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Abstract: In this article, the process for reaching “developed” stage was investigated under both imposed 

shear stress and specified velocity boundary conditions. Four specific situations are investigated. These are 

(1) constant shear stress, (2) linearly increasing shear stress from zero shear, (3) constant velocity and (4) 

linearly increasing velocity from stationary. Analytical solutions of velocity distributions under these four 

situations were obtained. A dimensionless viscosity, defined as the ratio of the measured viscosity 

calculated based on the measuring principle of Couette-type viscometer to the true viscosity of fluid was 

proposed to describe the initial transient period. We define the “developed” stage when the dimensionless 

viscosity is 1% away from its final value or when it reaches 1.01. By analyzing Stokes’ first problem, 

compact models of the dimensionless viscosity were expressed and exact quantitative relations among the 

initial values of dimensionless viscosity under these four specific situations were found. Time periods for 

Couette flow to reach the “developed” stage was calculated. The development time is the shortest under the 

constant velocity boundary and is the longest under the linearly increasing shear stress boundary.  
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Nomenclature 

𝑑 the distance between two parallel plates, m 

𝑢 fluid velocity, m s⁄  

𝑥 vertical spatial coordinate, m 

𝑡 time, s  

𝑢0 initial velocity imposed on the moving plate, m s⁄  

𝛼 acceleration of the bottom wall, m s2⁄  

𝑢𝑑 velocity after the flow field has developed, m s⁄  

𝑢𝑤 imposed wall velocity, m s⁄  

𝑡𝑑 time period to reach developed stage, i.e., development time, s 

𝑤 the velocity during the developing period, m s⁄  

𝑡∗ dimensionless time, dimensionless time 

ℒ symbol of Laplace transform 

ℒ−1 symbol of inverse Laplace transform 

𝑠 a complex quantity 

𝑈 Laplace transform in 𝑠 domain of 𝑢 
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Greek Symbols 

𝜇𝑀 measured viscosity based on measuring principle, Pa ∙ s 

𝜏𝑀 measured shear stress, Pa 

𝜏𝑤 imposed wall shear stress, Pa 

𝛾̇𝑀 measured shear rate, s−1 

𝜇̃ dimensionless viscosity, dimensionless  

𝜇 true viscosity of fluid, Pa ∙ s 

𝜈 kinematic viscosity of fluid, m2 s⁄  

𝜏0 the initial shear stress imposed at inner surface of moving plate, Pa 

𝜀 the growth rate of imposed shear stress, Pa/s 

𝛽𝑛 eigen value, dimensionless 

𝜉𝑛 eigen value, dimensionless 

𝜇̃𝜏 𝜇̃ under imposed shear stress condition 

𝜇̃𝑢 𝜇̃ under imposed velocity boundary condition 

𝜇̃𝜏=𝜏0 𝜇̃ under the constant shear stress condition 

𝜇̃𝜏=𝜀𝑡 𝜇̃ under the condition of linearly increasing shear stress with time from 0 

𝜇̃ 𝑢=𝑢0 𝜇̃ under the condition of constant velocity 

𝜇̃𝑢=𝛼𝑡 𝜇̃ under the condition of linearly increasing velocity with time from 0 

 

1. INTRODUCTION 

Viscosity measurements are usually conducted using flow between two cylinders. The outer cylinder is 

kept stationary while the inner cylinder rotates. The inner cylinder’s rotation is induced through (1) 

imposed wall shear stress 𝜏𝑤 or (2) imposed wall velocity 𝑢𝑤. Due to the large radius of curvature of the 

experimental setup, the flows between the two cylinders are commonly modeled as Couette flow between 

two parallel plates separated by a distance 𝑑 as shown in Fig. 1 (a).  

Initial start-up where one plate starts suddenly at a constant velocity and the other one is kept at rest has 

been investigated. Analytical solutions of the time-dependent velocity distributions have been reported by 

many researchers[1–3]. Based on the fundamental issue, now scientists have carried out further research on 

unsteady Couette flow subjected to many special conditions, such as the transient Couette flow with 

applied pressure gradients[4], unsteady Couette flow of non-Newtonian fluid[5–10] and transient Couette 

flow through a porous medium or in a magnetic field[11–13]. These researchers considered the moving 

plate as an imposed velocity boundary. Ting[14] studied the unsteady Couette flows of a second grade fluid 

where the moving plate was subjected to constant tangential surface force. Bernardin and Nouar [15] 

investigated the transient flow in Taylor-Couette system where the moving wall was subjected to constant 

torque boundary.  

Muzychka and Yovanovich [16] illustrated the relationship between the unsteady Couette flow and 

Stokes’ first problem by conducting asymptotic analysis on transient Couette flow of Newtonian fluid. 

They proposed a compact model to describe the time-dependent shear stress on the internal surface of the 

moving plate. But only the imposed constant velocity boundary condition was considered. In practice, the 

choice of boundary condition varies in the application of Couette flow. Transient Couette flow under step 
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velocity and step shear stress boundary conditions were discussed in literature [17]. However, the initial 

conditions of step flow were dynamic and the time-dependent boundary condition was not considered. 

Connection and comparison of the transient stage of Couette flow starting from rest under different 

boundary conditions should be worthy of attention. 

In this article, asymptotic analysis is conducted and time periods for transient Couette flow starting from 

rest to reach developed stage are compared quantitatively for both imposed shear stress and imposed 

velocity boundary conditions. Four specific situations are considered. These are (1) constant shear stress, (2) 

linearly increasing shear stress with time from zero shear, (3) constant velocity and (4) linearly increasing 

velocity with time from stationary. 

The remainder of this article is divided into seven sections. The problem analyzed in this article is 

outlined and the definition of the dimensionless viscosity is presented in the next section. Mathematical 

descriptions of the problem which include the governing equation, the initial condition and the boundary 

conditions are listed in section 3. The velocity distributions under different boundary conditions are 

obtained in section 4. Solutions of the dimensionless viscosities are presented in section 5. Dimensionless 

viscosity for 𝑡 → 0 are obtained by solving the Stokes’ first problem and compact models of the 

dimensionless viscosity are presented in section 6. This is followed by discussion of the results. Some 

concluding remarks are given to conclude the article. 

 

2. PROBLEM DESCRIPTION  

   

(a)                                (b) 

Fig. 1 (a)Schematic of the Couette flow problem  (b) Schematic of the Stokes’ first problem 

Fig. 1(a) shows the schematic of Couette flow. The flows between two parallel plates separated by a 

distance 𝑑 start from rest by imposing different conditions on the bottom wall while the top wall remains 

stationary. The velocity field of the Newtonian fluid between the parallel plates is also a function of vertical 

spatial coordinate 𝑥 and time 𝑡. 

Based on the viscosity measuring principle of Couette type viscometer, measured viscosity is described 

as  

 

𝜇𝑀 =
𝜏𝑀
𝛾̇𝑀

 (1) 

 

where the measured shear stress 𝜏𝑀 is the actual shear stress at the inner surface of the moving plate 
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which has been defined in literature [17] and the measured shear rate 𝛾̇𝑀 is calculated by the actual 

velocity of moving plate and the distance between two parallel plates as 

𝛾̇𝑀 ≡
𝑢(𝑥 = 0, 𝑡)

𝑑
 (2) 

A dimensionless viscosity 𝜇̃ which the same meaning as the relative coefficient of viscosity in literature 

[17] is defined as  

 

𝜇̃(𝑡) ≡
𝜇𝑀
𝜇
= −

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
|
𝑥=0

∙
𝑑

𝑢(𝑥 = 0, 𝑡)
 (3) 

 

When a constant wall velocity is imposed, the shear stress at the moving wall develops from an infinite 

value (due to the velocity discontinuity as a result of the sudden jump in the wall velocity) to its 

steady-state value. When a constant shear force is imposed, the wall velocity develops from its initial 

stationary value to the developed value. Similar with literature[17], in this article, we use the dimensionless 

viscosity 𝜇̃ to quantify the transient period of a Couette flow under different boundary conditions. During 

the initial transient period, the measured viscosity is different from the actual fluid viscosity. Once the fluid 

velocity has developed, the measured viscosity equals with the true viscosity of fluid resulting in a 

dimensionless viscosity of 𝜇̃(𝑡) = 1. 

At the very initial stage of a transient Couette flow, that is 𝑡 → 0, the velocity field has not penetrated far 

enough into the fluid to reach the stationary wall. Thus, the solution governed by Stokes’ first problem (Fig. 

1b) is valid soon after Couette flow commences[16]. 

After bottom plate moves suddenly in Fig. 1(a), the fluid velocity varies nonlinearly in space resulting in 

transient velocity gradient along coordinate x. This initial transient process of Couette flow varies with 

imposed boundary conditions. The objectives of this article are (1) to compare the initial transient stages of 

Couette flow quantitatively and (2) to estimate the length of these initial transient periods under different 

boundary conditions.  

3. MATHEMATICAL DESCRIPTIONS  

3.1 Governing Equation, Initial Condition and Boundary Condition at the Stationary 

Wall  

In this section, we present the materials common to both types of bottom wall boundary conditions. 

These will be used in the solutions of the two types of problems.  

From literature [17], governing equation can be written as 

 

𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑥2
 (4) 

 

where 𝑡 is the time, 𝑥 is the vertical spatial coordinate, and 𝜈 is the kinematic viscosity of the fluid. 

 

The fluid is initially stationary at 𝑡 = 0. This can be written as 

 

𝑢(𝑥, 𝑡 = 0) = 0 for 0 ≤ 𝑥 ≤ 𝑑 (5) 

 

The top wall is always stationary which is the same as literature [17] and can also be written as 
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𝑢(𝑥 = 𝑑, 𝑡) = 0 for 𝑡 > 0 (6) 

 

3.2 Bottom Wall Boundary Conditions  

Imposed shear stress on the bottom wall: When a shear stress is imposed on the bottom wall, the 

bottom wall shear stress can be written as  

 

𝜏𝑤 = 𝜏(𝑥 = 0, 𝑡) = −𝜇
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
|
𝑥=0

= 𝜏0 + 𝜀𝑡 (7) 

 

Imposed velocity on the bottom wall: For the imposed wall velocity condition, the velocity of 

moving plate follows a function described by Eq.(8). 

 

𝑢𝑤 = 𝑢(𝑥 = 0, 𝑡) = 𝑢0 + 𝛼𝑡 (8) 

 

4 VELOCITY DISTRIBUTIONS OF UNSTEADY COUETTE FLOWS  

4.1 Imposed Wall Shear Stress 𝝉𝒘 

It was observed experimentally that after an initial developmental time period, saying 𝑡 =  𝑡𝑑, the 

velocity can be described by 

 

𝑢(𝑥, 𝑡 > 𝑡𝑑) ≡ 𝑢𝑑(𝑥, 𝑡) =
𝜏0 + 𝜀𝑡

𝜇
(𝑑 − 𝑥) (9) 

 

As shown in literature [17], the complete velocity field 𝑢(𝑥, 𝑡) could be regarded as a superposition of 

the developing solution 𝑤(𝑥, 𝑡) and the developed solution 𝑢𝑑(𝑥, 𝑡). And 𝑢(𝑥, 𝑡) can be written as  

 

 

𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) +
𝜏0 + 𝜀𝑡

𝜇
(𝑑 − 𝑥) (10) 

 

Based on Eqs. (4) to (7) and Eq.(10), we can obtain that  

{
  
 

  
 

𝜕𝑤

𝜕𝑡
= 𝜈

𝜕2𝑤

𝜕𝑥2
+
𝜀

𝜇
(𝑥 − 𝑑), 0 < 𝑥 < 𝑑,   𝑡 > 0

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
|
𝑥=0

= 𝑤(𝑥 = 𝑑, 𝑡) = 0,              𝑡 > 0

𝑤(𝑥, 𝑡 = 0) =
𝜏0
𝜇
(𝑥 − 𝑑),                          0 ≤ 𝑥 ≤ 𝑑

 (11) 

 

The fluid velocity 𝑢(𝑥, 𝑡) is solved by seeking the solution 𝑤 from Eq.(11). Finally, 𝑢(𝑥, 𝑡) can be 

expressed as  
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𝑢(𝑥, 𝑡) = −
2

𝜇𝑑
∑ cos𝛽𝑛𝑥 {

𝜏0
𝛽𝑛
2
exp(−𝜈𝛽𝑛

2𝑡) +
𝜀

𝜈𝛽𝑛
4
[1 − exp(−𝜈𝛽𝑛

2𝑡)]}

∞

𝑛=0

+
𝜏0 + 𝜀𝑡

𝜇
(𝑑 − 𝑥) (12) 

 

where 𝛽𝑛 represents the eigen values described as  

 

𝛽𝑛 =
(2𝑛 + 1)𝜋

2𝑑
,   𝑛 = 0,1,2⋯ (13) 

 

4.2 Imposed Wall Velocity 𝒖𝒘 

After an initial developmental time period saying 𝑡 =  𝑡𝑑 , the developed velocity field can be 

described by 

 

𝑢(𝑥, 𝑡 > 𝑡𝑑) ≡ 𝑢𝑑(𝑥, 𝑡) =
𝑢0 + 𝛼𝑡

𝑑
(𝑑 − 𝑥) (14) 

 

Similar with Eq.(10), the complete velocity field can be written as 

 

𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) +
𝑢0 + 𝛼𝑡

𝑑
(𝑑 − 𝑥) (15) 

 

Based on Eqs. (4) to (6), (8) and (15), we can find that 

 

{
 
 

 
 

𝜕𝑤

𝜕𝑡
= 𝜈

𝜕2𝑤

𝜕𝑥2
+
𝛼

𝑑
(𝑥 − 𝑑),           0 < 𝑥 < 𝑑,   𝑡 > 0

𝑤(𝑥 = 0, 𝑡) = 𝑤(𝑥 = 𝑑, 𝑡) = 0,                        𝑡 > 0

𝑤(𝑥, 𝑡 = 0) =
𝑢0
𝑑
(𝑥 − 𝑑),                                 0 ≤ 𝑥 ≤ 𝑑

 (16) 

 

The fluid velocity 𝑢(𝑥, 𝑡) under imposed velocity condition could be found by seeking the solution of 

𝑤 from Eq.(16). We can describe 𝑢(𝑥, 𝑡) under imposed velocity condition as  

 

𝑢(𝑥, 𝑡) = −
2

𝑑
∑ sin 𝜉𝑛𝑥 {

𝑢0
𝜉𝑛
exp(−𝜈𝜉𝑛

2𝑡) +
𝛼

𝜈𝜉𝑛
3
[1 − exp(−𝜈𝜉𝑛

2𝑡)]}

∞

𝑛=1

+
𝑢0 + 𝛼𝑡

𝑑
(𝑑 − 𝑥) (17) 

 

where 𝜉𝑛 represents the eigen values described as 

 

𝜉𝑛 =
𝑛𝜋

𝑑
,   𝑛 = 1,2,3 ⋯ (18) 

 

5. SOLUTIONS OF 𝝁̃(𝐭)  

In this paper, we use the dimensionless viscosity 𝜇̃(𝑡) defined in Eq.(3) to represent the transient state 

of the initial Couette flow process.  
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5.1 𝝁̃(𝒕) under Imposed Wall Shear Stress Condition  

 

When the shear stress is imposed, using Eqs. (7) and (12), the dimensionless viscosity given in Eq. (3) 

can be evaluated as 

 

𝜇̃𝜏(𝑡) =
1

1 −
2

(𝜏0 + 𝜀𝑡)𝑑
2∑ {

𝜏0
𝛽𝑛
2 exp(−𝜈𝛽𝑛

2𝑡) +
𝜀
𝜈𝛽𝑛

4 [1 − exp(−𝜈𝛽𝑛
2𝑡)]}

∞
𝑛=0

 
(19) 

 

where 𝜇̃𝜏(𝑡) is the dimensionless viscosity for the imposed shear stress boundary condition. Here we 

argued two situations under the imposed shear stress boundary condition. These are (1) constant shear 

stress, 𝜏𝑤 = 𝜏0 and (2) linear increasing shear stress from zero shear, 𝜏𝑤 = 𝜀𝑡.  

Constant wall shear stress: When 𝜀 =0, 𝜏𝑤 = 𝜏0. Equation (19) reduces to  

 

𝜇̃𝜏=𝜏0(𝑡) =
1

1 −
8
𝜋2
∑

1
(2𝑛 + 1)2

exp [−
(2𝑛 + 1)2𝜋2

4
𝑡∗]∞

𝑛=0

 (20) 

 

where 𝜇̃𝜏=𝜏0(𝑡) is the dimensionless viscosity for the constant shear stress condition and 𝑡∗ = 𝜈𝑡 𝑑2⁄  is a 

dimensionless time. The expression under constant shear stress boundary condition has been reported in 

literature [17] as a special form of step shear stress boundary conditions.  

Linear increasing shear stress from 0: When 𝜏0 = 0, we have 𝜏𝑤 = 𝜀𝑡, which means Eq.(19) reduces 

to 

 

𝜇̃𝜏=𝜀𝑡(𝑡) =
1

1 −
32
𝜋4𝑡∗

∑
1

(2𝑛 + 1)4
{1 − exp [−

(2𝑛 + 1)2𝜋2

4
𝑡∗]}∞

𝑛=0

 (21) 

 

where 𝜇̃𝜏=𝜀𝑡(𝑡) is the dimensionless viscosity for the condition of linearly increasing shear stress with 

time from zero shear.  

Remarks: From Eqs.(20) and (21), it is clear that the dimensionless viscosity is larger than unity during 

the initial transient and approaches unity with time. We shall examine the time required for the 

dimensionless viscosity to reach unity or the time the measured viscosity is equal to the fluid viscosity later 

in this article. 

 

5.2 𝝁̃(𝐭) under Imposed Wall Velocity Conditions  

 

When the wall velocity is imposed, using Eqs. (14) and (17), the dimensionless viscosity given in Eq.(3) 

can be written as 

 



 

8 

 

𝜇̃𝑢(𝑡) = 1 +
2

𝑢0 + 𝛼𝑡
∑ {𝑢0exp(−𝜈𝜉𝑛

2𝑡) +
𝛼

𝜈𝜉𝑛
2
[1 − exp(−𝜈𝜉𝑛

2𝑡)]}

∞

𝑛=1

 (22) 

 

where 𝜇̃𝑢(𝑡) is the dimensionless viscosity subjected to an imposed velocity boundary condition. We 

again consider two situations for  this boundary condition. These are (1) constant boundary velocity, 

𝑢𝑤 = 𝑢0 and (2) linear increasing boundary velocity from stationary,  𝑢𝑤 = 𝛼𝑡.  

Constant velocity: When 𝛼 = 0,  𝑢𝑤 = 𝑢0. The velocity of moving plate is constant. From Eqs. (3), 

(18) and (22), the dimensionless viscosity can be expressed as 

𝜇̃ 𝑢=𝑢0(𝑡) = 1 + 2∑exp(−𝑛2𝜋2𝑡∗)

∞

𝑛=1

 (23) 

 

where 𝜇̃ 𝑢=𝑢0(𝑡) is the dimensionless viscosity for the constant velocity condition. The result under 

constant velocity boundary condition is consistent with those reported in the literatures[16,18]. 

Linear increasing velocity from stationary: When 𝑢0 = 0, 𝑢𝑤 = 𝛼𝑡. The dimensionless viscosity can 

be obtained from Eqs. (3), (18) and (22), as 

 

𝜇̃𝑢=𝛼𝑡(𝑡) = 1 +
2

𝑡∗𝜋2
∑

1

𝑛2
[1 − exp(−𝑛2𝜋2𝑡∗)]

∞

𝑛=1

 (24) 

 

where 𝜇̃𝑢=𝛼𝑡(𝑡) is the dimensionless viscosity for the condition of linearly increasing bottom wall velocity 

with time from stationary.  

Remarks: Similar to the imposed wall shear stress situations, we can find that the dimensionless 

viscosity varies with time and reduces to unity over time. 

  

6. SEEKING INITIAL 𝝁̃(𝐭) BY SOLVING STOKES’ FIRST PROBLEM 

When 𝑡 → +∞, we can get 𝜇̃(𝑡) = 1 from Eqs.(20), (21), (23), (24). But at the initial stage of unsteady 

Couette flow, that is 𝑡 → 0, it’s difficult to figure out 𝜇̃(𝑡) because of the infinite series in these four 

equations. So, in this section, we obtain the very initial transient stage of 𝜇̃(𝑡) by solving the Stokes’ first 

problem. 

Compared with unsteady Couette flow, Stokes’ first problem has the same moving boundary Eqs.(7) and 

(8) and governing equation Eq.(4). But the boundary condition Eq.(6) and initial condition Eq.(5) should be 

changed into 

𝑢(+∞, 𝑡) = 0 for 𝑡 > 0 (25) 
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and 

𝑢(𝑥, 0) = 0 for 0 ≤ 𝑥 ≤ +∞ (26) 

 

By applying Laplace transform to the velocity function we obtained 

 

𝑈(𝑥, 𝑠) = ℒ[𝑢(𝑥, 𝑡)] (27) 

 

Then we use Laplace transform to Eq. (4). And based on the initial condition Eq. (5), we can get that  

 

𝑠𝑈(𝑥, 𝑠) = 𝜈
𝜕2𝑈(𝑥, 𝑠)

𝜕𝑥2
 (28) 

 

The general solution of Eq.(28) is 

 

𝑈(𝑥, 𝑠) = 𝐶1exp (−√
𝑠

𝜈
𝑥) + 𝐶2exp (√

𝑠

𝜈
𝑥) (29) 

 

Applying Laplace transform to boundary conditions, we can change the expressions into 

 

𝑈(+∞, 𝑠) = 0 (30) 

and 

𝜕𝑈(𝑥 = 0, 𝑠)

𝜕𝑥
= −

𝜏0
𝜇𝑠
−

𝜀

𝜇𝑠2
 (31) 

and 

𝑈(𝑥 = 0, 𝑠) =
𝑢0
𝑠
+
𝛼

𝑠2
 (32) 

 

6.1 Imposed Wall Shear Stress 𝝉𝒘 

From Eqs.(29) to (31), we can express 𝑈 as 

 

𝑈(𝑥, 𝑠) = (
𝜏0√𝜈

𝜇𝑠√𝑠
+

𝜀√𝜈

𝜇𝑠2√𝑠
)exp (−√

𝑠

𝜈
𝑥) (33) 

The velocity of moving boundary can be written as 

𝑢(𝑥 = 0, 𝑡) = ℒ−1[𝑈(𝑥 = 0, 𝑠)] = (2
𝜏0√𝜈

𝜇
+
4𝜀√𝜈𝑡

3𝜇
)√

𝑡

𝜋
 (34) 

So, for the imposed shear stress condition Eq.(7), initial velocity of moving plate in unsteady Couette flow 

issue is given by Eq.(34). The dimensionless viscosity at the very initial unsteady stage could be written as 

Eq.(35) and (36). 

 

𝜇̃𝜏=𝜏0(𝑡 → 0) = lim
𝑡→0

1

1 −
8
𝜋2
∑

1
(2𝑛 + 1)2

exp [−
(2𝑛 + 1)2𝜋2

4
𝑡∗]∞

𝑛=0

=
√𝜋𝑑

2√𝜈𝑡
=
√𝜋

2

1

√𝑡∗
 (35) 
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and 

𝜇̃𝜏=𝜀𝑡(𝑡 → 0) = lim
𝑡→0

1

1 −
32
𝜋4𝑡∗

∑
1

(2𝑛 + 1)4
{1 − exp [−

(2𝑛 + 1)2𝜋2

4
𝑡∗]}∞

𝑛=0

=
3√𝜋

4

1

√𝑡∗
 (36) 

 

6.2 Imposed Wall Velocity 𝒖𝒘 

From Eqs. (29), (30) and (32), we obtain  

 

𝑈(𝑥, 𝑠) = (
𝑢0
𝑠
+
𝛼

𝑠2
) exp (−√

𝑠

𝜈
𝑥) (37) 

and 

−
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
|
𝑥=0

= −ℒ−1 [
𝜕𝑈(𝑥, 𝑠)

𝜕𝑥
|
𝑥=0

] =
1

√𝜈
(
𝑢0

√𝜋𝑡
+
2𝛼√𝑡

√𝜋
) (38) 

 

Based on Eqs.(3), (8) and (38), the dimensionless viscosity at the very initial unsteady stage could be 

written as 

𝜇̃ 𝑢=𝑢0(𝑡 → 0) = lim
𝑡→0

[1 + 2∑exp(−𝑛2𝜋2𝑡∗)

∞

𝑛=1

] =
𝑑

√𝜈𝜋𝑡
=

1

√𝜋

1

√𝑡∗
 (39) 

 

𝜇̃𝑢=𝛼𝑡(𝑡 → 0) = lim
𝑡→0

{1 +
2

𝑡∗𝜋2
∑

1

𝑛2
[1 − exp(−𝑛2𝜋2𝑡∗)]

∞

𝑛=1

} =
2𝑑

√𝜈𝜋𝑡
=

2

√𝜋

1

√𝑡∗
 (40) 

7. RESULTS and DISCUSSIONS 

We presented expressions of 𝜇̃(𝑡) for four moving boundary conditions respectively. These are (1) 

constant wall shear stress, 𝜏𝑤 = 𝜏0, (2) linearly increasing wall shear stress with time from zero shear, 

𝜏𝑤 = 𝜀𝑡, (3) constant wall velocity,  𝑢𝑤 = 𝑢0 and (4) linearly increasing wall velocity with time from 

stationary, 𝑢𝑤 = 𝛼𝑡. Further discussions will be carried out based on these four boundary conditions.  

7.1 Comparison of 𝝁̃(𝐭) under different boundary conditions 

Eq.(39) has been obtained by Muzychka and Yovanovich [16], so we regard 𝜇̃ 𝑢=𝑢0 as a reference scale. 

Obviously, when  𝑡 → 0, the exact quantitative relationship among 𝜇̃(𝑡) under different situation could 

be described as 

 

𝜇̃𝑢=𝛼𝑡(𝑡) = 2𝜇̃ 𝑢=𝑢0(𝑡) → +∞

𝜇̃𝜏=𝜏0(𝑡) =
𝜋

2
𝜇̃ 𝑢=𝑢0(𝑡) → +∞

𝜇̃𝜏=𝜀𝑡(𝑡) =
3𝜋

4
𝜇̃ 𝑢=𝑢0(𝑡) → +∞}

 
 

 
 

   when 𝑡 → 0 (41) 

 

From Eq.(41), the relationship of 𝜇̃(𝑡) for different boundary conditions when 𝑡 → 0 can be seen. 

According to Eqs.(20), (21), (23) and (24), 𝜇̃(𝑡) is only a function of dimensionless time 𝑡∗. During the 

transient stage of Couette flows, the dimensionless viscosity 𝜇̃(𝑡) decreases from +∞ to 1 with time. 
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This is confirmed by Fig. 2 which shows the variations of 𝜇̃(𝑡) with the dimensionless time 𝑡∗. Dots in 

different colors represent the exact solutions of 𝜇̃(𝑡) under different boundary conditions and the black 

solid line in figure means the corresponding fitting curves of exact solutions.  

 

Fig. 2 The dimensionless viscosity 𝜇̃(𝑡) vs. dimensionless time 𝑡∗ 

According to Fig.2, we can obviously find that 𝜇̃𝜏=𝜀𝑡(𝑡) > 𝜇̃𝑢=𝛼𝑡(𝑡) > 𝜇̃𝜏=𝜏0(𝑡) > 𝜇̃ 𝑢=𝑢0(𝑡) when 

𝑡 → 0 and 𝜇̃(𝑡) = 1 when 𝑡 → +∞. As 𝜇̃(𝑡) = 1 representing the velocity of the Couette flow reaches 

developed state, we can utilize this information to obtain the time period for the Couette flow to reach 

developed state for these four boundary conditions.   

Fitting curves were obtained by applying the compact model mentioned in literature[16]. For the 

dimensionless viscosity, the compact model has the form shown in Eq.(42). 

𝜇̃(𝑡) = {[𝜇̃(𝑡 → 0)]𝑘 + [𝜇̃(𝑡 → +∞)]𝑘}
1
𝑘 (42) 

 

where 𝑘 is an dimensionless exponent. Using Eqs.(35), (36), (39), (40) and (42), we can express 𝜇̃(𝑡) in 

compact model shown as  

𝜇̃(𝑡) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

[(
1

√𝜋

1

√𝑡∗
)

43
5
+ 1]

5
43

,         𝑢𝑤 = 𝑢0

[(
2

√𝜋

1

√𝑡∗
)

33
10
+ 1]

10
33

,         𝑢𝑤 = 𝛼𝑡

[(
√𝜋

2

1

√𝑡∗
)

17
3

+ 1]

3
17

,       𝜏𝑤 = 𝜏0

[(
3√𝜋

4

1

√𝑡∗
)

18
5

+ 1]

5
18

,       𝜏𝑤 = 𝜀𝑡

 (43) 
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From Fig.2, we can find that the compact models in Eq.(43) fit the exact solutions perfectly.   

 

7.2 Time period for Couette flow to reach developed state  

According to the above research, we have already found that the time period for Couette flow to reach 

developed state is different for these four boundary conditions. As  𝜇̃(𝑡) decreases gradually from +∞ to 

1 during the initial stage of Couette flow, there should be a definite point to indicate the achievement of the 

developed state. Here, we defined that when 𝜇̃(𝑡) ≤ 1.01, Couette flow reaches its developed state. That is 

the velocity gradient of each layer is the same approximately. We can write this condition as 

 

𝜇̃(𝑡∗ = 𝑡𝑑
∗) = 1.01 (44) 

 

where 𝑡𝑑
∗  is the dimensionless development time. Using Eq.(43), we can calculate 𝑡𝑑

∗  for the four 

boundary conditions respectively. The results are shown in Tab. 1.  

Tab.1. dimensionless development time 𝑡𝑑
∗  under different boundary conditions 

boundary conditions 𝑢𝑤 = 𝑢0 𝑢𝑤 = 𝛼𝑡 𝜏𝑤 = 𝜏0 𝜏𝑤 = 𝜀0𝑡 

𝑡𝑑
∗  0.558 9.995 2.145 11.122 

 

According to Tab.1, the time periods for Couette flow to reach developed state after boundary plate is 

moved suddenly are different under these four boundary conditions. The time period is shortest for the 

imposed velocity boundary condition 𝑢𝑤 = 𝑢0 and is the longest under imposed shear stress boundary 

condition 𝑢𝑤 = 𝜀𝑡.  

 

8. CONCLUDING REMARKS 

In this paper, based on the ideal model of Couette flow between two infinite parallel plates, the process 

for reaching developed state was investigated under both imposed velocity and shear stress boundary 

conditions. The dimensionless viscosity 𝜇̃(𝑡) is used as the parameter to represent the initial transient 

process. The specific results of research are as follows. 

1. The exact solutions for the velocities when 𝜏𝑤 = 𝜏0 + 𝜀𝑡 and 𝑢𝑤 = 𝑢0 + 𝛼𝑡 were obtained as 

shown in Eqs.(12) and (17). The dimensionless viscosities 𝜇̃(𝑡) as functions of dimensionless time are 

also obtained. 

2. When 𝑡 → 0, functional forms of 𝜇̃(𝑡) were obtained, as shown in Eqs.(35), (36), (39) and (40), and 

the exact quantitative relationship of 𝜇̃(𝑡) for these four boundary conditions was discovered. During the 

developing stage of Couette flows, we found 𝜇̃𝜏=𝜀𝑡(𝑡) > 𝜇̃𝑢=𝛼𝑡(𝑡) > 𝜇̃𝜏=𝜏0(𝑡) > 𝜇̃ 𝑢=𝑢0(𝑡). Compact 

models of 𝜇̃(𝑡) for these four boundary conditions were proposed shown in Eq.(43). 

3. During the transient stage, 𝜇̃(𝑡) decreases from +∞ to 1 with time. The time periods for Couette 

flows needed to reach developed state are different under these four boundary conditions. The development 

time is the shortest under imposed velocity boundary condition 𝑢𝑤 = 𝑢0 and is the longest under imposed 
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shear stress boundary condition 𝜏𝑤 = 𝜀𝑡. 
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