

Original citation:

Naidoo, P., Dunbar, R., du Toit, E., van Niekerk, M., Squire, S. B., Beyers, N. and Madan, Jason. (2016) Comparing laboratory costs of smear/culture and Xpert([®]) MTB/RIF-based tuberculosis diagnostic algorithms. The international journal of tuberculosis and lung disease, 20 (10). pp. 1377-1385.

Permanent WRAP URL:

http://wrap.warwick.ac.uk/83465

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

© 2016 The international journal of tuberculosis and lung disease.

http://www.ingentaconnect.com/content/iuatld/ijtld/2016/00000020/00000010/art00022 A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP URL' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

1	Comparing laboratory costs of smear/culture and Xpert® MTB/RIF-based tuberculosis diagnostic
2	algorithms
3	
4	
5	Authors:
6	
7	Pren Naidoo ¹ , Rory Dunbar ¹ , Elizabeth du Toit ¹ , Margaret van Niekerk ¹ , S. Bertel Squire ² , Nulda Beyers ¹ ,
8	Jason Madan ³
9	
10	Affiliations:
11	
12	¹ Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health
13	Sciences, Stellenbosch University, South Africa
14	² Liverpool School of Tropical Medicine, Liverpool, United Kingdom
15	³ Warwick Medical School, University of Warwick, United Kingdom
16	
17	
18	Running head: TB and MDR-TB laboratory costs
19	
20	
21	Text word count: 3546
22	
23	
24	Key words: Xpert® MTB/Rif, MDRTBPlus line probe assay, costing, molecular diagnostics
25	

26 ABSTRACT

27

Setting: Cape Town, South Africa, where Xpert® MTB/RIF was introduced as a screening test for all
 presumptive tuberculosis (TB) cases in primary health services.

30

Study Aim: To compare laboratory costs of smear/culture- and Xpert MTB/RIF-based TB diagnostic
 algorithms in routine operational conditions.

33

Methods: Economic costing was undertaken from a laboratory perspective. We used an ingredients-based costing approach with test costs based on the cost per unit and quantities utilised for buildings, equipment, consumables, staff and overheads. Cost allocation was based on reviews of standard operating procedures and laboratory records, observation and timing of test procedures, measurement of laboratory areas and manager interviews. We analysed electronic laboratory test data to compare overall costs and cost per pulmonary TB and MDR-TB case diagnosed. All costs were expressed as 2013 CPI-adjusted values.

40

Results: Total TB diagnostic costs increased by 43% from \$440,967 in the smear-culture-based algorithm (April-June 2011) to \$632,262 in the Xpert-based algorithm (April-June 2013). The cost per TB case diagnosed increased by 157% from \$48.77 to \$125.32 with 1601 and 1281 cases diagnosed respectively. The total cost per MDR-TB case diagnosed was similar at \$190.14 and \$183.86 in respective algorithms and the number of cases diagnosed increased by 13%, from 95 to 107.

46

47 Conclusion: The introduction of the Xpert-based algorithm resulted in substantial cost increases. This was
48 not matched by the expected increase in TB diagnostic efficacy, calling into question the sustainability of this
49 expensive new technology.

51 **INTRODUCTION**

52

53 New molecular diagnostic tests for tuberculosis (TB) such as GenoType® MTBDRplus line probe assay (Hain LifeScience GmbH, Nehren, Germany) (LPA) and Xpert® MTB/RIF (Cepheid, Sunnyvale, CA, USA) 54 55 (Xpert) hold the promise of improving TB and multidrug-resistant (MDR)-TB diagnosis as both are sensitive and faster than culture and conventional drug susceptibility tests (DST). The accuracy of these tests is well 56 57 established from laboratory and demonstration studies^{1,2}. A meta-analysis of ten LPA studies showed high sensitivity (98.1% (95% CI 95.9 to 99.1)) and specificity (98.7% (95% CI 97.3 to 99.4)) for rifampicin 58 59 resistance and lower, more variable sensitivity of 84.3% (95% CI 76.6 to 89.8) and specificity of 99.5% (95% 60 Cl 97.5 to 99.9) for isoniazid resistance³. A Cochrane Review of fifteen studies where Xpert was used as the 61 initial test replacing smear microscopy, showed a pooled sensitivity of 88% (95%Crl 83% to 92%) and 62 specificity of 98% (95% Crl 97% to 99%) for detecting Mycobacterium tuberculosis (MTB). In eleven of these 63 studies, pooled sensitivity was 94% (95% Crl 87% to 97%) and specificity 98% (95% Crl 97% to 99%) for 64 rifampicin resistance⁴.

65

Policy recommendations^{5,6} have been based mainly on accuracy data from laboratory and demonstration studies^{7–9}. However demonstration studies tend not to reflect the realities of a test being used within an operational context^{8,9}. There is a tendency to over-estimate effectiveness partly due to greater resource availability than would be found in routine settings⁸. Insufficient emphasis is placed on costs and an overestimate of effectiveness may provide a more optimistic view of cost-effectiveness than would be found in routine settings.

72

Cost estimates are essential to making decisions on the most effective use of limited resources. One of the challenges to evaluating costs and cost-effectiveness is the lack of standard accepted evaluation methods^{10,11}. Current guidelines are too broad and generalised and poor adherence to guidelines contributes to the failure to provide consistent and comparable cost data to policy makers¹². For example, two studies in South Africa reported Xpert costs of \$25.90 (in 2010 \$US)¹³ and \$14.93 (in 2012 US\$)¹⁴ respectively. Differences in costs were partly attributable to the exclusion of cartridge shipping costs and specimen transport costs in the latter.

80

A guideline on laboratory costs¹⁵ emphasises the importance of an ingredients-based approach to costing that includes all resource elements, including quality assurance and control. It emphasises the need to accurately allocate overhead costs and deal with capital assets in a way that takes "time preference" into account i.e. that \$1 in 2 years is worth less than \$1 today, reflecting a societal and individual preference to have money and resources today rather than in the future. Capital costs need to be discounted to reflect this preference¹⁶.

87

Xpert is an expensive test and making the case for additional expenditure requires empirical data to supplement the estimates used in decision-making. Operational data can help improve the reliability of estimates used in cost and cost-effectiveness analyses and is particularly important in high-burden settings with resource constraints.

93 The aim of this study was to compare laboratory costs for the diagnosis of pulmonary TB and MDR-TB in a 94 new Xpert-based algorithm to that in the previous smear/culture-based algorithm within a routine operational 95 context. The study was part of a PROVE IT (Policy Relevant Outcomes from Validating Evidence on ImpacT) 96 evaluation (http://www.treattb.org/) to assess the impact of new molecular diagnostic tests.

97

98 METHODS

99

100 Setting

The study was undertaken in Cape Town, South Africa, a city with a high TB and MDR-TB burden with 28,644 TB cases (752/100,000 population) and 1,020 MDR-TB cases notified in 2011. In comparison, 25,846 TB cases (663/100,000 population) and 1,134 MDR-TB cases were notified in 2013. Human immunodeficiency virus (HIV) co-infection rates amongst TB cases were 47% (97% tested) and 44% (98% tested) in respective years (Source: J. Caldwell, Routine TB Programme Data, Cape Town Health Directorate, April 2016).

107

Free TB diagnostic services were provided at 142 primary health care facilities in eight sub-districts. All sputum specimens collected at primary health care facilities were sent by courier to the National Health Laboratory Services (NHLS). Test results were entered into a networked, electronic laboratory database.

111

112 **TB diagnostic algorithms**

A smear/culture-based algorithm (Figure 1) was used in the "comparator" period (April to June 2011=T1). All presumptive TB cases were evaluated by smear microscopy from two spot sputum specimens, taken 1-hour apart. In high MDR-TB risk cases (>four weeks previous TB treatment, from congregate settings or with an MDR-TB contact), the second specimen underwent liquid culture (BACTEC[™] MGIT[™] 960) and drug susceptibility testing (DST) using the GenoType® MTBDRplus line probe assay (LPA) and second line testing as required. Smear-negative, HIV-infected, low MDR-TB risk cases were required to submit a third specimen for culture.

120

An Xpert-based algorithm was used in the "intervention" period (April to June 2013=T2) with Xpert replacing smear microscopy for all presumptive TB cases (Figure 1). Two sputum specimens were evaluated: the first was tested with Xpert; if MTB was detected the second underwent smear microscopy. In HIV-infected cases with negative Xpert tests, the second specimen underwent culture. Confirmatory LPA and second line DST were undertaken for cases with rifampicin resistance.

126

127 **Costing methods**

Economic costing was undertaken from a laboratory perspective for the high throughput central laboratory in Cape Town. Only costs related to the dedicated TB laboratory were assessed. Costs were calculated from the time the courier collected specimens from health facilities to the time results were returned. Costs were assessed only for pulmonary TB (PTB) tests for smear, culture, LPA and Xpert.

132

An excel-based costing tool was developed, based on that used in the Foundation for Innovation and
 Development (FIND) GenoType® MTBDRplus demonstration study. We used an ingredients-based costing

135 approach with test costs based on the cost per unit and quantities utilised for buildings, equipment, 136 consumables, staff and overheads. Cost allocation was determined by reviews of standard operating 137 procedures and laboratory records, direct observation and timing of the test procedures outlined in Figure 2, 138 measurement of laboratory areas used for test processes and interviews with managers. Quality assurance 139 samples were included in batch costs and outputs adjusted accordingly.

140

141 Building costs per square metre, including air-conditioning and consoles, were provided by the Council for Scientific and Industrial Research for a Level 2 laboratory for 2013. Equipment and consumables costs were 142 143 sourced from laboratory financial records and quotes from suppliers for 2013. These costs were corrected by 144 the consumer price index (CPI) to derive 2011 costs¹⁷. Staff and overheads costs were provided from laboratory financial records for both years. Overhead costs included costs for buildings, equipment, 145 146 consumables and staff involved in specimen sorting and registration, results processing, procurement, 147 stores, training, supervision and management. Specimen transport, electricity, water, sanitation, municipal 148 and biohazardous waste disposal, cleaning and janitorial services, security services and telephone and 149 internet costs were also included. Further information on costs is provided in online appendices 1, 2 and 3.

150

Building and equipment costs were spread over their expected lifespan and discounted to present values at a "risk-free" rate of 3%^{11,18} with maintenance based on expenditure or estimated at 10% of annual costs. Laboratory utilisation was based on a 10-hour weekday for 21 days per month and a 4-hour Saturday shift. The cost of staff time was based on a 40-hour week for 46 weeks of the year with efficiency estimated at 80%.

156

All costs were calculated in local currency (ZAR). For comparative purposes, 2011 costs were expressed as
 2013 CPI-adjusted values and converted to US\$ based on average United Nations treasury operational rates
 in 2013 (ZAR9.75 = US\$1.00)¹⁹.

160

161 Study population and analysis

All sputum specimens processed in the laboratory in T1 (smear/culture-based algorithm) and T2 (Xpertbased algorithm) and resources related to the processing of these specimens were included in the assessment of laboratory and test costs. Overall laboratory costs were based on the cost per test and test volumes for microscopy (bleach-treated specimens), microscopy and culture, LPA and Xpert.

166

We used laboratory data for presumptive PTB cases from five of the eight sub-districts to estimate the cost per TB and MDR-TB case diagnosed. These sub-districts were included in a prior analysis of TB yield and their selection criteria have been described elsewhere²⁰. The analysis required the full sequence of tests undertaken for presumptive TB cases. We therefore identified cases with specimens submitted in May 2011 and May 2013 and linked all diagnostic tests from the preceding and following months to identify the full sequence of tests undertaken for each case. Linkage was undertaken with MS-SQL using a combination of facility name, patient folder number, name, surname and age or birth-date.

174

We defined a *TB case* as an individual with one or more smears positive and / or culture positive for MTB and / or MTB detected on Xpert. An *MDR-TB case* was defined as an individual with rifampicin resistance on

- 177 LPA or Xpert. We compared the mean cost per patient diagnosed with TB and MDR-TB in each algorithm.
- 178 MDR-TB costs were reported as additional to a TB diagnosis.
- 179

180 Ethics statement

The Health Research Ethics Committee at Stellenbosch University (IRB0005239) (N10/09/308) and Ethics Advisory Group at The International Union Against Tuberculosis and Lung Disease (59/10) approved the study. A waiver of informed consent was granted for use of routine data. The City of Cape Town Health Directorate, Western Cape Health Department and National Health Laboratory Service granted permission to use routine health data.

186

187 **RESULTS**

188

189 Comparison of total laboratory costs and activities

In T1, 79,544 specimens were tested at the central laboratory compared to 59,238 in T2. The majority (96%
and 94% respectively) were for PTB tests.

192

Total laboratory costs for PTB tests increased from \$440,967 in T1 to \$632,262 in T2 (Table 1). Costs for bleach treated smears decreased by 49% from \$128,916 to \$65,799; smear and culture costs decreased by 35% from \$247,771 to \$161,707 and LPA by 50% from \$64,279 to \$32,339, all driven by decreased test volumes. The increase in total cost was attributable to Xpert test which accounted for 59% of total laboratory costs in the Xpert-based algorithm.

198

Annual overhead costs increased by 12% from \$137,101 in T1 to \$153,628 in T2. The largest contributors to the increase were specimen transport costs, utilities, biohazardous waste and janitorial services (Online Appendix 3). Overhead costs were allocated based on test volume as this was identified as the key driver for these costs. Overhead costs per test were increased by 47% from \$1.80 in the smear/culture-based algorithm to \$2.63 in the Xpert-based algorithm, due to both increases in overhead costs and reductions in test volumes.

205

206 **Comparison of test costs (Table 1)**

Smear microscopy costs (per bleach-treated specimen) increased from \$2.85 in the smear/culture-based algorithm to \$3.70 in the Xpert-based algorithm. Overhead costs were the main driver, accounting for 63% of costs in the smear/culture-based algorithm and 71% in the Xpert-based algorithm.

210

Microscopy and culture costs (per sodium hydroxide/sodium citrate-treated specimen) increased from \$8.75 in the smear/culture-based algorithm to \$9.62 per test in the Xpert-based algorithm. Consumables (44% and 40% in respective algorithms), staff costs (25% and 23% respectively) and overheads (21% and 27% respectively) were the key cost drivers. The highest cost component for consumables was for BACTEC MGIT tubes and supplement.

216

217 MTBDRPlus Line Probe Assay costs per test were similar at \$16.12 in the smear/culture-based algorithm 218 and \$16.98 per test in the Xpert-based algorithm. Most tests were done on culture isolates and culture costs

- have not been included in these totals. Consumables were the greatest cost-driver (79% and 75% in
 respective algorithms) due mostly to the cost of the GenoType® MTBDRplus kit.
- 221

222 *Xpert MTB/RIF* cost per test was \$19.03. The largest cost driver was consumables (77%), due mostly to the 223 cost of the XpertMTB/RIF cartridges.

224

225 Cost per TB case diagnosed

In May 2011 7,842 presumptive TB cases were tested through the smear/culture-based algorithm. The full
 sequence of tests for these individuals included 10,472 bleach-treated microscopy tests, 5,347 sodium
 hydroxide/sodium citrate-treated microscopy and culture tests and 980 tests for MTB culture confirmation at
 a total cost of \$78,080. The mean cost per TB case diagnosed (n = 1601) was \$48.77 (Table 2).

230

In May 2013 7,714 presumptive TB cases were tested through the Xpert-based algorithm. The full sequence of tests for these individuals included 2,711 bleach-treated microscopy tests, 3,689 sodium hydroxide/sodium citrate-treated microscopy and culture tests, 431 tests for MTB culture confirmation and 6,009 Xpert tests at a total cost of \$160,536. The mean cost per TB case diagnosed (n = 1281) was \$125.32.

The cost per TB case is influenced by the proportion of TB cases identified, which decreased in the Xpertbased algorithm (probably due to a decline in prevalence – see discussion for further details). We assessed a scenario where TB diagnostic yield in the Xpert-based algorithm was similar to that in the smear/culturebased algorithm which reduced the cost per TB case diagnosed to \$101.94.

240

241 Cost per MDR-TB case diagnosed

There were 833 LPA tests done for TB cases in the smear/culture-based algorithm at a cost of \$13,430 and mean additional cost per MDR-TB case (n = 95) of \$141.37 (Table 2). In comparison 369 LPA tests were done amongst TB cases in the Xpert-based algorithm at a cost of \$6,264 and mean additional cost per MDR-TB case (n=107) of \$58.54. When these costs were added to the "base" cost of the TB diagnosis, the total cost per MDR-TB case diagnosed was \$190.14 in the smear-culture-based algorithm compared to \$183.86 in the Xpert-based algorithm.

248

As our prior analysis showed no difference in TB yield between the algorithms²⁰, we apportioned all additional costs to the additional MDR-TB cases diagnosed. This produced an incremental costeffectiveness ratio (ICER) of \$6,274 per additional MDR-TB case diagnosed.

252

253 DISCUSSION

254

The use of the more sensitive Xpert test^{4,21,22} as a replacement for smear microscopy was expected to increase the number of TB cases diagnosed and simultaneous drug-susceptibility screening for all presumptive TB cases (not only those at high MDR-TB risk) expected to increase the number of MDR-TB cases diagnosed. A modelling study in South Africa, estimated that at full coverage Xpert would increase annual TB diagnostic costs by 53-57% to \$48-70 million per year but that this would be partially off-set by a 30% to 37% increase in TB and 69 to 71% increase in MDR-TB cases diagnosed annually²³.

Our study found a 43% increase in PTB laboratory costs, from \$440,967 in the smear-culture-based 262 algorithm to \$632,262 in the Xpert-based algorithm for 3-month periods. However, the increase in laboratory 263 costs was not matched by an increase in TB diagnostic efficacy. Although the number of presumptive TB 264 cases evaluated was similar in the smear/culture (n=7842) and Xpert-based algorithms (n=7714), the 265 266 proportion of TB cases diagnosed (yield) decreased from 20.4% (n=1601) to 16.6% (n=1281). A prior 267 stepped-wedge analysis undertaken as part of PROVE IT for 2010-2013 showed a temporal decline in TB diagnostic yield in both algorithms²⁰. This may have been partly attributable to a declining TB prevalence, 268 269 due perhaps to the rapid scale-up of anti-retroviral treatment in South Africa. When estimates were adjusted 270 for the temporal trend, the study showed no significant difference in TB yield between the algorithms.

271

The increase in total costs and decrease in number of cases identified in the current study increased the cost per TB case diagnosed by 157% from \$48.77 in the smear/culture-based algorithm to \$125.32 in the Xpertbased algorithm. On the other hand, even a scenario with a similar proportion of TB cases identified in the Xpert-based algorithm to that in the smear/culture-based algorithm would increase the cost per TB case diagnosed by 109% (to \$101.94).

277

278 The cost per MDR-TB case diagnosed was similar at \$190.14 in the smear/culture based algorithm and 279 \$183.86 in the Xpert-based algorithm. In the smear and culture-based algorithm, drug susceptibility testing 280 was only undertaken in high MDR-TB risk presumptive TB cases. One of the advantages of Xpert is that it 281 provides simultaneous screening for TB and rifampicin resistance. The use of Xpert for all presumptive TB cases contributed to the 13% increase in the number of MDR-TB cases identified. Whilst these additional 282 283 cases may have been diagnosed later in the smear/culture-based algorithm (i.e. after 1st line treatment failed), early diagnosis potentially reduces transmission, avoids the amplification of drug resistance and 284 285 reduces patient morbidity and mortality. This modest benefit has to be weighed against the heavy overall expenditure, as shown by the MDR-TB ICER of \$6,274. This figure needs to be viewed with some caution as 286 287 possible changes in TB and thus MDR-TB prevalence has not been taken into consideration. Additional 288 studies are required to assess whether Xpert or other drug susceptibility tests can be targeted more cost-289 effectively.

290

The cost-effectiveness of newly introduced laboratory tests is influenced by how services are re-organised and whether under-utilised assets can be redeployed. In the short-term it may be difficult to reduce costs until new systems and workloads are well established; however in the future efforts could be made to reduce overhead costs. Overhead costs per test could be reduced by increasing test volumes (through additional case-finding efforts for example). However, consumable costs were by far the greatest cost-drivers – accounting for 40% and 60% of total costs in respective algorithms. It remains to be seen whether global increases in test volumes or the availability of generic tests can reduce these costs substantially.

298

299 Strengths and limitations

The major strength of the analysis was that we collected detailed information to accurately estimate the cost per TB and MDR-TB case diagnosed. By including the full sequence of tests undertaken for individuals we

reflected the real-life variation found in diagnostic practices, including for example additional culture testingfor smear and Xpert-negative cases in respective algorithms.

304

305 The extent to which our results can be generalised is limited by the setting as Cape Town has a relatively good laboratory and health infrastructure. Additional evidence is required from poorly-resourced settings 306 including where culture is not available (as the benefit of Xpert may be greater in areas previously using only 307 308 smear microscopy) and from rural settings (where specimen transport costs may be higher, economies of scale cannot be readily achieved and expertise may differ). The possible difference in TB prevalence 309 310 between the two time-periods is a limitation, and has been taken into consideration in the analysis. The 311 analysis was undertaken from a laboratory perspective only; the impact of new molecular diagnostic tests on 312 patient costs is important and has been reported elsewhere²⁴.

313

314 Implications for policy and practice

315 The increase in total laboratory costs is in a similar range to that projected by two South African studies^{13,23}. 316 However we did not find the expected increases in TB-yield. Our findings are in keeping with a national study 317 showing an 8% decrease in the number of laboratory confirmed PTB cases from 2011 to 2012, despite the introduction of Xpert²⁵. Even when temporal trends of a possible declining prevalence were taken into 318 319 account in our study, increased costs were not matched with increased TB diagnostic efficacy. It is difficult to justify the increased laboratory costs incurred through the introduction of Xpert and cost implications should 320 321 not be underestimated. If the \$160,411 spent on TB diagnosis in the Xpert-based algorithm was used for 322 testing as per the smear/culture-based algorithm, the number of presumptive TB cases screened could have been increased by over 100% (from 7,714 to 16,158). 323

324

There is strong impetus to increase the use of Xpert. To mid-2014, 7.5 million Xpert cartridges were procured internationally with more than half being procured by South Africa²⁶. However, the broader impact of Xpert remains questionable. Although studies have reported early TB^{21,27,28} and MDR-TB^{29,30} treatment initiation, Xpert had no impact on TB morbidity and mortality^{27,31,32}. This together with the increased costs warrants a review of the role of Xpert in TB diagnosis.

330

Having invested heavily in this new technology, a reversion to a smear/culture-based algorithm is unlikely. Thus either technical adjustments need to be sought to improve Xpert sensitivity and / or the price of Xpert has to be substantially reduced to improve cost-effectiveness in our setting. Urgent efforts need to be made to optimise costs through improved efficiency of the Xpert-based algorithm, including exploring alternative options. Theron et al, for example, showed that pre-screening with smear reduced the cost of a TB diagnosis in their model by more than 20%³³. A discrete event simulation model has been developed and validated as part of PROVE IT and will be used to evaluate more cost-effective diagnostic options.

338

This study highlights the need for thorough costing during early implementation to inform scale-up. As new diagnostic technologies become available, consideration should also be given to the wider costs of serial implementation of different technologies, overlapping of different technologies and redundancies that are created when existing technologies are also retained⁹.

344 CONCLUSION

345

Economic costing is a key component in the decision to implement new TB diagnostic tests and careful consideration should be given to cost implications, particularly in resource-constrained, high-burden settings. The introduction of the Xpert-based algorithm has resulted in substantial increases in cost which are in line with modelling exercises undertaken in South Africa. However these were not matched by an increase in TB diagnostic efficacy; massive cost increases persist even when temporal trends of a possible declining TB prevalence were taken into consideration. One of the benefits of the Xpert-based algorithm was the modest increase in the number of MDR-TB cases diagnosed, which comes at high cost.

353

In view of the limited benefits, we have serious concerns about the sustainability of this expensive, new technology. More sensitive tests that are comparable to culture and that are substantially cheaper than Xpert (at current prices) are required, particularly if TB screening is to be substantially scaled up as suggested by the draft Global Plan to Stop TB 2016-2020³⁴.

358

359 Acknowledgements

The support from The Technology, Research, Education and Technical Assistance for Tuberculosis (TREAT TB) Project at the International Union against TB and Lung, National Health Laboratory Services, City of Cape Town Health Directorate and Western Cape Provincial Department of Health is acknowledged. We are grateful to Marlein Bosman and Heidi Albert for their assistance. Thanks to Hojoon Sohn and FIND for sharing the costing tool which was adapted for this study.

365

366 Author contributions:

All authors were involved in the study design. PN, RD and MVN collected the data. PN, RD and JM analysed
 the data. PN wrote the manuscript. All authors provided input to the manuscript and approved the final draft
 for submission.

370

371 Conflicts of interest:

372 The authors declare that they have no conflicts of interest.

373

374 Funding:

This research was supported by a United States Agency for International Development (USAID) Cooperative Agreement (TREAT TB – Agreement No. GHN-A-00-08-00004-00). The contents are the responsibility of the

- author(s) and do not necessarily reflect the views of USAID.
- 378
- 379
- 380

381 References

- 382
- Miotto P, Piana F, Cirillo DM, Migliori GB. Genotype MTBDRplus: a further step toward rapid identification of drug-resistant Mycobacterium tuberculosis. J Clin Microbiol. 2008;46(1):393–4.
- Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, Tahirli R, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet.
 2011;377(9776):1495–505.
- Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J. 2008;32(5):1165–74.
- Steingart KR, Sohn H, Schiller I, Kloda LA, Boehme CC, Pai M DN. Xpert® MTB/RIF assay for
 pulmonary tuberculosis and rifampicin resistance in adults (Review). Cochrane Collaboration. 2013.
 [Accessed 11 Aug 2013]. Available from: http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD009593.pub2/pdf/standard
- World Health Organisation. Molecular Line Probe Assays For Rapid Screening Of Patients At Risk Of
 Multidrug-Resistant Tuberculosis. Policy Statement. World Health Organisation, 2008. [Accessed 02
 May 2013]. Available from: http://www.who.int/tb/features_archive/policy_statement.pdf
- World Health Organisation. Rapid Implementation of the Xpert MTB / RIF diagnostic test. World Health Organisation, 2011. [Accessed 30 October 2012]. Available from: http://apps.who.int/iris/bitstream/10665/44586/1/9789241501545_eng.pdf
- Pai M, Minion J, Steingart K, Ramsay A. New and improved tuberculosis diagnostics : evidence, policy, practice, and impact. Curr opin pulm med. 2010;Vol.16(3):pp.271–84.
- 4038.Cobelens F, van den Hof S, Pai M, Squire SB, Ramsay A, Kimerling ME. Which new diagnostics for
tuberculosis, and when? J Infect Dis. 2012;205 Suppl S191–8.
- 4059.Kirwan DE, Cárdenas MK, Gilman RH. Rapid implementation of new TB diagnostic tests: is it too406soon for a global roll-out of Xpert MTB/RIF? Am J Trop Med Hyg. 2012;87(2):197–201.
- 40710.Tan-Torres Edejer, T, Baltussen R, Adam T, Hutubessy R, Acharya A. et al (Ed). Making choices in408health WHO guide to cost-effectiveness analysis. World Health Organisation. 2003.
- 409 11. Bill and Melinda Gates Foundation. Methods for Economic Evaluation Project (MEEP) The Gates
 410 Reference Case What it is, why it's important, and how to use it. 2014. [Accessed 11 Dec 2015].
 411 Available from https://www.nice.org.uk/Media/Default/About/what-we-do/NICE412 International/projects/Gates-Reference-case-what-it-is-how-to-use-it.pdf
- Adams T, Evans DB, Koopmanschap MA. Cost-Effectiveness Analysis: Can We Reduce Variability In
 Costing Methods? International Journal of Technology Assessment in Health Care, 2003;2:407–20.
- Vassall A, van Kampen S, Sohn H, Michael JS, John KR, den Boon S, et al. Rapid diagnosis of tuberculosis with the Xpert MTB/RIF assay in high burden countries: a cost-effectiveness analysis.
 PLoS Med. 2011;8(11):e1001120. [Accessed 29 Jan 2014] Available from: http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001120
- 419 14. Shah M, Chihota V, Coetzee G, Churchyard G, Dorman SE. Comparison of laboratory costs of rapid
 420 molecular tests and conventional diagnostics for detection of tuberculosis and drug-resistant
 421 tuberculosis in South Africa. BMC Infect Dis. 2013;13(1):352. Available from:
 422 http://www.biomedcentral.com/1471-2334/13/352
- Sohn H, Minion J, Albert H, Dheda K, Pai M. TB diagnostic tests: how do we figure out their costs?
 Expert Rev Anti Infect Ther. 2009;7(6):723–33.

- 425 16. Walker D, Kumaranayake L. How to do (or not to do)... Allowing for differential timing in cost analyses: discounting and annualization. Health policy and planning. 2002;17(1):112–8.
- 427 17. Statistics South Africa. Statistical release. Consumer Price Index. April 2014 [Accessed 26 May 2014]
 428 http://www.statssa.gov.za/publications/P0141/P0141April2014.pdf
- 18. Drummond MF, Schulper MJ, Torrance GW OB and SG. Methods for the economic evaluation of
 health care programmes. 3rd edition. Oxford University press. 2005
- 431 19. United Nations Treasury Operational Rates of Exchange. [Accessed 19 Sept 2013] Available from 432 https://treasury.un.org/operationalrates/OperationalRates.php#S
- 433 20. Naidoo P, Dunbar R, Lombard C, du Toit E Caldwell J et al. Comparing tuberculosis diagnostic yield 434 in smear/culture and Xpert® MTB/RIF-based algorithms using a non-randomised stepped-wedge 435 design. PLoS One. 2016;11(3):e0150487. [Accessed 03 March 2016] Available from 436 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150487
- 437 21. Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, Cunningham J, et al. Sputum processing
 438 methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet
 439 Infect Dis. 2006;6(10):664–74.
- Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, Cunningham J, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis. 2006;6(9):570–81.
- 443 23. Meyer-Rath G, Schnippel K, Long L, Macleod W, Sanne I, Stevens W, et al. The Impact and Cost of 444 Scaling up GeneXpert MTB / RIF in South Africa. PlosOne. 2012;7(5):e36966. [Accessed 30 Oct 2012] Available from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036966
- 446 24. Du Toit E, Squire SB, Dunbar R, Machekano R, Madan J, Beyers N, et al. Comparing multidrug447 resistant tuberculosis patient costs under molecular diagnostic algorithms in South Africa. Int J TB
 448 Lung Dis. 2015;19(8):960-8.
- Alama Nanoo A, Izu A, Ismail NA, Ihekweazu C, Abubakar I, Mametja D, et al. Nationwide and regional
 incidence of microbiologically confi rmed pulmonary tuberculosis in South Africa, 2004 12 : a time
 series analysis. Lancet Infect Dis. 2015;15(9):1066-76.
- 452 26. Qin ZZ, Pai M1, Van Gemert W, Sahu S, Ghiasi M CJ. How is Xpert MTB/RIF being implemented in 22 high tuberculosis burden countries? Eur Respir J. 2015;45(2):549–53.
- Theron G, Zijenah L, Chanda D, Clowes P, Rachow A, Lesosky M, et al. Feasibility, accuracy, and
 clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa:
 a multicentre, randomised, controlled trial. Lancet. 2013;383(9915):424–35.
- 457 28. Cox HS, Mbhele S, Mohess N, Whitelaw A, Muller O, Zemanay W, et al. Impact of Xpert MTB / RIF
 458 for TB Diagnosis in a Primary Care Clinic with High TB and HIV Prevalence in South Africa : A
 459 Pragmatic Randomised Trial. PlosMed. 2014;11(11):1–12. [Accessed 17 Nov 2014] Available from
 460 http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001760
- 461 29. Naidoo P, du Toit E, Dunbar R, Lombard C, Caldwell J, Detjen A, et al. A Comparison of Multidrug462 Resistant Tuberculosis Treatment Commencement Times in MDRTBPlus Line Probe Assay and
 463 Xpert® MTB/RIF-Based Algorithms in a Routine Operational Setting in Cape Town. PLoS One. 2014
 464 ;9(7):e103328. [Accessed 01 Aug 2014] Available from:
 465 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103328
- 466 30. Cox HS, Daniels JF, Muller O, Nicol MP, Cox V, Cutsem G Van, et al. Impact of Decentralized Care 467 and the Xpert MTB / RIF Test on Rifampicin-Resistant Tuberculosis Treatment Initiation in 468 Khayelitsha , South Africa. 2013;1–7. Open Forum Infectious Diseases 2015; 2,ofv014). [Accessed 469 25 Fb 2015] Available from http://ofid.oxfordjournals.org/content/2/1/ofv014.full.pdf+html

- Mupfumi L, Makamure B, Chirehwa M, Sagonda T, Zinyowera S, Mason P, et al. Impact of Xpert
 MTB / RIF on Antiretroviral Therapy-Associated Tuberculosis and Mortality : A Pragmatic
 Randomized Controlled Trial. Open forum infectious diseases. 20141,1:ofu038. [Accessed 15 June
 Available from http://ofid.oxfordjournals.org/content/1/1/ofu038.full.pdf+html
- 475 32. Churchyard G, McCarthy K, Fielding KL, Stevens W, Chihota V, Nicol M, et al. Effect of Xpert MTB /
 476 RIF On Early Mortality in Adults With Suspected TB : A Pragmatic Randomized Trial. CROI. 2014
 477 (Abstract).
- Theron G, Pooran A, Peter J, van Zyl-Smit R, Kumar Mishra H, Meldau R, et al. Do adjunct
 tuberculosis tests, when combined with Xpert MTB/RIF, improve accuracy and the cost of diagnosis
 in a resource-poor setting? Eur Respir J. 2012;40(1):161–8.
- 48134.The Stop TB Partnership. Bending the Curve : A Global Investment Framework to Win the Fight
against TB. The Global Plan to Stop TB. 2016-2020 (Draft June 2015). [Accessed 18 Nov 2015]483Avaiable from http://stoptbplan2020.org/wp-content/uploads/2015/06/Global-Plan-to-Stop-TB-2016-
2020_Draft-9-June-2015_.pdf

485

486

487 Table 1: Comparison of test costs in the smear/culture and Xpert-based algorithms

		Smear microscopy (Bleach treated)	Smear microscopy & culture	Culture confirmation	MTBDRPlus Line Probe Assay	Xpert MTBRif
Smear/culture-	Building space	\$0.02	\$0.14	\$0.05	\$0.15	-
(April – June	Equipment	\$0.11	\$0.72	\$0.02	\$0.17	-
2011)(T1)	Consumables	\$0.36	\$3.87	\$0.84	\$12.67	-
	Staff	\$0.55	\$2.21	\$0.57	\$1.34	-
	Overheads	\$1.80	\$1.80	\$0.00	\$1.80	-
	Cost per test	\$2.85	\$8.75	\$1.49	\$16.12	-
	Number of tests	45 252	27 508	4 747	3 987	-
	Total costs	\$128 916	\$240 706	\$7 065	\$64 279	-
Xpert-based	Building space	\$0.02	\$0.14	\$0.05	\$0.15	\$0.06
(April – June	Equipment	\$0.13	\$0.74	\$0.02	\$0.18	\$0.40
2013)(T2)	Consumables	\$0.36	\$3.87	\$0.84	\$12.67	\$14.62
	Staff	\$0.55	\$2.21	\$0.57	\$1.34	\$1.32
	Overheads	\$2.64	\$2.64	\$0.00	\$2.64	\$2.64
	Cost per test	\$3.70	\$9.62	\$1.49	\$16.98	\$19.03
	Number of tests	17 770	16 503	2 020	1 905	19 565
	Total costs	\$65 799	\$158 700	\$3 007	\$32 339	\$372 418

488

489 Test costs and volumes are for the central National Health Laboratory only. Total laboratory costs were \$440,967 in the

490 smear-culture-based algorithm compared to \$632,262 in the Xpert-based algorithm for respective 3-month periods. All

491 costs are expressed in 2013 CPI-adjusted values.

492

494 Table 2: Costs per pulmonary TB and MDR-TB case diagnosed in the smear/culture and Xpert-based algorithms

	Costs in the smear/culture-based algorithm	Costs in the Xpert- based algorithm	Changes with the Xpert- based algorithm
Smear microscopy (Bleach treated)	\$29 833.23 (n=10,472)	\$10 038.29 (n=2,711)	-\$19 794.94
Smear microscopy & culture (Sodium hydroxide/sodium citrate-treated)	\$46 788.44 (n=5,347)	\$35 475.12 (n=3,689)	-\$11 313.32
Culture confirmation	\$1 458.51 (n=980)	\$641.53 (n=431)	-\$816.98
Xpert MTB Rif	_	\$114 380.73 (n=6,009)	\$114 380.73
Total TB diagnostic costs	\$78 080.18	\$160 535.67	\$82 455.50
Number of presumptive TB cases evaluated	7 842	7 714	-128
Number TB cases identified	1 601	1 281	-320
Mean cost per TB case identified	\$48.77	\$125.32	\$76.55
Total costs for MTBDRPlus Line Probe Assay	\$13 429.75 (n = 833)	\$6 264.02 (n = 369)	-\$7 165.73
Number of MDR-TB cases diagnosed	95	107	12
Mean additional cost per MDR-TB case diagnosed	\$141.37	\$58.54	-82.82
Mean total cost per MDR-TB case diagnosed	\$190.14	\$183.86	-\$6.27

Figure 1: Testing protocols in TB diagnostic algorithms

The simplified sequence of diagnostic tests in each algorithm and the action taken based on test results is shown. Abbreviations: TB - tuberculosis; LPA – Genotype MTBDRPlus line probe assay; DST - drug susceptibility testing; HIV – human immunodeficiency virus; MTB – mycobacterium tuberculosis. Reprinted from: Naidoo P, Dunbar R, Lombard C, du Toit E Caldwell J et al. Comparing tuberculosis diagnostic yield in smear/culture and Xpert® MTB/RIF-based algorithms using a non-randomised stepped-wedge design. PLoS One. 2016;11(3):e0150487.

Figure 2: Laboratory workflow and test processes

