
Static and Dynamic Portfolio Methods for
Optimal Planning: An Empirical Analysis

Mattia Rizzini, Chris Fawcett, Mauro Vallati,
Alfonso E. Gerevini, Holger H. Hoos

Abstract

Combining the complementary strengths of several algorithms through portfolio ap-
proaches has been demonstrated to be effective in solving a wide range of AI problems.
Notably, portfolio techniques have been prominently applied to suboptimal (satisfic-
ing) AI planning.

Here, we consider the construction of sequential planner portfolios for domain-
independent optimal planning. Specifically, we introduce four techniques (three of
which are dynamic) for per-instance planner schedule generation using problem in-
stance features, and investigate the usefulness of a range of static and dynamic tech-
niques for combining planners. Our extensive empirical analysis demonstrates the
benefits of using static and dynamic sequential portfolios for optimal planning, and
provides insights on the most suitable conditions for their fruitful exploitation.

Keywords: automated planning; optimal planning; sequential portfolio; per-instance
portfolio generation

1 Introduction

Automated planning is a prominent AI challenge that has been extensively studied
for decades and led to a wide range of real-world applications. Within the area of
automated planning, cost-optimal (hereinafter, optimal) planning deals with finding
optimal plans, i.e., plans that reach a given goal state through an ordered set of actions
with minimum total cost. Optimal plans are desirable in many applications.

In recent years, there has been considerable progress in developing powerful domain-
independent planners, in no small part spurred on by the International Planning Com-
petitions (IPCs)1. However, none of these systems clearly dominates all others in
terms of performance over a broad range of planning domains. Furthermore, it has
been observed that if a planner does not solve a given problem instance quickly, it
will likely not solve it at all within reasonable time[1, 2]. These observations motivate
the exploitation of portfolio approaches in planning. In particular, much work has
been done in the area of sequential portfolios, where selected algorithms are executed
sequentially on a single CPU core. Portfolio approaches, which include algorithm se-
lection techniques[3], have been successfully exploited in several other areas, notably
satisfiability (SAT) solving and answer set programming (ASP)[4, 5].

1 http://ipc.icaps-conference.org

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/74212309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Essential Background on Classical Planning 2

There are planner portfolio configuration systems mainly designed to automatically
generate domain-optimized portfolio planners, such as PbP and ASAP[6, 7], as well
as a range of domain-independent portfolio planners[8]. Among the latter, we can
identify two main classes: static portfolios, which run the same schedule of planners on
every given problem instance, and portfolios based on per-instance planner schedules.
Cedalion[9] and Fast Downward Stone Soup[10] are well-known examples of static
portfolio-based planners, while IBaCoP[11] selects the best planner schedule on a
per-instance basis[12]. Here, we introduce a third class, that of dynamic portfolios,
comprised of planners in which the schedule is created dynamically, during execution,
based on performance data from earlier runs of the given planners as well as on features
of the planning instance to be solved.

Interestingly, we observe that most of the existing work on portfolio-based planners
is focused on satisficing planning. However, we note that in IPC-14[13], some static
portfolios (MIPlan and DPMPlan), as well as two algorithm selection approaches
(NuCeLaR and AllPaca) have participated in the optimal track[12]. These submis-
sions were not competitive with the top-ranked planners, but AllPaca and NuCeLaR
were ranked 7th and 10th respectively. Furthermore, Núñez, Borrajo and Linares[14]
mined the results of IPC 2011 by using mixed-integer programming to construct static
sequential portfolios of optimal planners; this turned out to be helpful for assessing
the usefulness of different sets of training instances, and for better understanding the
performance of planners that took part in IPC 2011[15].

In this work, we consider the automatic construction of sequential planner port-
folios for domain-independent optimal planning. In particular, we introduce four
new techniques: two similarity-based approaches and two model-based approaches.
Similarity-based approaches select the algorithms to run by considering performance
on training instances deemed sufficiently similar to the given input problem instance.
Model-based systems generate a model of the performance of each considered compo-
nent planner, which is then exploited for the selection process. Three of our proposed
methods are dynamic portfolio approaches.

The sequential portfolios thus obtained are then compared with static planner
portfolios and with Planzilla, an out-of-the-box application of the SATzilla[4, 16]
algorithm selection approach to planning. In an extensive empirical analysis we demon-
strate the usefulness of portfolio approaches for optimal planning. In particular, we
find that (i) our new model-based and similarity-based approaches are more robust in
that they generalise better to new domains of planning problems than the static port-
folios and Planzilla; (ii) when the training set is representative of testing problems,
our model-based approaches consistently outperform static portfolios. This paper is a
continuation of, and expands upon, an earlier version of our work on portfolio selec-
tion [17]. Specifically, in this paper we give much more detail on our four new portfolio
selection techniques and dynamic portfolio selection in general, present additional ex-
perimental results, and discuss our previous results in more detail.

In the remainder of the paper we first give some background on classical planning,
describe the portfolio-based optimal planning approaches considered in our work, and
then present the design and results of our empirical analysis.

2 Essential Background on Classical Planning

AI planning deals with the problem of finding a partially or totally ordered sequence
of actions whose execution transform the represented environment from an initial



3 Portfolio-based Optimal Planning 3

state to a desired goal state. Classical planning is a restricted form of AI planning,
where the represented environment is static and fully observable, and actions are both
deterministic and instantaneous [18].

In a classical planning task, the environment states are defined by sets of grounded
predicates, and every grounded predicate holds in a state s if and only if the definition
of s contains it. A planning operator o is a tuple 〈name(o), pre(o), eff−(o), eff+(o), cost(o)〉
where: name(o) = op name(x1, . . . , xk) (op name is an unique operator name, and
x1, . . . , xk are free variable symbols called parameters of o); pre(o), eff−(o) and eff+(o)
are sets of predicates with variables in {x1, . . . , xk}, that represent o’s preconditions,
and negative and positive effects, respectively; cost(o) is a numerical value representing
o’s cost2. Planning actions are grounded instances of planning operators obtained by
replacing the operator parameters with objects in a given set. An action a is applicable
in a state s if and only if pre(a) ⊆ s. The application of a in a state s where pre(a) ⊆ s
holds results in state (s \ eff−(a)) ∪ eff+(a).

A planning domain model is specified by a set of predicates and a set of planning
operators. A planning problem instance is specified via a domain model, a set of
objects, an initial state and a set of goal predicates. A solution plan of a planning
problem is a sequence of actions such that their consecutive application starting in the
initial state results in a state containing all the goal predicates.

Optimal planners are expected to find solution plans that are optimal in terms of
their total cost, which is defined as the sum of the costs of the plan actions.

3 Portfolio-based Optimal Planning

In this section, we provide a description of the sequential planner portfolio approaches
considered in our investigation – existing approaches from the literature as well as our
four new per-instance approaches. Every portfolio approach considered here requires
as input a set of planning algorithms A, a set of training instances I, and performance
measurements for each planner A ∈ A on each i ∈ I. Here, we measure performance
as CPU time required to produce an optimal plan and assign a penalty value if no
optimal plan was produced. The penalised average running time (PAR score) is a
real number that counts (i) runs that find an optimal plan as the actual running time
used and (ii) runs that crash or do not find an optimal plan as ten times the cutoff
time (PAR10). PAR scores are commonly used in automated algorithm configuration,
algorithm selection and portfolio construction, because using them allows running time
to be considered while still placing a strong emphasis on high instance set coverage.

Algorithm 1 outlines the general procedure used by each of our dynamic portfolio
selectors, iteratively making the choice of the next component planner and running
time cutoff to use based on training data and previous executions. Throughout the
text, we use several convenience functions in our pseudocode for brevity:

perf (A, ti, cutoff) returns the scalar performance metric value for component planner
A on training set instance ti when given running time cutoff cutoff ;

success (A, ti, cutoff) is an indicator function returning 1 if executing planner A on
training set instance ti with running time cutoff cutoff results in an optimal
plan, and 0 otherwise;

2 For domain models in which action cost is not explicitly enabled, every operator o has an
implicit cost(o) of 1.



3 Portfolio-based Optimal Planning 4

Algorithm 1 The structure of a generic dynamic schedule selector trained using
set of algorithms A and training instance set I.

input: test instance i, vector of instance features fi, maximum execution
time cutoff ∈ R+

output: result of running the selector on i
1: function abstractDynamicScheduleSelector(i, fi, cutoff)
2: remaining← cutoff
3: while i not solved and remaining > 0 do
4: select current best algorithm A ∈ A and cutoff time t ∈ R+

5: r ← result of running A on i with cutoff min (t, remaining)
6: remaining← remaining− (running time + overhead time used)
7: end while
8: end function

runtimes (A, instances) returns the set of running times in the training data resulting
from executing planner A on each instance in the set instances;

concat (v1,v2) returns a new vector that is the concatenation of vectors v1 and v2.

In the remaining subsections, we describe the considered planning instance fea-
tures, present the static portfolios and Planzilla algorithm selector used for compar-
ison, give details on our presolving and backup solving stages, and introduce our two
similarity-based and two model-based dynamic portfolio selectors.

3.1 Problem Instance Features

Our per-instance portfolio approaches leverage planning features extracted from each
problem instance and domain, a vector fi of values computed for any given problem
instance i. Each feature in fi is a numeric value that reflects a specific property of i,
such as the average number of out-edges in i’s causal graph, or whether i has action
costs. These features are designed to succinctly describe important aspects of the
instance, such that similar instances have similar feature vectors.

In this work, we use the feature set and extraction algorithm introduced by Fawcett
et al.[19] This set contains 311 problem instance features, classified into the following
seven groups.

PDDL. By considering the PDDL domain and problem files, 49 features are extracted.
Features include information about the use and number of object types, the
language requirements, the number of operators, etc.

FDR. Features from this class are extracted by exploiting the translation and prepro-
cessing tools of Fast Downward[20]. 38 features are gathered by analysing the
translation process (such as the number of removed operators and propositions
and number of implied preconditions added), the finite domain representation
created (such as the number of variables, number of mutex groups, and statis-
tics over operator effects), and the output of the preprocessing process (such
as the percentage of variables, mutex groups and operators deemed necessary).
Moreover, following the work of Cenamor et al.[21], 41 additional causal and
domain-transition graph features are extracted by analysing the finite domain
representation generated by Fast Downward.



3 Portfolio-based Optimal Planning 5

LPG preprocessing. 6 features are extracted by running the pre-processing phase of
LPG-td[22]. We extract features such as the number of facts, the number
of “significant” instantiated operators and facts, and the number of mutual
exclusions between facts.

Torchlight. Torchlight[23] is a tool for analysing local search topology under h+.
In this work, it is exploited for extracting 10 features by considering success
(sample state proved to not be a local minimum) and dead-end percentages,
and statistics over exit distance bounds and preprocessing results.

FD probing. The LAMA-2011 planner[24] is run for 1 CPU second, in order to extract
features from the resulting planning trajectory, such as the number of reasonable
orders removed, landmark discovery and composition, and the number of graph
edges. In total, 16 features belong to this class.

SAT representation. The Madagascar-p planner[25] is used for generating a CNF
formula with a planning horizon of 10 time steps. If the creation of the CNF
formula is successful, the SATzilla 2012 [16] SAT feature extractor is used
for extracting 115 features from 12 classes: problem size features, variable-
clause graph features, variable graph features, clause graph features, balance
features, as well as features based on proximity to Horn formula, DPLL probing,
LP-based, local search probing, clause learning, and survey propagation. The
interested reader is referred to Hutter et al.[26] for details on these features.

Success and timing. For each of the aforementioned six extraction procedures, the CPU
time required for extraction is recorded, as well as the success (or failure) of the
process. The SAT feature extractors additionally report 10 more timing features
for extraction time of various subcomponents. In total, 28 features belong to
this class.

To the best of our knowledge, this is the most comprehensive set of features available
for planning instances.

3.2 Static Portfolios

Static portfolios are those for which the executed schedule of component planner runs
is fixed, and does not depend on the input problem instance to be solved. Usually, such
portfolios are based solely on the performance of the potential component algorithms
on the training instances. Static portfolios are defined by: (i) the subset of component
planners that will be run; (ii) the order in which those planners are to be executed;
and (iii) the running time allocated to each component planner. Once configured for a
given training set, a static portfolio is not adjusted in any way to the problem instances
to be solved by it after training is complete.

In this work, we consider two classes of static portfolios. First, in an approach we
will simply refer to as “static portfolio” from here on, we used the Fast Downward
Stone Soup hill-climbing technique[10]. With a target of k planner components
(“Static k”) that can be included in the portfolio, out of a larger set of candidates,
and a given limit on the total running time allocated to the schedule, we greedily
construct a portfolio: starting with an empty portfolio, we iteratively either add a
new planner component or extend the allocated CPU time of an existing planner
component; from all such modifications, we choose the one that maximally increases
the number of solved problems within the given training set. This process continues



3 Portfolio-based Optimal Planning 6

until no more than k planner components have been added and the time limit has
been reached.

For our second static portfolio approach, we use the greedy schedule construction
heuristic of Streeter and Smith[27]. This approach starts with an empty portfolio and
iteratively adds the 〈planner, runtime〉 pair that maximises the ratio between additional
instances solved and running time spent. This can be computed efficiently using
only the running times at which a component planner solved a training instance as a
potential choice. We will refer to this approach as “Streeter-style”.

3.3 Planzilla

Planzilla is an adaptation of the well-known model-based algorithm selection pro-
cedure SATzilla[4, 16] to optimal planning. This and all the following per-instance
and dynamic portfolios implement the same general structure, composed of four sepa-
rate stages: pre-solving, feature extraction, main and backup solving. The pre-solving
stage is essentially a greedily selected static portfolio with a very short running time
cutoff (we use the SATzilla default of 1/90 ≈ 1.11% of the total running time bud-
get), aimed at solving the easiest problem instances very quickly without expending
running time to compute problem instance features. Some problem instances are solv-
able within fractions of a second, while complete feature extraction can take minutes
for large or difficult instances. If the problem instance is not solved by the pre-solving
stage, a model is evaluated that uses a very simple reduced set of instance features to
predict whether the full set of features will be computable within the remaining run-
ning time. If so, the complete feature set is extracted from the problem instance and
Planzilla proceeds to the main stage. Otherwise, Planzilla switches to the backup
solving stage. The Planzilla main stage makes use of a predictive model M (fi) (in
this case a random-forest-based Empirical Performance Model, or EPM[26, 16]) in or-
der to predict the single best component planner to run on a given problem instance
i (using the extracted features fi for that instance). Given the selected component
planner A, Planzilla uses a separate regression model regressionA (fi) to predict the
running time required for A to solve i. Planzilla will execute this selected planner
for the entirety of the remaining running time. If for any reason execution terminates
early without producing an optimal plan, Planzilla switches to the backup solving
stage. This backup solving stage consists of running the single best component plan-
ner, as determined by training set PAR10 score, for the remaining available running
time.

Our implementation of Planzilla uses the default configuration of an early ver-
sion of a new, general-purpose Java implementation of SATzilla called the *zilla
framework, which was generously provided by the SATzilla team. We do not con-
sider Planzilla itself to be a contribution of our work presented here. It should
also be noted that Planzilla is not, according to our definition, a dynamic portfolio
approach.

3.4 Pre- and Backup Solvers

In addition to their use in Planzilla, each of our four per-instance portfolio ap-
proaches also makes use of pre-solving and backup solving stages to complement the
main portfolio construction stage(s). Pre-solving is performed identically to that of
Planzilla, with 1.11% of the total running time allocated to a greedily-constructed
static portfolio executed before feature extraction is performed. As with Planzilla,



3 Portfolio-based Optimal Planning 7

training set instances that are solved by the pre-solving stage are removed from the
training set used for the main portfolio construction and backup solving stages.

The backup solving stage, however, is not the same as that used by Planzilla.
The *zilla backup solving mechanism was designed based on the assumption that
any failure necessitating the use of the backup solver would come early in any given
run (e.g., due to failure to extract features). In the case of planner portfolios this is no
longer the case, as a failure can happen during execution of any individual portfolio
component. We have therefore extended the backup solving mechanism to also take
into account the running time remaining at the time a backup solver is required. This
is done by using incremental running time cutoffs (with one minute increment) and
determining, for each cutoff time, the component planner with the best PAR10 score
on the training set when given that running time cutoff. If the backup solving stage is
required during a particular run, we use the component backup planner for the cutoff
closest to the remaining running time.

In the following subsections, we describe only the different main stages for each of
our new portfolio approaches.

3.5 Similarity-based approaches

Given a previously unseen problem instance to solve, it is reasonable to select a sched-
ule containing planners that performed well on training set instances similar to the
given input instance. In all four of our approaches, this similarity is determined based
on the features fi extracted from this instance, with two model-free approaches (de-
scribed in this subsection) and two model-based approaches (described in the next
subsection). Our two model-free (or “similarity-based”) approaches are dynamic port-
folios and make use of a notion of distance between problem instances in feature
space, in this case Euclidean distance after feature normalisation to the interval [0, 1].
Boolean features such as PDDL language requirements were assigned 0 or 1, and any
categorical instance features were mapped to integer intervals prior to normalization.
Normalization was performed using the feature values observed in our training sets,
and in cases where subsequent instance feature values exceeded the bounds determined
from the training set, values outside the normalized [0, 1] bounds were used.

3.5.1 Instance-core-based

This approach first prunes instances out of the training set that are further than
a given boundary cutoff value from the problem instance under consideration. In
our experiments, we use an empirically-determined distance cutoff of 4.5, chosen to
maximise performance on the considered training set. Algorithm 2 gives a detailed
description of the approach. In each iteration, this approach selects the component
planner with the best performance on the remaining training set instances (the core),
and executes that planner for a running time t maximising the ratio n

t
, where n is the

number of core instances solved using running time t (analogous to the procedure for
the Streeter-style schedules). After each run of a selected planner A that fails to solve
the test instance under consideration, we remove all n training instances from the core
that were solved by A in the selected running time t. If at any point, the core set is
empty, the approach proceeds to the backup solving stage.



3 Portfolio-based Optimal Planning 8

Algorithm 2 Instance-core-based schedule selector

input: problem instance i, vector of instance features fi, maximum running
time cutoff ∈ R+, distance cutoff distanceCutoff ∈ R+

output: result of running the selector on i
1: function instanceCoreScheduleSelector(i, fi, cutoff, distanceCutoff)
2: remaining← cutoff
3: core← {ti ∈ trainingInstances | distance (ti, i) ≤ distanceCutoff}
4: while core 6= ∅ and remaining > 0 do
5: A← an element of argminA∈A

(∑
ti∈core perf (A, ti, remaining)

)
6: times← {remaining}

⋃
{t ∈ runtimes (A, core) | t ≤ remaining}

7: t← min
(

argmaxt∈times

(∑
ti∈core

success(A,ti,t)
t

))
8: r ← result of running A on i with cutoff t
9: if r.status = success then

10: return r
11: else
12: core← core \ {ti ∈ core | success (A, ti, t) = 1}
13: remaining← remaining− (r.runtime + overhead of selection)
14: end if
15: end while
16: end function

3.5.2 Weight-based

This approach does not perform any initial pruning of the training set. Instead, as
shown in Algorithm 3, it assigns a weight to each training set instance, equal to the
distance between that instance and the input instance i under consideration. In each
iteration, the performance of every component planner is computed as the weighted
sum of the PAR10 scores for that planner on each training instance (using instance
weights). The planner with the best performance is selected and, as in the instance-
core-based approach, this planner is executed for a running time maximising the ratio
of instances solved to running time spent. After each failed run, we once again remove
all problem instances from the training set that were solved by the selected planner in
the selected running time. If the remaining training instance set becomes empty, the
approach proceeds to the backup solving stage.

3.6 Model-based approaches

For our model-based approaches, the choices of the next component planner to run and
its running time are made using empirical performance models learned from training
data, using the *zilla framework. We implemented a simplified model-based per-
instance approach and a full model-based dynamic portfolio.

3.6.1 Simplified model-based

The Simplified model-based approach is described in Algorithm 4. Given a planning
instance to be solved, this approach iteratively selects the next planner to run, and
its running time, based on performance predictions obtained from the trained *zilla



3 Portfolio-based Optimal Planning 9

Algorithm 3 Weight-based schedule selector

input: instance i, vector of instance features fi, maximum running time
cutoff ∈ R+

output: result of running the selector on i
1: function weightBasedScheduleSelector(i, fi, cutoff)
2: remaining← cutoff
3: inst← trainingInstances
4: while inst 6= ∅ and remaining > 0 do
5: A← an element of

argminA∈A
(∑

ti∈inst distance (i, ti) · perf (A, ti, remaining)
)

6: times← {remaining}
⋃
{t ∈ runtimes (A, inst) s.t. t ≤ remaining}

7: t← min
(

argmaxt∈times

(∑
ti∈inst

success(A,ti,t)
t

))
8: r ← result of executing A on i with cutoff t
9: if r.status = success then

10: return r
11: else
12: inst← inst \ {ti ∈ inst | success (A, ti, t) = 1}
13: remaining← remaining− (r.runtime + overhead of selection)
14: end if
15: end while
16: end function

models. We train a random decision forest classification model M (fi) to perform
algorithm selection (the next planner to run), and a separate regression forest model
regressionA (fi) for each planner A that predicts the running time required to find
an optimal plan for the given instance i. After each run of a component planner,
that planner is removed as an option from our classification model M , to prevent a
duplicate selection in the next iteration. We run the selected component planner for
the predicted running time (or the remaining running time, if that is smaller), until
the time budget has been exhausted.

3.6.2 Full model-based

This approach uses the same regression models for component planner running time
prediction as for the simplified approach, but the planner selection process is extended
by adding a second classification model (using the same learning techniques as the
simplified approach) trained on a feature set that has been extended to take previous
failed component planner runs into account. The extended feature set adds a Boolean
feature and a real-valued feature for each component planner, indicating whether that
planner has already been unsuccessfully run on the given problem instance, and for
what running time. This second model is used after each failed selected planner run
for a given test instance to decide the next planner to run, considering the planners
already tried and their running time (the first selected planner is decided using the
same “base” classification model M of the simplified approach described above).

In order to train this modified classification model, denoted M ′, we have to simulate
training data for component planner runs in order to give the model a wide variety of



4 Empirical Analysis 10

Algorithm 4 Simplified model-based schedule selector

input: instance i, vector of instance features fi, maximum running time
cutoff ∈ R+, trained model M , regression models regressionA for each com-
ponent planner A ∈ A
output: result of running the selector on i

1: function modelBasedScheduleSelector(i, fi, cutoff,M, regression)
2: remaining← cutoff
3: while remaining > 0 do
4: A←M (fi)
5: t← min (regressionA(fi), remaining)
6: r ← result of running A on i with cutoff t
7: if r.status = success then
8: return r
9: else

10: remaining← remaining− (r.runtime + overhead of selection)
11: end if
12: end while
13: end function

values for the new features. For each component planner A ∈ A and instance i ∈ I in
the training set, we produce a set of failure running times. These failure running times
consist of (i) a short running time if A crashes and (ii) the running time t required for
A to find an optimal plan for i, plus running times slightly below and above t, if A is
able to solve i. (Values greater than t are used to take into account randomisation of
the planner affecting t.) We then generate the full cross product of component planner
combinations (up to a small dimension, given as a parameter of the training process)
with their failure running times on i and add the resulting features to the training
data. Details for the training of our modified classification model M ′ are given in
Algorithm 5, where the additional simulated training data is given by simSchedulesi
for each i ∈ I.

The full model-based approach (outlined in Algorithm 6) allows us to utilise infor-
mation from incorrect predictions to inform subsequent planner selections, but due to
the greatly-increased size of the training data requires a significantly greater amount
of time for training the classification model. In our experiments reported in the fol-
lowing, we considered combinations of up to 2 planners chosen from the overall best
5, resulting in an overall training time of 1 CPU week.

4 Empirical Analysis

We report the results from a large-scale empirical study, in which we examined the
effectiveness of the described portfolio approaches, as well as the performance of the
individual planners used as portfolio components.

4.1 Settings

We considered all of the planners that took part in the optimal track of the 2014
International Planning Competition (IPC-14), namely: AllPaca, cGamer, DPM-



4 Empirical Analysis 11

Algorithm 5 Training the model M ′

input: set solverPairs ⊆ A2, training set trainingInstances ⊂ I, set sim-
Schedules = {simSchedulesi | i ∈ trainingInstances}
output: trained model

1: function trainMPrime(solverPairs, trainingInstances, simSchedules)
2: initialize M ′

3: for each A,B ∈ solverPairs do
4: initialize T 〈A,B〉
5: initialize trainingData ⊂ I ×A×R
6: for each i ∈ trainingInstances do
7: for each schedule ∈ simSchedulesi do
8: if A ∈ schedule and B ∈ schedule then
9: continue

10: end if
11: left← cutoff− presolvingCutoff− remaining
12: if A ∈ schedule then
13: rA ← timeout
14: else
15: rA ← result of executing A on i with cutoff t
16: end if
17: if B ∈ schedule then
18: rB ← timeout
19: else
20: rB ← result of executing B on i with cutoff t
21: end if
22: if rA.result 6= success and rB .result 6= success then
23: continue
24: else if rA.performance < rB .performance then
25: best← A
26: else
27: best← B
28: end if
29: weight ← value ∈ R, proportional to rA.performance −

rB .performance
30: trainingData← trainingData

⋃
{(fi, best,weight)}

31: end for
32: end for
33: train T 〈A,B〉 on trainingData
34: add T 〈A,B〉 to M ′

35: end for
36: return M ′

37: end function



4 Empirical Analysis 12

Algorithm 6 Model-based schedule selector

input: instance i ∈ I, vector of instance features fi, maximum running
time cutoff ∈ R+, trained models M and M ′

output: result of running the selector on i
1: function modelBasedScheduleSelector(i, cutoff,M,M ′)
2: remaining← cutoff
3: initialize state vector
4: firstRun← true
5: while remaining > 0 do
6: if firstRun = true then
7: A←M (fi)
8: firstRun← false
9: else

10: A←M ′(concat (fi, state))
11: end if
12: t← min (regressionA(fi), remaining)
13: r ← result of running A on i with cutoff t
14: if r.status = success then
15: return r
16: else
17: update state with result r
18: remaining← remaining− (r.runtime + overhead of selection)
19: end if
20: end while
21: end function



4 Empirical Analysis 13

Plan, Dynamic-Gamer, Gamer, Fast Downward Cedalion, hflow, hpp, hpp-
ce, Metis, MIPlan, NuCeLaR, RIDA, Rational Lazy A*, SPM&S, SymBA*-1,
SymBA*-2. (Detailed descriptions of these planning systems can be found in the
IPC-14 systems description[12].) Hereinafter, we will refer to the participants of the
competition as “individual planners”, regardless of the approach they exploit for solv-
ing planning problems. In our analysis, they are used as basic solver components.

For the sake of readability, in the remainder of our empirical analysis we will use
the following terminology:

Model refers to our full model-based approach;

S-Model indicates the simplified version of our model-based approach;

Sim-I and Sim-W refer to the instance-core-based and weight-based similarity ap-
proaches, respectively.

Static X denotes the static portfolio using up to X planners.

Streeter denotes the static portfolio approach of Streeter and Smith [27].

We focused our study on planning domains that have been used in the optimal
track of IPC-14: Barman, Cave-Diving, ChildSnack, Citycar, Floortile, GED, Hiking,
Maintenance, Openstacks, Parking, Tetris, Tidybot, Transport and Visitall. For
each domain with a randomised problem instance generator, we generated 200 in-
stances using the same generator parameter setting distribution as in the IPC.

Instances were divided into training, validation and testing sets. For each domain,
the size of the training set was chosen using component planner performance on a sep-
arate set of randomly generated instances, such that component planner performance
varied by at most 10% of the performance on the entire instance set. These training
set sizes were used to partition our separate 200-instance sets for each domain, with
the validation sets containing 10% (i.e., 20) of the generated instances and the testing
set containing all of the remaining problem instances. This procedure was used in
order to select an appropriate training set for each domain, while avoiding component
planner runs on testing set instances prior to our experiments. Hereinafter, when we
refer to the training, validation and testing sets, we mean the combined sets includ-
ing the corresponding instances from all of the considered domains. The GED domain
unfortunately lacks a random instance generator, so the IPC-14 GED instances were
included in our testing set only.

All of our experiments were run using nodes of the Compute-Calcul Canada West-
Grid Orcinus QDR compute cluster, where each node contains two 2.66 Ghz Intel
Xeon X5650 CPUs for a total of 12 cores and 24GB of RAM3. Each of the individual
planner runs, as well as runs of our schedule selectors, were limited to a single core
and 8GB of RAM. For both training and testing purposes, a cutoff time of 1800 CPU
seconds was used, as in the optimal track of IPC-14. In some experiments, we also
considered a shorter cutoff time of 300 CPU seconds, for the purposes of examining
the efficacy of our approaches when running time is more tightly limited.

In the optimal track of the IPC, planners are usually evaluated by considering
only instance set coverage (i.e., number of solved test instances). In our analysis, we
evaluate also running time performance by considering the PAR10 score.

3 https://www.westgrid.ca/support/systems/orcinus



4 Empirical Analysis 14

Tab. 1: Individual planner performance on the 2620 testing instances. The total
number of solved problems (Solved), the number of planning domains
for which that planner had the best coverage (column 3), best PAR10
score (column 4), and the number of problem instances for which that
planner either achieved the best PAR10 score (column 5) or was within
1 CPU second of the best PAR10 score (column 6). We note that
high performance on individual instances is not limited to the planners
with highest instance set coverage, and in fact planners like cGamer
and hflow have very high performance on a large number of instances.
This points to an attractive complementarity among these planners, and
a suitability for portfolio-based approaches.

Coverage PAR10 PAR10 1s in PAR10
Planner Solved (dom) (dom) (inst) (inst)

Metis 911 3 1 201 370
D-Gamer 880 1 1 76 80
SymBA*-1 862 1 1 119 344
SymBA*-2 861 1 0 141 372
MIPlan 812 2 1 45 194
DPMPlan 805 2 0 67 215
cGamer 791 4 4 289 341
NuCeLaR 746 2 1 41 49
Gamer 728 0 0 4 7
RLazyA* 720 2 0 134 237
AllPaca 679 2 0 0 28
SPM&S 651 1 1 45 172
Cedalion 637 2 0 11 122
RIDA 553 2 2 28 35
hflow 484 2 2 191 251
hpp-ce 58 0 0 18 22
hpp 54 0 0 3 18

4.2 Individual Planners and Static Portfolios

It is well known that portfolio approaches exploit the combination of complementary
strengths of the available component algorithms. Evidently, there is little point in
combining solvers with very similar performance. In order to understand the comple-
mentarity of planners that participated in the optimal track of IPC-14, and hence their
suitability as components within portfolio approaches, we analysed the performance
of individual planners on our complete set of 2620 IPC-14 instances (the union of our
previously-mentioned training, validation and testing sets, including the 20 instances
from the GED domain). Table 1 shows the results of this complementarity analysis in
terms of coverage and PAR10 scores. Many planners are able to provide high perfor-
mance on different sets of instances, with all but hpp-ce and hpp solving more than
400 problem instances. Moreover, we observe that there is also a very good distribu-
tion of performance at the domain level: nearly all planners have one domain on which
they are “best”. We note further that this property extends even to instances within
the same domain, as several domains have different best planners depending on the
problem instance. Therefore, the individual planners considered here are very suitable
for combination in portfolio approaches. For instance the Metis planning system,



4 Empirical Analysis 15

Tab. 2: Basic planners (allocated CPU time) included in the Static portfolios.
Planners are listed accordingly to the order in which they are executed.

1st 2nd 3rd 4th 5th

Static 2 SymBA*-1 (270) Metis (1530)
Static 3 SymBA*-1 (260) hflow (140) Metis (1400)
Static 4 SymBA*-1 (140) hflow (140) cGamer (620) Metis (900)
Static 5 DPMPlan (140) SymBA*-1 (140) hflow (120) cGamer (800) Metis (600)

which provides the best overall instance set coverage, provides the best PAR10 results
in one domain only. In contrast, hflow does not provide good overall instance set
coverage, but it is the best choice for two of the IPC-14 domains. Similar observations
can be obtained on a per-instance basis. Gamer shows a peculiar behaviour: it is able
to solve a large number of instances, but does not perform particularly well on any
domain; it also tends to have high running times on instances it manages to solve. This
is due to the approach it exploits: Gamer spends half of the CPU time in creating
a heuristic through symbolic search. If a solution is then found, it is immediately re-
ported. Otherwise, an abstraction is generated and used for the remainder of the time
budget. This suggests that Gamer may have been specifically configured to perform
well for the running time cutoff and scoring function used in the IPC.

Given this promising complementarity between the individual planners under con-
sideration, we evaluated the performance of static portfolios combining these planners.
We tested portfolios executing 2, 3, 4 and 5 planners, selected via the mechanism out-
lined in the previous section. The planners included in the largest static portfolio,
ordered according to their allocated CPU time, are: cGamer, Metis, DPMPlan,
SymBA*-1 and hflow. Table 2 provides details, in terms of selected planners and
allocated CPU time, of the generated static portfolios.

We also generated a Streeter-style portfolio using the considered basic planners.
The generated portfolio includes 7 planners: Metis, SymBA*-1, hflow, RIDA,
DPMPlan, cGamer and SPM&S.

Table 3 shows the performance of all portfolios, the virtual best planner (VBP,
representing an oracle which always selects the best solver for the given instance) and
individual planners on our testing set. It is clear that all of the static portfolios and
the Streeter-style portfolio achieve better results than the individual planners they use
as components. The Streeter-style portfolio outperforms the static portfolios with 2, 3
and 4 component planners, but does not reach the performance of the static portfolio
of size 5. This is due to the fact that the Streeter portfolio construction greedily adds
component runs optimizing the number of instances solved in a given running time,
and thus tends toward several short runs at the start of the portfolio. On the other
hand, our static portfolios allow for modifying the running time cutoffs of existing
components and tend to result in running time cutoffs that are more balanced. Unsur-
prisingly, the larger the number of planners included in a static portfolio, the higher
the performance of the portfolio. This is due to the fact that the cutoff time of 1800
seconds allows all the included planners to run at least for 2 minutes, which is usually
enough to optimally solve most of the test instances. We empirically observed that
performance does not further increase for even larger static planner portfolios. The
static portfolio generation techniques recognise that additional component planners



4 Empirical Analysis 16

Tab. 3: Number of instances solved and PAR10 scores for the planning sys-
tems considered in our study, evaluated with 1800 and 300 CPU second
running time cutoffs on our IPC-14 test set. VBP indicates the perfor-
mance of the virtual best planner, and grey rows indicate portfolio-based
planners. Planners are listed in the order of increasing PAR10.

1800 Second Timeout 300 Second Timeout
System Sol. PAR10 System Sol. PAR10

VBP 706 9355.3 VBP 609 1757.6
Planzilla 677 9725.3 Planzilla 542 1901.6
S-Model 650 10051.2 S-Model 515 1952.8
Model 632 10269.8 Streeter 484 2006.1
Static 5 610 10527.5 Model 482 2018.4
SIM-I 603 10639.1 SIM-I 455 2068.8
Streeter 586 10786.6 SIM-W 422 2134.4
Static 4 582 10847.6 Static 5 408 2155.4
SIM-W 575 10997.7 Static 4 408 2155.4
Static 3 558 11132.7 Static 3 408 2155.4
Static 2 499 11831.1 Static 2 408 2155.4
Metis 441 12534.3 SymBA*-2 364 2239.6
D-Gamer 410 12914.7 SymBA*-1 363 2241.7
MIPlan 384 13223.2 Metis 343 2285.0
SymBA*-1 378 13236.2 cGamer 318 2335.0
SymBA*-2 378 13236.4 DPMPlan 315 2339.2
DPMPlan 378 13264.1 D-Gamer 289 2396.5
cGamer 378 13266.2 MIPlan 273 2424.6
NuCeLaR 350 13620.4 RLazyA* 254 2458.8
RLazyA* 331 13840.3 NuCeLaR 255 2461.8
Gamer 322 13961.3 SPM&S 242 2482.0
AllPaca 306 14133.1 Cedalion 243 2482.7
SPM&S 297 14234.8 AllPaca 237 2492.7
Cedalion 292 14293.8 Gamer 220 2527.5
RIDA 256 14741.2 hflow 191 2582.2
hflow 239 14922.4 RIDA 180 2615.7
hpp-ce 23 17487.4 hpp-ce 19 2922.7
hpp 20 17523.7 hpp 14 2932.3

will have insufficient time to increase overall portfolio performance and therefore do
not include them.

Table 3 also shows the performance of the static and Streeter-style portfolios with
a shorter cutoff time of 300 CPU seconds. In this setting, static portfolios are still
able to provide better performance than the individual planners. However, using this
lower cutoff time, the static portfolio generation always selects 2 planners for all of
the static portfolio sizes, namely Metis and SymBA*-1. This is due to the fact that
adding more planners further reduces the already limited running time available for
each component. Unlike when using a 1800 CPU second cutoff, with a 300 CPU second
cutoff, the Streeter-style portfolio greatly outperforms the static portfolios, solving 76
instances more.



4 Empirical Analysis 17

4.3 Per-instance Portfolio Performance

In order to evaluate the performance of our four per-instance approaches, as well
as that of Planzilla, we trained each approach using our IPC-14 training set and
evaluated the result on the corresponding held-out test set. The running time cutoff
for solving each problem instance was 1800 CPU seconds. Instance set coverage and
PAR10 scores for each portfolio approach are reported in Table 3, showing that the
model-based approaches substantially outperform the static portfolios and similarity-
based approaches. In this scenario, the 5-planner static portfolio outperforms the
instance-core-based similarity method, and the weight-based similarity method is fur-
ther outperformed by the 4-planner static portfolio and the Streeter-style schedule.
However, even the similarity-based approaches perform better than all of the individ-
ual planners. The fact that the training and test sets were sampled from the same
underlying distribution is to Planzilla’s advantage, as its single planner selection
is likely to be correct and the selected planner is able to exploit the large available
running time.

To investigate the performance of our per-instance approaches when given a much
smaller running time cutoff, we performed another set of experiments with the same
training and test sets, but using a 300 CPU second running time cutoff. We observed
similar results as for the 1800 CPU second cutoff, but in this case, the similarity-based
approaches now outperformed the static portfolios. Interestingly, the Streeter-style
schedule performs very well in this case, and its performance was only exceeded by
that of Planzilla and our simplified model-based approach. We believe that the high
performance of the Streeter-style schedule is due to training and test set being drawn
from the same distribution, and that by design, this approach performs short runs of
many planners. Given a reasonably good selection of planners, and considering the
fact that most of the benchmarks can be solved quickly, the observed performance of
the Streeter-style approach is not surprising.

4.4 Performance Generalisation to Dissimilar Testing Sets

In order to test the generalisation for all of our considered approaches to planning
instances dissimilar from those found in a given training set, we performed two ad-
ditional experiments. Because of its high training time (which would have added up
to a prohibitive several months of computation on our cluster), we excluded the full
model-based approach from this part of our study.

Our first generalisation experiment involved removing all instances from one do-
main at a time from our IPC-14 training set, training each approach using this new
training set, and then evaluating the result on all problem instances from the held-out
domain. We refer to this setup as “leave-one-domain-out”. In Table 4 and Table 5,
we present the resulting per-domain instance set coverage using running time cutoffs
of 1800 and 300 CPU seconds for solving each instance, respectively.

The Streeter-style schedule performed best in this scenario, followed by the two
similarity-based approaches and the static portfolios. Our simplified model-based ap-
proach and Planzilla both fail to generalise as well, and are outperformed by the two
SymBA* planners and Metis, respectively; we believe that this is due to the models
becoming overly specialised to the given training set.

Our next generalisation experiment took the “leave-one-domain-out” approach fur-
ther and used a training set containing no problem instance from any of the IPC-14
domains. Instead, we used domains from the optimal tracks of IPC 2008 and 2011



4 Empirical Analysis 18

Tab. 4: Number of instances solved per domain by each of the approaches
considered in our study, in the “leave-one-domain-out” scenario, using
an 1800 second running time cutoff. This allows for a rudimentary
analysis of generalisation performance. Results for each of the individ-
ual planners have also been included for comparison. Domains, from
left: Barman, Cave-Diving, ChildSnack, Citycar, Floortile, Hiking,
Maintenance, Openstacks, Parking, Tetris, Tidybot, Transport and
Visitall.

Planner BM CD CS CC FT H M OS P T TB TP VA Total

VBP 52 35 115 148 200 148 20 173 54 171 58 113 111 1398
Static 5 44 35 70 133 200 114 16 142 20 164 49 104 92 1183
SIM-W 34 35 69 114 200 113 20 123 34 162 42 100 71 1117
Streeter 34 35 70 98 200 114 16 123 16 158 45 100 72 1081
S-Model 12 33 41 137 194 110 0 168 28 138 47 102 29 1039
SIM-I 34 35 70 120 192 112 7 87 17 157 28 100 73 1032
Static 4 13 35 71 88 186 114 0 142 20 164 48 99 25 1005
Static 2 13 35 76 91 186 115 0 143 24 144 53 99 22 1001
Static 3 13 35 75 91 186 115 0 143 22 143 54 98 19 994
Planzilla 9 16 23 133 120 110 0 169 23 134 42 101 21 901
Metis 11 35 79 146 116 119 0 48 27 141 50 102 22 896
D-Gamer 16 16 115 132 173 123 6 160 0 0 4 104 31 880
SymBA*-1 12 16 23 91 186 110 0 143 1 126 23 101 15 847
SymBA*-2 12 16 23 90 186 110 0 143 0 126 24 101 15 846
MIPlan 3 35 31 53 121 110 17 99 49 146 24 92 17 797
cGamer 52 16 46 0 200 123 0 169 0 0 48 112 25 791
DPMPlan 3 35 31 53 121 110 17 98 45 146 22 92 17 790
NuCeLaR 0 16 32 0 121 108 0 109 51 147 40 90 17 731
Gamer 9 16 36 118 167 111 4 125 0 0 26 100 16 728
RLazyA* 0 35 0 120 101 85 0 36 24 134 41 86 43 705
AllPaca 0 35 0 116 102 77 0 40 20 131 42 82 19 664
SPM&S 9 16 10 32 168 138 0 54 25 104 20 47 21 644
Cedalion 0 35 0 90 86 102 0 28 11 138 35 71 26 622
RIDA 0 0 0 112 19 89 20 2 1 117 56 107 17 540
hflow 0 16 0 0 66 45 0 6 7 162 1 63 111 477
hpp-ce 0 0 0 38 0 17 0 0 0 0 0 0 0 55
hpp 0 0 0 31 0 20 0 0 0 0 0 0 0 51

that were not used in IPC-14. We trained all portfolio-based planners using this new
training set and evaluated the result on our IPC-14 test set. This was done with an
1800 CPU second running time cutoff as well as with a 300 CPU second cutoff. The
resulting test set coverage and PAR10 scores are summarised in Table 6.

First, we note that the Metis planner now outperforms all other approaches on
the test set. After further investigation, we determined that the Metis planner was
frequently not the best (or even a good) planner on the domains of our training set,
leading to Metis not being selected often for problem instances in our test set. This
is, of course, a known downside to having a test set that is greatly dissimilar from the
instance set used for training.

We note that on this scenario, the static portfolios drop in performance, while
the performance of the similarity-based approaches increases. Moreover, our proposed
approaches seem to have better generalisation performance than Planzilla, likely due
to having multiple attempts at selecting the “right” planner for each problem instance.



4 Empirical Analysis 19

Tab. 5: Number of instances solved per domain by each of the approaches
considered in our study, in the “leave-one-domain-out” scenario, us-
ing a 300 second running time cutoff. This allows for a rudimentary
analysis of generalisation performance. Results for each of the individ-
ual planners have also been included for comparison. Domains, from
left: Barman, Cave-Diving, ChildSnack, Citycar, Floortile, Hiking,
Maintenance, Openstacks, Parking, Tetris, Tidybot, Transport and
Visitall.

Planner BM CD CS CC FT H M OS P T TB TP VA Total

VBP 34 35 77 126 200 118 20 152 51 166 44 98 97 1218
Streeter 10 35 41 98 186 106 16 121 1 154 21 82 69 940
SIM-I 8 35 40 84 185 104 7 143 7 140 24 77 62 916
SIM-W 10 35 41 90 186 105 16 119 1 144 18 70 59 894
Static 2 10 35 52 73 186 107 0 138 3 140 30 72 16 862
Static 3 10 35 52 73 186 107 0 138 3 140 30 72 16 862
Static 4 10 35 52 73 186 107 0 138 3 140 30 72 16 862
Static 5 10 35 52 73 186 107 0 138 3 140 30 72 16 862
SymBA*-1 12 16 19 90 186 110 0 143 1 126 23 86 15 827
SymBA*-2 12 16 20 89 186 110 0 143 0 126 21 87 15 825
S-Model 12 33 33 81 155 102 0 122 12 119 25 81 29 804
Metis 0 35 67 126 90 101 0 30 9 135 34 74 15 716
Planzilla 4 16 19 110 95 105 0 123 8 117 24 73 14 708
cGamer 34 16 40 0 200 112 0 152 0 0 0 29 97 680
DPMPlan 3 35 10 53 70 100 16 54 44 141 22 83 15 646
D-Gamer 0 16 77 81 134 109 6 101 0 0 3 82 24 633
MIPlan 1 35 1 53 55 98 16 14 45 143 24 67 14 566
RLazyA* 0 35 0 107 62 69 0 18 9 126 31 67 32 556
AllPaca 0 35 0 105 66 69 0 23 4 122 29 63 13 529
Gamer 0 16 11 92 122 102 4 95 0 0 4 71 8 525
SPM&S 9 16 10 13 168 112 0 54 0 100 4 17 21 524
NuCeLaR 0 16 4 0 60 105 0 17 51 138 35 87 10 523
Cedalion 0 35 0 89 58 74 0 12 8 132 30 66 18 522
hflow 0 1 0 0 49 33 0 0 1 154 1 43 97 379
RIDA 0 0 0 100 0 65 20 0 0 52 32 85 9 363
hpp-ce 0 0 0 26 0 14 0 0 0 0 0 0 0 40
hpp 0 0 0 22 0 17 0 0 0 0 0 0 0 39

From these generalisation experiments, it appears that different portfolio approaches
work best under different circumstances: the model-based approaches are often best
in situations where the test instances are likely to be largely similar to those used
for training. The similarity-based approaches often perform better when the test set
contains many instances from domains not used during training.

4.5 Importance of Pre- and Backup Solvers

Dynamic portfolio approaches use the pre- and backup solvers for two distinct pur-
poses. Pre-solving aims at quickly solving easy instances, for which extracting features
would be wasteful. Backup solvers are used if the feature extraction process is believed
to be infeasible within the given amount of time (or extraction fails), or in case of
failure of the main selected solver(s). From this perspective, the purpose of backup
solvers can be understood as minimising the impact of poor algorithm selection, while



4 Empirical Analysis 20

Tab. 6: Number of instances solved and PAR10 scores for the planning systems
considered in our study, trained on the IPC 2008 and 2011 benchmarks,
evaluated on the IPC 2014 instances. Grey indicates the investigated
planner portfolios, while VBP indicates the performance of the virtual
best planner. Systems are listed following increasing PAR10 order.

1800 Second Timeout 300 Second Timeout
System Sol. PAR10 System Sol. PAR10

VBP 652 8021.9 VBP 557 1338.0
Metis 535 9638.2 Metis 535 1418.2
S-Model 526 9779.2 S-Model 447 1563.5
Sim-I 507 10041.8 Streeter 438 1571.7
Sim-W 508 10051.2 Sim-W 435 1583.4
Streeter 504 10062.2 Sim-I 432 1589.6
Planzilla 501 10121.1 Planzilla 427 1600.9
Static 4 472 10517.7 DPMPlan 407 1652.8
Static 5 470 10543.0 Static 5 395 1660.7
Static 3 441 10934.9 Static 3 395 1660.7
Static 2 420 11221.8 Static 2 395 1660.7
DPMPlan 407 11408.8 Static 4 395 1660.7
MIPlan 407 11420.1 MIPlan 407 1664.1
RLazyA* 389 11664.8 SymBA*-1 381 1687.9
D-Gamer 392 11679.4 SymBA*-2 380 1689.6
SymBA*-1 381 11755.9 RLazyA* 389 1692.7
SymBA*-2 380 11769.6 AllPaca 374 1718.0
Cedalion 380 11799.5 Cedalion 380 1719.5
AllPaca 374 11870.0 D-Gamer 392 1743.4
RIDA 351 12246.5 RIDA 351 1818.5
NuCeLaR 318 12664.3 NuCeLaR 318 1840.3
SPM&S 307 12816.6 SPM&S 307 1860.6
Gamer 285 13137.5 Gamer 285 1917.5
hflow 230 13880.7 hflow 230 2000.7
cGamer 185 14508.5 cGamer 185 2088.5
hpp-ce 58 16281.1 hpp-ce 58 2337.1
hpp 54 16333.1 hpp 54 2341.1

pre-solvers are used as an optimisation for improving the overall running time.
Table 7 shows the percentage of problems solved by each stage of our dynamic

portfolio approaches; namely presolving, main and backup stages, when using an 1800
CPU second cutoff on our testing set. We observe that the backup solver is rarely
exploited, and only the model-based systems use it successfully. This is possibly due
to the fact that the backup solver is run only in exceptional cases, such as when feature
computation or model evaluation fails. On the other hand, Table 7 clearly shows that
pre-solvers are extremely important and responsible for solving a significant percentage
of the instances. Given the very limited CPU time available for the pre-solver (1.11%
of the cutoff time, around 20 CPU seconds in our experiments), this result is a clear
indication that a large number of the benchmarks can be solved in a short amount
of time by a single solver. We note that this is especially the case for the Floortile

domain.
In order to investigate the contribution of the pre-solving stage to the performance

of the approaches, we re-ran the Planzilla and model-based approaches with the pre-
solving mechanism disabled. Results of this experiment are shown in Table 8. Inter-



5 Conclusions 21

Tab. 7: Percentages of instances solved by the pre-solving, main, and backup
stages of our four per-instance portfolio approaches, as well as by
Planzilla. We also include the percentage of instances left unsolved
by each approach.

Pre Main Backup Unsolved

Planzilla 15.0 31.0 0.0 54.0
Model 14.0 28.0 1.0 57.0
SIM-I 20.0 21.0 0.0 59.0
SIM-W 20.0 19.0 0.0 61.0
S-Model 20.0 24.0 1.0 56.0

Tab. 8: Percentages of instances solved by model-based approaches and
Planzilla, when the pre-solving phase is disabled. We also include
the percentage of instances left unsolved by each approach.

Pre Main Backup Unsolved

Planzilla 0.0 45.5 0.0 54.5
Model 0.0 41.0 0.9 58.1
S-Model 0.0 38.0 4.6 57.4

estingly, we observed that the impact on instance set coverage was much smaller than
expected. The most affected system is our simplified model-based approach (S-Model),
for which disabling pre-solving results in 1.4% fewer instances solved. Apparently, the
main solver stage is generally able to solve most of the instances usually solved by the
pre-solving stage; we also noticed an increase in the exploitation of backup solvers,
which are now used in up to 4.6% of the instances and 10% of the solved instances.
This suggests that pre-solving is not fundamental in terms of coverage, but is useful
for improving the running time of a portfolio approach. Evaluating the usefulness of
the backup solver is straightforward: since it is used only when other steps fail or
are believed to be infeasible, its impact can be measured directly as the percentage of
instances solved by the backup stage, which was very low in our experiments.

5 Conclusions

In this paper we introduced four new per-instance portfolio techniques, exploiting the
largest set of planning instance features currently available [19]. Two of our approaches
are model-free and based on similarity metrics in instance feature space. The other
two techniques are model-based and iteratively select the next solver to run by con-
sidering instance features as well as information about previous failed selections. We
compared the performance of these new approaches with that of several static portfolio
methods and with the performance of Planzilla, an out-of-the-box application of the
SATzilla algorithm selection system. The results of our extensive empirical analysis
showed that:

1. the planners from the optimal track of IPC-14 have a high level of complemen-
tarity and can thus be fruitfully combined using portfolio approaches;



5 Conclusions 22

2. if the training instances are representative of testing instances, portfolio-based
planners achieve better performance than any individual planner;

3. when training and testing sets include problem instances taken from the same
distribution, our new model-based approaches consistently outperform the static
portfolios, while our similarity-based approaches match the performance of the
static portfolios;

4. when the testing set includes multiple domains not found in the training sets,
both our new model-based and similarity-based approaches outperform the static
portfolios;

5. our model-based and similarity-based approaches appear to generalise better to
previously unseen domains than Planzilla.

We see several avenues for future work. First, we are interested in further investigating
the generalisation performance of the methods considered in our study. In this context,
we plan to consider significantly different distributions of problem instances or a larger
set of different domains. Secondly, we see promise in studying less expensive but still
effective training techniques for variants of our full model-based approach. This might
be achievable by selecting more than one planner at a time, thus reducing the number
of models to consider in the training step. Thirdly, we are interested in testing the
robustness of the portfolio techniques introduced here, with regards to factors such as
different hardware and software platforms, or the different configuration of planning
domain models. All of these factors have been shown to have remarkable impact on
the performance of domain-independent planners [1, 28] and can therefore affect the
accuracy of predictive models. We additionally plan to investigate replacing some
of our component planners that were themselves portfolio-based with their portfolio
components. Finally, we plan to apply our new portfolio approaches to other areas of
planning, e.g., temporal or satisficing planning.

Acknowledgements

We thank the SATzilla team (in particular, Chris Cameron) for letting us use a pre-
liminary version of their *zilla software. We also gratefully acknowledge computing
resources made available by Compute-Calcul Canada. HH and CF were supported by
an NSERC Discovery Grant held by HH.

References

[1] A. Howe and E. Dahlman, A critical assessment of benchmark comparison in
planning, Journal of Artificial Intelligence Research 17 (2002) 1–33.

[2] M. Helmert, G. Röger and E. Karpas, Fast Downward Stone Soup: A baseline
for building planner portfolios, in Proceedings of the ICAPS 2011 Workshop on
Planning and Learning (ICAPS-PAL) 2011, pp. 28–35.

[3] J. R. Rice, The algorithm selection problem, Advances in Computers 15 (1976)
65–118.

[4] L. Xu, F. Hutter, H. H. Hoos and K. Leyton-Brown, SATzilla: Portfolio-based
Algorithm Selection for SAT, Journal of Artificial Intelligence Research (2008)
565–606.



5 Conclusions 23

[5] H. Hoos, M. Lindauer and T. Schaub, claspfolio 2: Advances in algorithm selection
for answer set programming, Theory and Practice of Logic Programming 14(4-5)
(2014) 569–585.

[6] A. Gerevini, A. Saetti and M. Vallati, Planning through automatic portfolio con-
figuration: The PbP approach, Journal of Artificial Intelligence Research 50
(2014) 639–696.

[7] M. Vallati, L. Chrpa and D. E. Kitchin, ASAP: An Automatic Algorithm Selec-
tion Approach for Planning, International Journal on Artificial Intelligence Tools
23(6) (2014).

[8] M. Vallati, L. Chrpa and D. E. Kitchin, Portfolio-based planning: State of the art,
common practice and open challenges, AI Communications 28(4) (2015) 717–733.

[9] J. Seipp, S. Sievers, M. Helmert and F. Hutter, Automatic configuration of sequen-
tial planning portfolios, in Proceedings of the Conference on Artificial Intelligence
(AAAI) 2015, pp. 3364–3370.

[10] J. Seipp, M. Braun, J. Garimort and M. Helmert, Learning portfolios of automat-
ically tuned planners, in Proceedings of International Conference on Automated
Planning and Scheduling (ICAPS) 2012, pp. 369–372.

[11] I. Cenamor, T. de la Rosa and F. Fernández, The IBaCoP planning system:
Instance-based configured portfolios, Journal of Artificial Intelligence Research
56 (2016) 657–691.

[12] M. Vallati, L. Chrpa and T. L. McCluskey, The 2014 IPC: Description of Partic-
ipating Planners of the Deterministic Track 2014.

[13] M. Vallati, L. Chrpa, M. Grzes, T. L. McCluskey, M. Roberts and S. Sanner,
The 2014 international planning competition: Progress and trends, AI Magazine
36(3) (2015) 90–98.

[14] S. Núñez, D. Borrajo and C. L. López, Performance analysis of planning portfo-
lios, in Proceedings of the Annual Symposium on Combinatorial Search (SOCS)
2012, pp. 65–71.

[15] C. L. López, S. J. Celorrio and Á. G. Olaya, The deterministic part of the seventh
international planning competition, Artificial Intelligence 223 (2015) 82–119.

[16] L. Xu, F. Hutter, J. Shen, H. H. Hoos and K. Leyton-Brown, SATZilla 2012:
Improved Algorithm Selection Based on Cost-sensitive Classification Models, in
Proceedings of the SAT Challenge (SC) 2012, pp. 57–58.

[17] M. Rizzini, C. Fawcett, M. Vallati, A. E. Gerevini and H. H. Hoos, Portfolio
methods for optimal planning: An empirical analysis, in Proceedings of the IEEE
International Conference on Tools with Artificial Intelligence (ICTAI) 2015, pp.
494–501.

[18] M. Ghallab, D. Nau and P. Traverso, Automated planning, theory and practice
(Morgan Kaufmann, 2004).

[19] C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. H. Hoos and K. Leyton-Brown,
Improved Features for Runtime Prediction of Domain-Independent Planners, in
Proceedings of International Conference on Automated Planning and Scheduling
(ICAPS) 2014, pp. 355–359.

[20] M. Helmert, The Fast Downward planning system, Journal of Artificial Intelli-
gence Research 26 (2006) 191–246.



5 Conclusions 24

[21] I. Cenamor, T. de la Rosa and F. Fernández, Mining IPC-2011 results, in Pro-
ceedings of the ICAPS 2012 Workshop on the International Planning Competition
(ICAPS-IPC) 2012.

[22] A. Gerevini, A. Saetti and I. Serina, Planning through stochastic local search
and temporal action graphs, Journal of Artificial Intelligence Research 20 (2003)
239–290.

[23] J. Hoffmann, Analyzing search topology without running any search: On the con-
nection between causal graphs and h+, Journal of Artificial Intelligence Research
41 (2011) 155–229.

[24] S. Richter and M. Westphal, The LAMA planner: Guiding cost-based anytime
planning with landmarks, Journal of Artificial Intelligence Research 39 (2010)
127–177.

[25] J. Rintanen, Engineering efficient planners with SAT, in Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI) 2012, pp. 684–689.

[26] F. Hutter, L. Xu, H. H. Hoos and K. Leyton-Brown, Algorithm runtime predic-
tion: Methods & evaluation, Artificial Intelligence 206 (2014) 79–111.

[27] M. Streeter and S. Smith, New techniques for algorithm portfolio design, in Pro-
ceedings of the Conference in Uncertainty in Artificial Intelligence (UAI) 2008,
pp. 519–527.

[28] M. Vallati, F. Hutter, L. Chrpa and T. L. McCluskey, On the effective con-
figuration of planning domain models, in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI) 2015, pp. 1704–1711.


