g (78%). The 

Et2O layers were reserved for the synthesis of pyridinethione. 1H-NMR (200 MHz, D2O, see 

Figure S5 for the protons attribution): δ (ppm) 3.06-3.12 (t, J = 6.0 Hz, 2H, –CH2–NH2), 3.30-

3.36 (t, J = 6.0 Hz, 2H, –S–CH2–), 7.29-7.35 (t, J = 6.0 Hz, 1H, pyridyl ring CH at 5-position), 

7.72-7.86 (m, 2H, pyridyl ring CH at 3- and 4-position ), 8.43-8.46 (d, J = 6.0 Hz, 1H, pyridyl 

ring CH at 6-position). ESI-MS (m/z) for [C7H10N2S2+H] + = 187, theoretical m/z = 186.0285. 
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Synthesis of pyridinethione standard. Pyridinethione standard was prepared according to 

the reported protocol.33 Et2O layers (containing unreacted Aldrithiol™ -2 and pyridinethione) 

obtained from the purification procedure of PDE linker described above were combined and 

concentrated under vacuum. The residue was dissolved in MeOH (20 mL) and mixed with 

cysteamine · HCl (0.3540 g, 3.12 mmol) to form a cloudy orange yellow solution. The turbid 

solution was stirred at room temperature for 20 hours under nitrogen. EtOAc (20 mL) was 

then added to the turbid solution, followed by washing with Milli-Q water (2 × 20 mL). The 

extracted EtOAc layer was dried by MgSO4 and filtered. The filtrate was concentrated and the 

residue was purified by silica column chromatography (Purified pyridinethione Rf (EtOAc) = 

0.45-0.5). The purified product was dried under reduced pressure at 40 °C overnight to yield a 

dark orange solid. 1H-NMR (300 MHz, CDCl3, see Figure S6 for the protons attribution):): δ 

(ppm) 6.78-6.82 (t, J = 6.0 Hz, 1H), 7.39-7.45 (m, 1H), 7.58-7.63 (m, 2H). ESI-MS (m/z) for 

[C5H5NS+H] + = 112, theoretical m/z = 111.0143. 

Synthesis of PDE-conjugated PS latex particles. PS latex (solids content = 0.37%, 2 mL) 

was dispersed in MES buffer (100 mM, pH 5.65, 1.7 mL), followed by mixing with EDC 

(0.015 g, 0.080 mmol), NHS (0.0184 g, 0.160 mmol) and aqueous PDE linker solution (4.72 

mM, 0.3 mL, 1.42 µmol) at room temperature overnight. The latex particles were then 

purified by dialysis against Milli-Q water (MW cut-off = 2000 g·mol-1). The solids content of 

the modified particles after dialysis was established to be 0.30%. Size and dispersity of the 

PDE-conjugated particles was checked by DLS and HDC.  

Quantification of PDE loading on PS latex particles. Purified PDE-loaded PS latex 

particles (0.5 mL) was first diluted with Milli-Q water (0.5 mL) and mixed with aqueous 

TCEP solution (70 mM, 5 µL). The release of pyridinethione upon disulfide reduction by 
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TCEP was monitored in situ by the increase in absorbance at 342 nm until constant 

absorbance was reached. Water was used as the blank for absorbance measurement.  

Conjugation of microRNA to PDE-loaded PS latex particles. miR-200b duplex was 

dissolved in DNase/RNase-free distilled water (0.133 mM, 30 µL, 4 nmol) and incubated with 

aqueous DTT solution (100 mM, 32 µL) at room temperature for 2 hours. The miRNA was 

extracted by mixing the solution with NaOAc (3 M, pH 5.5, 8 µL), followed by the addition 

of EtOH (absolute, 205 µL). The solution was incubated at -80 °C for 1 hour before 

centrifugation at 16,000 g for 30 minutes at 4 °C. The miRNA pellet was resuspended in 

EtOH (70%, 205 µL) and centrifuged at 16,000 g for 10 minutes at 4 °C. The purified thiol-

capped miRNA pellet was dried under reduced pressure and mixed with purified PDE-loaded 

PS latex (solids content = 0.30%, 100 µL) at room temperature. The reaction was monitored 

in situ by the increase in absorbance at 342 nm until a constant absorbance was reached. The 

miRNA-conjugated PS latex particles were purified by ultrafiltration (MW cut-off = 30,000 

g·mol-1) for at least 5 times. The presence of unreacted miRNA and pyridinethione being 

washed out was monitored by measuring the absorbance of the filtrates at 260 nm and 342 nm 

respectively. The attachment of miRNA onto PS latex particles was confirmed by the 

absorbance of the purified retentate at 260 nm and 310 nm. Water was used as the blank for 

all UV-Vis absorbance measurements.  

Release of conjugated miRNA from PS latex particles. Purified miR-200b-PS latex particle 

conjugates (solids content = 0.30%, 50 µL) dispersed in DNase/RNase-free distilled water 

(160 µL) was incubated with aqueous GSH solution (33 mM, 90 µL, final concentration for 

incubation = 10 mM) at room temperature. At 30 min and 60 min incubation, the PS latex was 

washed by ultrafiltration (MW cut-off = 30,000 g·mol-1). The release of miRNA was 
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confirmed by the increase in absorbance of the filtrates and the decrease in absorbance of the 

retentates at 260 nm. Water was used as the blank for all UV-Vis absorbance measurements. 
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Results and discussion 

HOOC-PAAm-b-PS diblock copolymer preparation. The carboxyl-a-end HOOC-PAAm-

b-PS diblock copolymer was prepared via a two-step RAFT polymerisation process. This was 

achieved by first polymerising AAm to generate a HOOC-PAAm macro-RAFT agent, 

followed by block extension with styrene monomer. The HOOC-PAAm macro-RAFT agent 

was prepared by polymerisation of AAm mediated by the chain transfer agent (CTA) PABTC 

in a mixture dioxane/water (60:40 v:v). Despite water being an excellent solvent for AAm 

monomer and PAAm,23,34 a number of side reactions have been reported in the 

homopolymerisation of AAm in pure water or buffer, especially when mediated by dithioester 

CTAs. These side reactions include hydrolysis of the monomer to form ammonia, which 

causes unwanted aminolysis of the CTAs, slow polymerisation rate and poor monomer 

conversion (< 28%).35-37 Aiming to minimise such side reactions, we opted for a 

trithiocarbonate CTA, PABTC, to mediate the polymerization, as it has better hydrolytic 

stability even at temperatures as high as 70 °C,24 and the polymerisations were undertaken in 

40% in volume dioxane, in order to limit AAm hydrolysis. Furthermore, dioxane also 

facilitates the solubilisation of both PABTC and styrene monomer at the chain extension 

step.38, 39 Polymerisation of AAm was carried out for 5 hours. The polymerisation solution 

remained clear and bright yellow in colour throughout the reaction, suggesting that the PAAm 

remained well-dissolved in the co-solvent mixture and that the degradation of the 

trithiocarbonate end group remains negligible. Monomer conversion and DPAAm were 

determined from 1H-NMR in situ by comparing the integration of the PAAm backbone (from 

1.37 to 2.67 ppm) with the terminal methyl group of the RAFT agent Z group (0.95 ppm) 

used as internal reference (Figure S1 in ESI). The polymerisation proceeded to > 95% 

conversion, to yield a macro-RAFT agents of 14 AAm units. Retention of both the COOH and 

the trithiocarbonate groups were verified by ESI-MS analysis (Figure S2 in ESI), which 
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revealed two populations, corresponding to single- and double-charged species. The single-

charged population corresponds to HOOC-PAAm with the trithiocarbonate end group, of DP 

ranging from 5 to 21 units and a central peak at m/z = 1231.5, corresponding to HOOC-

PAAm14 , which is in good agreement with the DP obtained from 1H-NMR analysis. 

The block extension with styrene was performed in batch by adding styrene monomer, 

dioxane and initiator to the AAm polymerisation solution. The co-solvent ratio of 

dioxane/water had to be tuned (i.e. from 60:40 to 70:30 v:v) to solubilize both styrene and 

HOOC-PAAm macro-RAFT agent and obtain a homogeneous and clear reaction solution. 

Conversion and DP of styrene were determined from 1H-NMR in situ (Figure S4). Comparing 

the integration of the aromatic protons of PS backbone with the vinyl peaks of the styrene 

monomer at 5.81 ppm gave 88% monomer conversion, equivalent to a styrene DP around 8. 

Unfortunately, the diblock copolymer HOOC-PAAm14-b-PS8 could not be analysed by size 

exclusion chromatography and ESI-MS due to its poor solubility.  

Preparation of PS latex particles stabilised by PAAm. PS latex particles stabilised by 

PAAm were prepared via surfactant-free RAFT emulsion polymerisation. This involved the 

self-assembly of HOOC-PAAm14-b-PS8 diblock copolymer into polymeric micelles, followed 

by chain-extending the hydrophobic block within the micelle cores with additional styrene 

monomer. Dioxane was added to the solution as a co-solvent for the self-assembly of PAAm-

b-PS, as it enables better mobility of the glassy PS block.39 Micellization was performed by 

first adding the crude HOOC-PAAm14-b-PS8 diblock mixture to an aqueous NaOH solution, 

followed by slow addition of water with constant stirring. NaOH deprotonates the carboxylic 

acid group at the chain end of the macroRAFT surfactant, thus promoting ionisation between 

PAAm chains for micelization. It is noteworthy that attempts to form micelle in absence of 

NaOH were unsuccessful. Upon addition of water to the copolymer solution, the hydrophobic 
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styrene block aggregated into micelle cores along with the butyl trithiocarbonate end group; 

the hydrophilic PAAm block and the carboxylic acid moiety became the coronas of the 

micelles and extended in the aqueous environment. The micelle solution was observed to be 

clear throughout the addition of water, indicating the micelles were well dispersed in the 

water phase. The size distribution of the micelles was confirmed by DLS. Figure 1 shows the 

micelles having an average size of 9.3 nm in diameter, with a particle size distribution (PSD) 

of 0.216. It is noteworthy that the approximate micelle radius (4.7 nm) was comparable to the 

theoretical length of a single fully-stretched PAAm14-b-PS8 copolymer chain (22 monomer 

units × 0.25 nm = 5.5 nm).  
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Figure 1. Size distribution of micelles from the self-assembly of  
-OOC-PAAm14-b-PS8 obtained by dynamic light scattering. 

RAFT emulsion polymerisation was carried out with the addition of styrene monomer to the 

micelle solution. The solution became a homogeneous turbid dispersion after vigorous stirring, 

suggesting that the styrene monomer was well-dispersed in the aqueous phase, while some of 

the monomer might have penetrated into the polymeric micelle cores. Addition of V-501 

initiator was accompanied by aqueous NaOH to deprotonate the carboxylic acid groups to 

insure a complete dissolution in the aqueous phase. The reaction fed with styrene monomer 

appeared to be less turbid and eventually became clear yellow as polymerisation proceeded. 
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This indicates both the depletion of styrene monomer in the aqueous phase and that particle 

formation was taking place. At the end of the reaction, particles were dialysed against Milli-

Q® water to remove unreacted styrene monomer (less than 1% remaining after 

polymerisation), initiator and dioxane. The removal of dioxane was essential to prevent any 

free exchange of the chain-extended diblock copolymer chains between the final latex 

particles. The size distribution of the purified PS latex particles was analysed by 

hydrodynamic chromatography (HDC) and confirmed by DLS (Figure 2). HDC is an 

excellent technique to obtain accurate information on the size of the particles, and the 

monomodal distributions observed indicate the particles were uniform in size in general 

without the presence of large aggregates, as confirmed by their relatively low coefficient of 

variation (CV) values (Table 1). DLS confirmed these observations, and TEM images (Figure 

3) reveal the particles are spherical in shape and also confirmed a fairly uniform size. The 

observed particle morphology correlated with the structure of their precursor micelles formed 

by PAAm14-b-PS8 copolymers was suggested to be spherical from DLS (Figure 1) as 

discussed above. TEM results also supported that chain-extension of the diblock macro-RAFT 

agents with styrene was carried out within the loci of spherical micelles, which have been 

evolved into spherical particles. Table 1 summarises the sizes of particles obtained from 

different techniques. Diameters of the particles measured from DLS were in good agreement 

with the results obtained from HDC. The overall particle diameters estimated from TEM 

appeared to be smaller compared to DLS and HDC measurements as anticipated, since TEM 

only images the electron-rich PS core of the particles. The PAAm chains at the particle corona, 

on the other hand, were not electron-dense enough to be observed under the electron 

microscope without staining. Furthermore, the PS chains at the particle cores were expected to 

collapse when the latex particles were dehydrated during TEM sample preparation. In 
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addition to the water evaporation process, electron bean irradiation during TEM imaging 

could also cause the particles to shrink from their original dimensions.40-42  

 

Figure 2. Size distributions of PAAm-stabilised PS latex particles measured by (a) DLS and 
(b) HDC.  

 

 

Figure 3. TEM image of PS latex particles stabilised by PAAm. 
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Table 1. Size and dispersity of PS latex particles obtained from different techniques 

PS latex particle diameter (nm) Particle dispersity 
DLS HDC TEM PSDDLS CVHDC (%) 
11 13 7.5 0.159 10 

 

Stability of PS latex particles. Stability of the PS latex particles is critical to their use in 

bioapplications, as they have to survive the process that engineers delivery vectors.  Stability 

can be assessed theoretically by knowing the particles surface area coverage. Assuming each 

of the particle-forming -OOC-PAAm-b-PS copolymer was 100% chain-extended from 

HOOC-PAAm chains, the PS core surface area occupied by each steric stabiliser (i.e. PAAm 

chain) would be equivalent to the area covered by each -OOC-PAAm-b-PS copolymer chains. 

Each latex particle core was calculated to be covered by an average of 113 polymer chains, 

where individual polymer chain was estimated to occupy 1.6 nm2 of the surface area of the PS 

core (see ESI for calculations). The average surface area of particle core occupied by each 

polymer chain was fairly small, suggesting strong sterical stabilization. This steric stability 

was tested by multiple freeze-thaw cycles, which involved freezing the particle by dry ice at -

78.5 °C for an hour, followed by thawing at room temperature – such a process mimics the 

conditions of storage for delivery vectors. The PSD of the thawed latex was monitored by 

DLS at the end of each freeze-thaw cycle to detect the presence of aggregates, indicators of 

unstable particles. The DLS traces in Figure 4 illustrates that no large aggregates were present 

in the latex during the first five freeze-thaw cycles, indicating the particles remained stable 

during the freezing process. Starting from the sixth cycle, noticeable amounts of aggregates 

were detected by DLS. The presence of these aggregates gave rise to PSD of latex from 0.2 to 

0.35. The diameter of the particles was observed to increase by approximately 2 nm from the 

second freeze-thaw cycles. Nevertheless, the particles still demonstrated a good steric stability 

as major population observed on DLS remained consistent throughout the freeze-thaw cycles. 
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This suggested the average amount of stabilisers on each particle was sufficient to provide 

good steric stabilisation for the latex in the aqueous dispersed media.  

 

Figure 4. DLS traces of the thawed PS latex particles. ‘Cycle 0’ represents latex particles 
without undergoing the freeze-thaw process.  

 

Conjugation of microRNA to PS latex particles. Conjugation of miRNA to the PS latex 

particles involved a two-step reaction: (1) amidation between amine-bearing 2-(2-
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thiol-disulfide exchange between PDE linkers on particles and thiol-modified miRNA. This 

synthetic route was considered to be much cleaner than conjugation in the reversed order as 

fewer intermediates and side-products would be involved during miRNA attachment.  

Conjugation of PDE linker to the latex particles was carried out via EDC/NHS coupling. 

Aiming to modify 20% of the carboxylate groups on the particle surface, the conjugation was 

carried out by reacting with 0.2 equivalents PDE in the presence of 12 equivalents EDC and 

24 equivalents NHS. The conjugation was carried out in 2-(N-morpholino)ethanesulfonic acid 

(MES) buffer at pH 5.65. The use of MES buffer was necessary to maintain the workable pH 

range for carboxylate activation with EDC. The buffer pH in the activation step, however, was 

slightly lower than the optimal pH range (pH 6-9) for carboxylic acid esterification with 

NHS.43, 44 This condition could prevent complete esterification of the carboxylic acid groups 

on the particle surface in order to retain the particle stability in water. The amidation was 

carried out overnight, followed by dialysis to remove unconjugated PDE linkers and by-

products from the latex. The modified particles were then treated with reducing agent tris(2-

carboxyethyl)phosphine (TCEP) to quantify the amount of PDE loading through the release of 

pyridinethione, which absorbs at 342 nm.33 Figure 5 illustrates the UV-Vis spectra of the 

PDE-loaded PS latex particles during the course of TCEP treatment. The characteristics 

absorption peak at 310 nm corresponds to the RAFT thiocarbonylthio group on the particles.45 

The slight increase in absorbance at 310 nm was attributed to the release of pyridinethione, 

which also contributed to the growth of absorbance at 342 nm. The thiocarbonylthio signal 

did not show any shift of the maximum absorption, indicating the trithiocarbonate groups on 

the particles remained intact in the presence of TCEP overtime.46 The PDE conjugation 

efficiency was calculated to be 19 ± 3.7 %. On average, each particle was functionalised with 

4-5 molecules of PDE linkers on the surface. 
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Figure 5. UV-Vis spectra of PDE-loaded PS latex particles after TCEP treatment. The release 
of pyridinethione upon TCEP reduction was evident by the increase in absorbance between 

340 nm and 360 nm over time. 
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200b to the PDE-modified latex particles at room temperature. The particles, each of which 

carried at least 4 molecules of PDE linkers on average, reacted with 3 copies of miRNA. The 

conjugation was followed by UV-Vis and successful miRNA attachment was evident by the 

increase in absorbance at 342 nm due to the release of pyridinethione. The reaction was 

stopped after 4 hours when the pyridinethione absorbance became constant. The conjugation 

proceeded with 86 ± 13% efficiency, which suggested every particle was functionalised with 

2-3 copies of miR-200b. The conjugation efficiency was also determined via measuring the 

UV-Vis absorbance of miRNA nucleobases at 260 nm.49 The miRNA-conjugated PS latex 

particles were washed by ultrafiltration multiple times to remove unreacted miRNA and 

pyridinethione. At the end of each wash, the UV-Vis absorbance of the purified particles in 

the retentate was taken along with the filtrate. Two strong absorption peaks of miRNA 

nucleobases at 260 nm and RAFT thiocarbonylthio groups on particles at 310 nm were 

observed from the retentates after each wash (Figure 6a). The 260 nm peak shows a gradual 

decrease in the absorbance due to the removal of unattached miRNA after washing. 

Nevertheless, the retentate still presented a strong absorbance at 260 nm after five washes, 

confirming the successful attachment of the nucleic acid to the particles. The free miRNA 

washed out gave rise to the strong absorbance at 260 nm of the filtrate (Figure 6b). This signal 

decreased to a low absorbance after the fifth wash, demonstrating most of the unreacted 

miRNA has been removed. Along with the miRNA signal, the pyridinethione absorption peak 

at 342 nm was also observed from the filtrate collected after the first wash. The appearance of 

pyridinethione provided strong evidence for the conjugation to occur via thiol-disulfide 

exchange. The conjugation efficiency was determined from the loss of miRNA in the retentate 

after the fifth wash and the total amount of miRNA collected in the filtrates. The efficiency 

calculated from the retentate was 72%, which is close to the value determined from the 

pyridinethione absorbance within the estimated error. The conjugation efficiency estimated 
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from the filtrate was found to be 83%, which was similar to the efficiency determined from 

the pyridinethione approach.  

 

Figure 6. UV-Vis spectra of (a) retentates and (b) filtrates from ultrafiltration of miR-200b-
PS latex particles. 
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Glutathione-triggered miRNA release from miRNA-nanoparticle conjugates. The ability 

to reduce the disulfide-bridges between the particles and the miRNA was tested with 

glutathione (GSH). In mammalian cells, the intracellular GSH level ranges between 0.5 mM 

and 10 mM, which is 1000-fold more concentrated than the extracellular level.46, 50 Previous 

studies have demonstrated the slow release of therapeutic agents when the cleavable disulfide-

containing vectors were incubated at extracellular GSH concentrations. Near-complete release 

of the therapeutic agent was achieved within 1 hour when the GSH concentration was 

increased to the maximum intracellular level.51-53 Aiming to investigate if the releasing 

mechanism is as rapid in our system, we incubated the miRNA-nanoparticle conjugates with 

10 mM GSH for an hour. The amount of miRNA released was collected by ultrafiltration at 

30 and 60 minutes of the incubation and quantified by UV-Vis spectroscopy. The miRNA in 

the retentates and filtrates was then detected by UV-Vis at 260 nm. The UV-Vis spectra of the 

retentate with the characteristics miRNA and particle thiocarbonylthio peaks at 260 nm and 

310 nm are shown in Figure 7a. The reduction of absorbance at 260 nm signifies some 

miRNA has been unloaded from the particles in the presence of 10 mM GSH. The release of 

miRNA was also evident by the sharp increase in the absorbance at 260 nm in the filtrate 

(Figure 7b). The decrease in miRNA absorbance for the retentate was consistent with the 

increase in miRNA absorbance for the filtrate. The change in miRNA absorbance was 

converted in terms of moles to access the amount of detached miRNA. Approximately 10% 

miRNA has been unloaded from the particles after 30 minute GSH treatment. An additional 

10% miRNA was released from the particles when the GSH incubation time was extended to 

60 minutes. The miRNA releasing trend was comparable to the work performed by Tzanov 

and co-workers, who observed 20% of the small interfering RNA (siRNA) on thiolated 

chitosan nanocapsules was released after incubation with 10 mM GSH for 3 hours. Further 

incubation of the nanocapsules to 72 hours resulted in a 60% release of the siRNA.54 The 
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present system, on the other hand, showed faster kinetics on disulfide bond cleavage by GSH 

in comparison to the system studied by Lee et al. The disulfide-cross-linked polymeric 

micelles model employed by Lee exhibited a 17% release of the encapsulated methotrexate 

after treatment with 10 mM GSH for 25 hours.55 This difference in the kinetics of disulfide 

reduction could be explained by the difference in the chemical composition of the drug 

carriers: high disulfide content requires extended GSH incubation time for complete cleavage, 

and vice versa. Possible explanations for the lack of quantitative release of the miRNA are the 

poor penetration of GSH into the densely packed polymer shell of the nanoparticles, as well 

as diffusion of the charged RNA away from the shell where non-specific binding may occur. 
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Figure 7. UV-Vis spectra of (a) retentates and (b) filtrates from ultrafiltration of miR-200b-
PS latex particles incubated with GSH. The sample before GSH treatment contained traces of 

unreacted miRNA that has not been removed thoroughly by the previous ultrafiltration. 
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2.1 Conclusions 

We have demonstrated the successful synthesis of amphiphilic HOOC-PAAm14-b-PS8 diblock 

copolymer mediated by RAFT polymerisation. The diblock copolymer was able to self-

assemble into polymeric micelles for the preparation of 11 nm -OOC-PAAm-stabilised latex 

nanoparticles via surfactant-free RAFT emulsion polymerisation. These particles exhibited 

narrow size distributions as confirmed by DLS, HDC and TEM. Each latex particle core was 

covered by an average of 113 polymer chains; where individual polymer chain was estimated 

to occupy 1.6 nm2 of the surface area of the PS core. The small particle surface area occupied 

by each polymer chain suggested the particles were well sterically stabilised. Steric 

stabilisation of particles was further confirmed by their resistance to multiple freeze-thaw 

cycles. The surface of the sterically stabilised particles was post-polymerization 

functionalised with 4-5 molecules of PDE linkers via EDC/NHS coupling. The PDE linkers 

attached enabled the conjugation of thiol-modified miR-200b to the particles through thiol-

disulfide exchange, which resulted in the attachment of 2-3 copies of the nucleic acid 

molecules to each particle on average. Incubating the miRNA-conjugated latex with 10 mM 

GSH for an hour unloaded 20% of the nucleic acid from the particles. The results 

demonstrated the miRNA-releasing mechanism of the latex particles could be triggered by a 

biological reducing agent. The particles reported here have a great potential to be used as drug 

delivery vector. Their small size ensure they can be eliminated and avoid issues with 

accumulation. The efficiency of the process permit to avoid any residual monomer remain in 

the colloids, thus avoiding toxicity issues. Beyond drug delivery, we also envision these 

nanoparticles could be further use, for instance for imaging and diagnostic applications. 

Supporting information. 1H NMR and ESI-MS characterisation of macro-RAFT agent, 

calculation details of livingness of macro-RAT agent, calculation of surface coverage of PS 

latex particles, 1H NMR characterisation of PDE linker and pyridinethione.  
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