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Abstract

Understanding spatial variation in carbon storage in natural habitats is critical
for climate change mitigation efforts such as REDD. Terrestrial forests are be-
ing mapped with increasing accuracy, but the distribution of “blue carbon” in
marine ecosystems remains poorly understood. We reviewed the literature to
obtain field data on carbon storage and fluxes in mangroves world-wide. Us-
ing this material we developed a climate-based model for potential mangrove
above-ground biomass (AGB) with almost four times the explanatory power of
the only previous published model. From this model, we present the first ever
global map of potential mangrove AGB and estimate a total global mangrove
AGB of 2.83 Pg, with an average of 184.8 t ha−1. Data on other carbon stocks
and fluxes confirm the importance of mangroves in carbon accounting. The
map highlights the high variability in mangrove AGB and indicates areas that
should be prioritised for mangrove conservation and restoration.

Introduction

Deforestation, particularly in tropical regions, is the sec-
ond largest source of anthropogenic CO2 emissions after
fossil fuels, contributing 12–20% of the total (IPCC 2007;
van der Werf et al. 2009). Understanding spatial varia-
tion in forest biomass and productivity is therefore crucial
for refining global climate models and developing policy
responses, including REDD and similar mitigation efforts
(Nepstad et al. 2011; Grabowski & Chazdon 2012).

There are growing efforts to more accurately map car-
bon stocks and fluxes at global scales (Saatchi et al. 2011;
Baccini et al. 2012), but mangroves have largely been ig-
nored in these syntheses due to their small spatial ex-
tent and the mapping challenges they present. Despite
this small extent, field studies have shown mangroves
to have high above-ground biomass, productivity (e.g.,
Putz & Chan 1986; Matsui 1998; Alongi et al. 2004),
soil carbon (Donato et al. 2011), below-ground to above-
ground biomass ratios (Komiyama et al. 2008; Lovelock

2008), and high rates of carbon sequestration (Mcleod
et al. 2011; Alongi 2012; Breithaupt et al. 2012).

Mangroves are also highly threatened. A third of the
world’s mangroves have likely been lost over the last 50
years largely through conversion for aquaculture or agri-
culture (Alongi 2002). Annual deforestation rates were
estimated at ∼0.7% from 2000–2005 (Spalding et al.

2010), similar to or higher than those for tropical forests
and three to five times greater than mean global rates of
forest loss (FAO 2006). Rapid loss rates, combined with
high carbon values means that, despite their small extent,
mangroves may contribute 10% of total carbon emissions
from deforestation (Donato et al. 2011).

Some earlier studies attempted to derive estimates of
global average carbon stocks and fluxes in mangrove
forests (e.g., Alongi 2009; Donato et al. 2011). Two of
these incorporated a model of spatial variation, using a
simple linear relationship of above-ground biomass with
latitude (Twilley et al. 1992; Siikamäki et al. 2012). In this
paper, we synthesize the findings from a new review of
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mangrove biomass and productivity from 95 field stud-
ies. Using some of these data, we develop a climate-based
model for estimating mangrove above-ground biomass.
By linking this to global data on climate and mangrove
distribution, we present the first ever global map of pre-
dicted mangrove above-ground biomass.

Methods

Literature search

We used Google Scholar and Web of Science to find stud-
ies giving data on mangrove carbon stocks and fluxes. Ini-
tial search terms were “mangrove” plus “carbon,” “car-
bon storage,” “carbon sequestration,” “carbon fixation,”
“biomass,” “productivity,” and “litter fall.” The search
was expanded by following references from the initial
result set. We found studies giving measures of above-
ground biomass, below-ground (root) biomass, soil car-
bon, above-ground primary productivity, litterfall, and
soil carbon accumulation rates. For soil carbon accumula-
tion rate we found very little data, so no further analysis
was carried out. We determined sampling site locations
using Google Earth. Studies were only included if the lo-
cation could be determined to within 0.01◦ of latitude and
longitude, using coordinates, published maps, or place
names. Studies from regenerating or planted mangroves
were excluded from the analysis where stands were less
than 10 years old.

We also excluded remote sensing studies which esti-
mate biomass from proxies such as canopy height, mea-
sured using Shuttle Radar Topography Mission or Geo-
science Laser Altimeter System data. Such approaches
are proving highly valuable for capturing local scale vari-
ance in biomass, but they also introduce new uncertain-
ties, both around the estimation of canopy height, and
in the allometric equations used to derive biomass esti-
mates (Fatoyinbo & Simard 2013). These uncertainties
are much larger than those from field studies, which tend
to use locally derived species-specific allometric equations
and measure trunk diameter at breast height, a better pre-
dictor of biomass than canopy height (Chave et al. 2005).

Climate model of above-ground biomass

Although we were able to gather considerable data
for many variables, only the dataset for above-ground
biomass (AGB) proved sufficiently large to develop a ro-
bust model. We briefly investigated the latitude-based
model developed by Twilley et al. (1992) and recently
used to develop a global biomass estimate (Siikamäki
et al. 2012). However, this model explained little of the
variation observed in our sample (see section “Results”)

so we attempted to develop a model based on climate.
For each location where we had AGB measures, we ex-
tracted bioclimatic data from the WorldClim Bioclim 30
arc-second dataset (http://www.worldclim.org/bioclim),
a global interpolated dataset of 19 bioclimatic variables,
derived from monthly temperature and rainfall (Hijmans
et al. 2005).

To prevent clustered sampling points having dispropor-
tionate influence, we merged points within 10 km of each
other and used their mean AGB values. From the original
102 locations for AGB, this left us with 52 points for use
in the model. Bioclim is a terrestrial dataset, so where
mangroves fell in areas classified as water, the climate
values were taken from the nearest point with data.

Many of the variables in the Bioclim dataset are highly
correlated, making it necessary to choose a subset for use
in the model. Working on the assumption that mangrove
biomass will be affected by temperature and precipita-
tion, we chose two sets of variables to represent these
(Table 1). The first set used an annual summary mea-
sure (mean temperature and total precipitation) with a
measure of the variation (standard deviation of monthly
temperature and coefficient of variation of monthly pre-
cipitation) to give an overall representation of climate
and seasonality. The second set assumed that mangrove
biomass might be limited by extremes of heat, cold, and
drought, and therefore used the mean temperature of
the warmest and coldest quarters and the precipitation of
the wettest and driest quarters. We used quarterly rather
than monthly measures as mangroves are large plants
with adaptations to dry conditions so seem unlikely to
be affected by monthly fluctuations. We fitted two linear
models with AGB as a response variable and each of the
two sets of climatic variables as predictors. We also exper-
imented with a model including climate variables and lat-
itude. The models were compared using Akaike informa-
tion criterion (AIC), which gives an indication of which
model gives the most information for the least complex-
ity. We used bootstrap resampling with 1,000 runs to
generate confidence intervals for the predicted biomass
measures. Models were fitted using R version 2.14 (R
Development Core Team 2011).

Mapping

We applied our best model to the global layers in Bio-
clim and the mangrove map developed by Spalding et al.
(2010) to construct a worldwide map of potential man-
grove AGB. To avoid extrapolating beyond the conditions
used to build the models, we set any climate values above
(or below) the range found in our study sites to the max-
imum (or minimum) of that range. The predicted AGB
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Table 1 The two sets of climate variables used for modeling (see www.worldclim.org/bioclim)

Set 1: averages and seasonalities Set 2: extremes

Variable Name Variable Name

BIO1 Annual mean temperature (◦C) BIO10 Mean temperature of warmest quarter (◦C)
BIO4 Temperature seasonality: S.D. of monthly mean temperature. BIO11 Mean temperature of coldest quarter (◦C)
BIO12 Annual precipitation (mm) BIO16 Precipitation of wettest quarter (mm)

BIO15 Precipitation seasonality: CV of monthly precipitation BIO17 Precipitation of driest quarter (mm)

map layer was then used to calculate global, regional, and
national summary statistics.

Other measures

We summarized data on other carbon stocks
and fluxes for comparison to previous estimates.
For below-ground (root) biomass (BGB), we derived an
allometric relationship with AGB, using data from field
sites where we had measures of both variables. We used
this to add an indirect estimate of BGB to our spatial
model.

Results

The literature search produced 95 studies (Table S1), with
337 values for carbon storage and productivity proxies
(Table 2) from 242 different locations. These represent
data from 35 countries, covering most of the latitudinal
range of mangroves (from 28oN to 37oS, Figure 1), in-
cluding continental and island locations, and climate set-
tings from temperate estuaries to desert margins to wet
tropical regions.

Latitude model

Applying Twilley et al.’s (1992) latitude-based relation-
ship (Equation (1)), to our larger data set (n = 52) only
explained 7.6% of worldwide variation in AGB (R2 =
0.076). Reparameterizing this latitudinal model using our
data gave a new linear regression (Equation (2)), with a
much improved fit (decrease in AIC of 3.68), and explain-
ing almost twice the variance (13.9%).

(from Twilley et al. 1992):

AGB(t ha−1) = −7.291 Latitude(decimal degrees) + 298.5

(1)
(fitted to our dataset):

AGB(t ha−1) = −4.617 Latitude(decimal degrees) + 239.9

(2)

Climate model

Both our climate models, one based on annual extremes
and the other based on mean and variation in tempera-
ture and precipitation, were better supported than the fit-
ted latitude model (�AIC = 2.39 and 1.27, respectively)
and the original Twilley et al. relationship (�AIC = 6.09
and 4.96), and explained 26.7% and 25.1% of global
variation in AGB respectively (i.e., an almost fourfold in-
crease on the explanatory power of Twilley et al.’s origi-
nal relationship). The climate variables in set 2 marginally
outperformed those in set 1 (�AIC = 1.13, with an in-
crease in R2 of 1.6%), so we used this model (Equation
(3)) to develop our maps.

AGB
(
t ha−1) = 0.295BIO10 + 0.658BIO11

+ 0.0234BIO16 + 0.195BIO17−120.3. (3)

(BIO10 = mean temperature of warmest quarter, BIO11
= mean temperature of coldest quarter, BIO16 =
precipitation of wettest quarter, and BIO17 = Pre-
cipitation of driest quarter. See Table 1 for further
explanation.)

This equation indicates that biomass is higher in ar-
eas with higher temperatures, especially in the coldest
quarter. Areas with higher rainfall, especially in the dri-
est quarter, also have higher biomass. Adding latitude to
the model slightly increased AIC (�AIC = 0.80), indicat-
ing that it did not add any additional information. See
Figure S1 for plots of the individual predictors against our
dataset.

The global patterns of AGB predicted by the model are
shown on the map in Figure 2.

Global, regional, and national totals

The model predicts a total global AGB in the world’s
mangroves of 2.83 Pg (95% confidence interval 2.18–
3.40 Pg), and a global mean AGB of 184.8 t ha−1 (95%
CI 142.1–222.0 t ha−1). Southeast Asia accounts for al-
most half of total global AGB: this region not only has the
largest area of mangroves, but also has the highest mean
AGB per unit area—nearly double that of the Middle East
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Table 2 The final data sets from the literature search. Figures in brackets are before points within 10 km of one another weremerged. Summary statistics

are taken from the merged datasets

Variable n Mean Median Standard deviation

Stocks Above-ground biomass (t ha−1) 52 (102) 165.52 142.78 121.30

Below-ground biomass (t ha−1) 30 (55) 78.63 38.62 94.63

Soil carbon (t C ha−1) 21 (40) 446.91 444.96 175.44

Fluxes Above-ground net primary productivity (t biomass ha−1 yr−1) 37 (56) 29.25 18.78 30.12

Litter fall (t biomass ha−1 yr−1) 46 (84) 9.64 9.84 4.13

Soil C accumulation (t C ha−1 yr−1) 6 (17) 2.04 1.54 1.53

Figure 1 Global map of mangroves showing the locations where data were obtained for one or more measures of carbon stocks and fluxes.

(Table 3). Table 4 shows national statistics for the 10
countries with the largest mangrove AGB.

Below-ground biomass

We developed an allometric relationship between AGB
and BGB (Equation (4)), from sites where we had data
for both variables (n = 41, adjusted R2 = 0.712, F1,39 =
100, P < 0.001).

BGB
(
t ha−1) = 0.073AGB1.32

(
t ha−1) . (4)

Applying this equation to our modeled AGB layer gave
a global total BGB of 1.11 Pg (95% CI 0.74–1.64 Pg), giv-
ing a total combined biomass (AGB plus BGB) of 3.95 Pg.
This gives a global mean BGB:AGB ratio of 0.39, which,
when compared to a mean ratio of 0.28 for tropical ter-
restrial forests (Saatchi et al. 2011), supports earlier work
showing a high proportion of below-ground biomass in
mangroves (Komiyama et al. 2008).

Other biomass measures

Our datasets for other mangrove carbon stocks and
fluxes were too small for modeling with climate datasets,
but they are still an important compilation permit-
ting some limited assessment, as set out in Table 2.
For more discussion of these results see Supplementary
Information.

Discussion

Our climate-driven model provides an almost fourfold
increase in explanatory power compared to the only
other published relationship exploring spatial variation in
mangrove biomass (Twilley et al. 1992). Using this model,
our global estimate of AGB is lower than both this origi-
nal estimate and a more recent update (Siikamäki et al.
2012). Nonetheless, our models imply that mangroves
still host 1.4% of global tropical forest AGB and 1.6%
of the total tropical forest biomass (AGB and BGB) of
247 Pg estimated by Saatchi et al., despite occupying only
0.6% of tropical forest area (using the 10% canopy cover
definition).

By contrast, our AGB estimates are larger than those
from recent remote sensing studies. Fatoyinbo & Simard
(2013) estimate total mangrove biomass for Africa to be
301.7 million tonnes compared to 502.6 million tonnes
from our model. Part of this can be explained by differ-
ences in the baseline map of mangrove extent (their study
maps 25,960 km2 compared to our estimate of 30,751
km2). Further differences are probably due to degraded
mangrove areas: both studies produce similar estimates
for Gabon, which has some of the most pristine man-
grove habitat in Africa (23.89 million tonnes with our
model, compared to 23.84 million tonnes from Fatoyinbo
and Simard), but in Nigeria, where mangroves have been
extensively degraded through pollution and harvesting,
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their biomass estimate is only 60% of ours (94.8 million
tonnes vs. 152.0 million tonnes).

When it becomes available, a global biomass estimate
from remote-sensing surveys will provide a valuable al-
ternative to our modeled approach, offering real data
at much higher resolution, capable of showing patterns
of variance even within individual mangrove tracts, and
with the possibility of tracking change. Even so, our
approach will remain useful in helping to understand
drivers of variance, and in enabling some idea of the
potential carbon values that might be returned following
restoration or recovery of degraded systems. It also pro-
vides proof-of-concept for modeling methods that might
be adapted, using other drivers, to map ecosystem ser-
vices which cannot be easily derived from remote sens-
ing, including carbon stocks and fluxes in other habitats,
or measures of value for fisheries or coastal protection.

Spatial variability

The most striking feature of our map of AGB is the high
level of variation. Low AGB areas (below 80 t ha−1) are
found at the limits of mangrove distribution where the
key climatic variable is typically cold temperature, but
may also include aridity (e.g., in western Mexico and
in the Middle East). Mangrove forests with high AGB
are more variable in their distribution, but our highest
values (above 280 t ha−1) are typically associated with
tropical areas with year-round high rainfall. These pat-
terns appear to follow trends in AGB for terrestrial forests
(Saatchi et al. 2011; Baccini et al. 2012).

Limitations

Fine-scale variation and zonation in forest structure is not
captured in our model. However, we believe that both
the field data and our aggregation of clustered sites have
helped generate representative mean estimates at land-
scape scales.

As discussed above, the model also does not account for
anthropogenic alteration or degradation. Overharvest-
ing, disease, pollution, and other impacts can alter for-
est structure, and hence impact biomass and productiv-
ity. While some field studies may include sites with some
degree of degradation, there is likely to be a sampling bias
toward relatively healthy forests. In areas where man-
groves have been extensively degraded, our map there-
fore represents potential biomass, rather than existing
biomass.

The largest gaps in our input data for the model were
from Central and West Africa and the Pacific coast of the
Americas. While this highlights areas for research atten-
tion, the species composition of mangrove communities

in these regions is very similar to that found elsewhere,
so we believe that our model remains relatively robust
even in these areas.

Estimates of global biomass will of course be influenced
by the accuracy of the base map of mangroves. We used
the World Atlas of Mangroves dataset which was largely
built up from 1999–2003 Landsat images, using a vari-
ety of image-processing techniques and with consider-
able expert review (Spalding et al. 2010). The global map
produced by Giri et al. (2011), and the map of African
mangroves developed by Fatoyinbo & Simard (2013) use
essentially the same Landsat imagery, with less expert
review, but more systematic processing. Each map has
somewhat different estimates of mangrove cover, and
there has been no detailed comparison of these to assess
accuracy. In all cases it is worth noting that the images
are now 10–14 years out of date, and rates of loss suggest
that global biomass would have declined substantially in
that time frame.

Policy implications

Our map provides a valuable tool for assessing carbon
stocks and highlighting priority areas for conservation
and restoration interventions. These include:

(1) Countries with high total mangrove biomass such as
Indonesia, Nigeria and Brazil, where effectively im-
plemented national policies could make an impor-
tant contribution to global carbon fluxes.

(2) Countries with high average biomass, where invest-
ment in mangrove conservation could yield high re-
turns per unit area.

(3) Countries where mangroves make up a large propor-
tion of total forest, including Small Island Develop-
ing States (SIDS) such as Cuba and the Solomon Is-
lands, where awareness of the high-carbon values of
mangroves could foster engagement with policy and
market-based instruments for forest conservation.

(4) Countries with high-mangrove biomass loss rates,
which offer the greatest potential for interventions
to slow emissions. Indonesia is the prime example,
with high rates of mangrove forest loss and high av-
erage AGB (FAO 2007).

(5) Countries where mangrove restoration will yield
high-carbon benefits. This could be particularly valu-
able in locations which have lost much of their man-
groves such as Java, Thailand, the Philippines, and
southern China (Spalding et al. 2010).

Policy and market-based approaches are likely to be
critical in increasing efforts to reduce mangrove loss and
to stimulate restoration (Siikamäki et al. 2012). While
funding mechanisms through schemes such as REDD still
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Table 3 Total AGB and mean AGB per unit area for different regions. Regions are those used by Spalding et al. (2010)

Upper 95% Lower 95% Mangrove Mean ABG

Region AGB (t) confidence interval confidence interval area (ha) (t ha−1)

Eastern and Southern Africa 143,328,000 189,446,000 106,207,000 1,050,958 136.4

Middle East 14,746,000 22,258,000 7,564,000 133,585 110.4

South Asia 136,602,000 173,379,000 79,701,000 1,001,443 136.4

Southeast Asia 1,131,563,000 1,495,693,000 810,748,000 4,901,429 230.9

East Asia 2,535,000 3,328,000 1,368,000 23,642 107.2

Australia and New Zealand 87,510,000 109,993,000 67,911,000 658,247 132.9

Pacific Islands 133,465,000 179,902,000 83,623,000 572,099 233.3

North and Central America and the Caribbean 356,290,000 443,465,000 277,714,000 2,452,775 145.3

South America 465,905,000 561,794,000 349,145,000 2,509,463 185.7

West and Central Africa 357,443,000 455,389,000 235,014,000 2,010,453 177.8

Global Total 2,829,387,000 3,400,109,000 2,176,178,000 15,314,094 184.8

Table 4 Total AGB andmean AGB per unit area for the 10 countries with the largest total mangrove AGB. See Table 2 for amore complete list of countries

Upper 95% Lower 95% Country

Country AGB (t) confidence interval Lowerconfidence interval Area (ha) mean (t ha−1)

Indonesia 729,075,000 984,785,000 451,694,000 2,986,496 244.1

Brazil 227,460,000 291,042,000 166,694,000 1,347,998 168.7

Malaysia 179,186,000 244,416,000 114,869,000 709,661 252.5

Nigeria 152,010,000 184,828,000 107,497,000 778,944 195.1

Mexico 134,907,000 172,710,000 103,236,000 964,438 139.9

Colombia 103,870,000 142,423,000 66,624,000 410,152 253.2

Papua New Guinea 98,684,000 132,809,000 61,891,000 418,611 235.7

Burma 89,001,000 127,313,000 34,889,000 514,261 173.1

Australia 85,489,000 107,631,000 66,226,000 632,164 135.2

Cuba 69,628,000 95,092,000 52,267,000 495,975 140.4

Global total 2,829,387,000 3,400,109,000 2,176,178,000 15,314,106 184.8

face significant challenges, other approaches such as off-
set markets are already beginning to receive some inter-
est and investment (Giraud & Hemerick 2012). Critical to
the development of stronger policy incentives will be to
move beyond the global averaging of ecosystem service
values to spatially explicit measures. Our modeling ap-
proach provides a simple measure for one carbon stock,
and, with better data, might be similarly developed for
other stocks and fluxes, and for other ecosystems. Higher
resolution approaches will certainly prove more valuable
for site level assessments, but global and regional maps
of variance remain important for influencing large-scale
policy and investment.

Beyond carbon storage, mangroves deliver a host of
other ecosystem services, including coastal protection,
fisheries, timber, water purification and biodiversity (e.g.,
Sathirathai & Barbier 2001; Gunawardena & Rowan
2005). Increased investments to secure individual ecosys-
tem services are therefore likely to yield multiple addi-
tional economic and social benefits. Similarly, improve-
ments in understanding the value and drivers of other

ecosystem services may further bolster efforts to manage,
maintain, or restore mangroves. The mapping of patterns
in such values has the potential to greatly help direct
where climate, development and conservation resources
can be spent to best effect.
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Additional Supporting Information may be found in the
online version of this article at the publisher’s web site:

Disclaimer: Supplementary materials have been peer-
reviewed but not copyedited. The following supplemen-
tary material is available for this article:

Figure S1 Plots of the 52 AGB data points against the
climate variables used in the final model.
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Figure S2 Plot of the 52 AGB observed values against
the values predicted by the model for those locations,
with a 1:1 line.

Table S1 References for biomass and flux data found
by the literature search.

Table S2 AGB and BGB mean and total by country,
sorted by total AGB, for all countries with >5000 ha of
mangroves.

This material is available as part of the online ar-
ticle from: http://www.blackwell-synergy.com/doi/full/
10.1111/j.1755–263X.2008.00002.x (This link will take
you to the article abstract).
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