
University of Huddersfield Repository

Dufeu, Frédéric

A permissive graphical patcher for supercollider synths

Original Citation

Dufeu, Frédéric (2016) A permissive graphical patcher for supercollider synths. In: Proceedings
ICMC 2016 : Is the sky the limit? HKU University of the Arts, pp. 134139. ISBN 9780984527458

This version is available at http://eprints.hud.ac.uk/30699/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or notforprofit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/74212157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Permissive Graphical Patcher
for SuperCollider Synths

 Frédéric Dufeu

CeReNeM
University of Huddersfield
f.dufeu@hud.ac.uk

ABSTRACT
This article presents the first version of a permissive
graphical patcher (referred to in the text as SCPGP) ded-
icated to fluid interconnection and control of SuperCol-
lider Synths. With SCPGP, the user programs her/his
SynthDefs normally as code in the SuperCollider envi-
ronment, along with a minimal amount of additional in-
formation on these SynthDefs, and programs Patterns
according to a simple SuperCollider-compliant syntax.
From the execution of this SuperCollider session, the
SCPGP interface allows for the definition of higher-level
Units, composed of one or several SynthDefs. These Units
can then be used in the graphical patcher itself, where
the user can easily create graphs of Units, set their pa-
rameters, and, where applicable, assign them Buffers and
Patterns. Permissiveness is a key principle of SCPGP:
once SynthDefs have been successively tested as valid
SuperCollider code, the user must be able to interconnect
them with no limitation regarding connector properties
(signal rate, number of channels) or the order of execu-
tion on the SuperCollider tree of Nodes. SCPGP offers a
range of flexible patching operations, to foster a fully
fluid and open-ended experimentation from a network of
user-defined SuperCollider Synths.

1. INTRODUCTION
The variety of creative uses of SuperCollider, described
by its authors as “a programming language for real time
audio synthesis and algorithmic composition [1]”, is as-
sessed by its initial developer, James McCartney, in the
foreword to The SuperCollider Book. “With SuperCollid-
er, one can create many things: very long or infinitely
long pieces, infinite variations of structure or surface de-
tail, algorithmic mass production of synthesis voices,
sonification of empirical data or mathematical formulas,
to name a few. It has also been used as a vehicle for live
coding and networked performances [2, p. IX]”.

SuperCollider has a client-server architecture: the serv-
er application, scsynth, performs the audio synthesis and
processing. Its client, sclang, is the interpreter for the
SuperCollider programming language itself, and sends
OSC messages to the audio server. A canonical use of
SuperCollider is to write code in sclang and execute it to

command the DSP operations performed by scsynth. On
the one hand, SuperCollider can be used as a primarily
text-based creative environment, and features such as the
Just-in-Time library (JITlib) [3] offer an extended flexi-
bility for coding-driven live performances. On the other
hand, sclang has a range of Graphical User Interface
(GUI) features, allowing for advanced non-text-based
user interactions with both sclang and scsynth [4].

The development of the graphical patcher presented in
this article is motivated by one of the possible uses of
SuperCollider: an advanced text-based design of person-
alised DSP engines (synthesizers, samplers, processers,
typically expressed as SynthDef objects in the SuperCol-
lider language), followed with modular interconnections
of these engines. Widespread equivalents to the second
part of this approach in the physical world are the assem-
blage of modular synthesizers or the combination of gui-
tar effect pedals. Although such interconnections can be
operated solely by coding, it is here assumed that in a
situation involving a number of modules contributing to a
global audio graph, designating one particular module,
regardless of the operation to perform on it, is easier and
quicker if this module is represented as a graphical object
on a two-dimensional visual workspace than as a variable
name in a textual environment1.

Beyond the ability to interconnect graphically Super-
Collider-designed DSP modules, the essential advantages
of implementing a patcher using the sclang/scsynth cou-
ple as a backend, as opposed to programming directly in
visual languages such as Max or Pd, are twofold. First,
the large library of Patterns delivered with SuperCollider
[7] enables to create Event-driven Synths with great flex-
ibility and expressivity: simple or complex Patterns can
control the evolution of all the parameters of a given
module, including its Buffer references and input and
output Buses, providing an extended dynamism to the
global DSP graph. Secondly, implementing a GUI that is
extrinsic to the considered programming language fa-

1 More generally, the pros and cons of the textual and graphical compu-
ting paradigms are highly dependent on their contexts of use. In an
article on OpenMusic published in the Journal of Visual Languages and
Computing, Jean Bresson and Jean-Louis Giavitto affirm that “visual
languages make programming and the access to computer resources
more productive and useful to certain user communities, willing to
design complex processes but not necessarily attracted to or skilled in
traditional textual programming. They are supposed to ease program-
ming activities (e.g. limiting syntactic errors), but also contribute to a
more interactive relation between the user and the programs [5,
p. 364]”. Bresson and Giavitto reckon that “this idea can be argued” and
point in particular to one empirical study, out of the scope of creative
computing [6].

Copyright: © 2016 Frédéric Dufeu. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

vours the design of patching operations that go beyond
what the visual programming languages for musical crea-
tion normally permit, thus facilitating studio experimen-
tation and performance expressivity. The body of this
article presents the global architecture of the proposed
environment, before developing the features and uses of
the SuperCollider code in this context, and of the two
main workspaces of the GUI application itself: the Unit
Maker and the Unit Patcher.

2. OVERALL ARCHITECTURE
The permissive graphical patcher for SuperCollider, re-
ferred to in this text as SCPGP for convenience and clari-
ty2, is being developed both in the SuperCollider lan-
guage itself and as a separate GUI application built from
JavaScript code in Max, embedded in a JSUI (JavaScript
User Interface) object including the MGraphics library3.
The overarching principle of SCPGP is that its user
should design both elementary DSP modules and Patterns
for the control of dynamic Synths as code in the Super-
Collider language, and that everything else – assembling
Units and playing with them – should be done from the
graphical interface.

Using SCPGP first requires executing a SuperCollider
document, here referred to as the SuperCollider session,
that contains the user-defined SynthDefs and Patterns, as
well as the backend algorithm responding to the user’s
actions from the graphical interface. Once the SuperCol-
lider session has been executed, the GUI application can
communicate with scsynth via sclang, with simple com-
mands sent over a network with UDP (figure 1).

Figure 1. Overall structure of the SCPGP environment

From one given SuperCollider session (i.e., from one
set of defined SynthDefs and Patterns), the user can cre-
ate, save, and restore one or several GUI sessions. Creat-
ing a GUI session essentially dumps the SynthDef and
Pattern information from SuperCollider to the GUI appli-
cation, where the user can make her/his own Units and
patch them together to generate sound and experiment.

One important aspect of the SCPGP design is that the
user does not play by patching strictly SynthDef-based
modules, but with Units that she/he must make from one
or several of the SynthDefs declared in the SuperCollider
session. The reason for this design is that some DSP
modules cannot be sensibly conceived from only one
SynthDef. For instance, a Unit supposed to read grains
from an incoming audio stream requires the definition of
two SynthDefs: the first SynthDef defines a template to
record continuously the incoming audio stream into a
Buffer, while the second SynthDef defines a template for
reading a grain from that Buffer, with the desired parame-

2 The product name for SCPGP is yet to be chosen and will be given on
the public release of its first beta version.
3 A first prototype was presented by the author of this article in 2012 at
the French annual computer music conference in Mons [8]. The graph-
ical user interface was then developed with OpenGL in Max.

ters and envelope. A pattern can then trigger grains as
dynamic and self-freeing instances of Synth that refer to
the second SynthDef, while the recording Synth, referring
to the first SynthDef, remains permanently active from
the creation to the destruction of the unit. Therefore, the
GUI application of SCPGP is itself constituted with two
distinct and non-simultaneous workspaces: the Unit Mak-
er, in which the user chooses SynthDefs and assembles
them into Units, and the Unit Patcher, in which the user
actually generates sound by patching together her/his
previously defined Units, controls their parameters and,
where appropriate, assigns them Buffers and Patterns.
Figure 2 summarizes the workflow in SCPGP.

Figure 2. Workflow within SCPGP

3. THE SUPERCOLLIDER SESSION
The SuperCollider session is a text document read by the
SuperCollider IDE. At the top of the document are the
user definitions: essentially, SynthDefs and, if needed,
Patterns. Some general settings can also be edited in that
part of the document4. The rest of the text document
should not be edited: it contains the algorithm responding
to the user’s actions from the GUI application. Some as-
pects of its implementation are described in the para-
graphs dedicated to the Unit Maker and the Unit Patcher;
in this paragraph are explained the declaration modes for
SynthDefs and Patterns.

3.1 SynthDef declaration

In the SuperCollider session, SynthDefs are declared se-
quentially within a function named “func_define-
UserSynthDefs” (figure 3). For each SynthDef, the user
must provide a unique name (e.g. below ‘Stereo Dac’,
‘Loop Sampler’), then declare the SynthDef as he would
normally do in SuperCollider, by calling on the SynthDef
class the implicit “new” method, with the name of the
SynthDef and the UGen graph function as arguments.
The SynthDef is then added to the SynthDescLib5 and
sent to scsynth with the “add” method.

A function named “func_initSynthDefInfo” must then
be evaluated with the name of the SynthDef as an argu-
ment: this function queries the SynthDescLib to provide
the SynthDef information needed by the GUI application
of SCPGP6. As some information cannot be inferred from
the SynthDescLib, the user must provide manually an

4 For instance, the UDP addresses and ports for communication with the
GUI application.
5 The SynthDescLib is a library of descriptions of SynthDefs.
6 The collected SynthDef information is: static or dynamic status (de-
duced from the “hasGate” member of the SynthDef description), inputs
and outputs properties (audio or control rate, number of channels),
argument names.

array of buffer references containing, for each reference,
the control name for the buffer and its number of chan-
nels7.

Figure 3. SynthDef declaration in a SuperCollider ses-
sion of SCPGP for a Dac and a simple Loop Sampler.

At this stage of the SCPGP workflow, it is the responsi-
bility of the user to ensure that the SynthDef declaration
is valid SuperCollider code, and that the bufferControls
array is conform to the SynthDef UGen graph.

3.2 Pattern declaration

The Pattern declaration in SCPGP is more specific than
the SynthDef declaration, and takes place in a function
named “func_defineUserPatterns” (figure 4). Each Pat-
tern is initialised with a function named “func_init-
PatternInfo” that takes a unique name as argument (e.g.
below ‘Grains 1’, ‘Play Sample Once’). The user can
then write sub-Patterns as members of the “pattern_info”
dictionary8: first, a sequence for the durations of succes-
sive Pattern Events (‘dur’); then, sequences for input and
output Buses, and, where appropriate, for Buffer refer-
ences; finally, sequences for Synth parameters.

At this point, the Patterns for input and output Buses
and for Buffers do not take actual Bus and Buffer objects
lists as arguments: rather, they take abstract indexes that
will be updated when called from the GUI application. In
the example of the ‘Grains 1’ pattern in figure 4, the Pat-
tern design assumes that the Unit referring to this pattern
can receive its input signal (‘in0’) from two different
buses (0, 1) and send its output signal (‘out0’) to three
different buses (0, 1, 2). When played, the Pattern will

7 In the example of figure 3, the bufferControls array is empty for the
‘Stereo Dac’ SynthDef, that has no buffer reference in its UGen graph
function, and contains one control name (‘bufnum’) referring to a one-
channel buffer for the ‘Loop Sampler’ SynthDef.
8 In figure 4, Patterns are represented with the Pseq and Prand classes.

generate a succession of grains receiving signals from
and sending to the actual Unit buses as follows: 1 (in: 0,
out: 0), 2 (in: 1, out: 1), 3: (in: 0, out: 2), 4: (in: 1, out: 0),
5: (in: 0, out: 1), 6 (in: 1, out: 2). The same principle ap-
plies to buffer references. The Patterns for durations and
parameters take lists of actual parametric values.

Figure 4. Pattern declaration in a SuperCollider session

When a user-defined Pattern is called from the GUI ap-
plication of SCPGP, the Pattern information is used to
construct and interpret a Pbind object that can then be
used to play the appropriate Synth with the actual Buses,
Buffers, and parameters of the designated Unit.

Here again, it is the responsibility of the user to ensure
that the Pattern declaration is valid SuperCollider code.
When ready with SynthDef and Pattern declarations, the
user can execute the whole SuperCollider session docu-
ment to interpret its code. From now on, all user actions
take place in the GUI application.

4. THE UNIT MAKER

4.1 Creation of a GUI session

If no GUI session has been previously created and saved,
the user must create a new GUI session from the Unit
Maker. This action simply asks SuperCollider to dump to
the GUI application its SynthDef and Pattern information.
The left sidebar of the Unit Maker is then populated with
graphical representations of template Inputs, Outputs and
SynthDefs (under forms visible in figure 5a below). The-
se templates are the constitutive elements of a new Unit9.

Each SynthDef is represented with its name as specified
in the SuperCollider session. At the top of the rectangle
are its inputs: red rectangles are audio rate inputs; orange
rectangles are control rate inputs. At the bottom of the
rectangle are its outputs. The width of the inputs and out-
puts represent their number of channels. The distinction

9 As there is typically a large number of template SynthDefs in a ses-
sion, the user can also display the template items as a standard text tree
and create her/his own categories of SynthDefs to navigate more con-
veniently.

between static and dynamic SynthDefs is apparent in fig-
ure 5a. Static SynthDefs (‘Buffer Recorder’, ‘Reverbera-
tion’, ‘Filter’) are those that are permanent from the crea-
tion to the destruction of the parent Unit; dynamic
SynthDefs (‘Granulator 1’) are those that are Event-
driven from Patterns. Each input and output of a dynamic
SynthDef can have any number of, respectively, virtual
inputs and virtual outputs, so that the driving Pattern can
receive from and send to different Buses, as mentioned in
paragraph 3.2. Virtual connectors are displayed at the
edge of a tree originating in the SynthDef connector.

4.2 Edition of a Unit graph

After creating a new Unit, the user can design its graph
by clicking and dragging template Inputs, Outputs, and
SynthDefs from the left sidebar of the Unit Maker to the
central workspace10. Standard mouse and modifiers con-
figurations facilitate a fluid patching11. Figure 5 shows an
example of a Unit graph (figure 5a) and the representa-
tion of the corresponding Unit as to be used in the Unit
Patcher (figure 5b). Inlets and Outlets are numbered au-
tomatically according to their left-to-right order; likewise,
SynthDefs are labelled with their relative order of execu-
tion on the SuperCollider tree of Nodes.

Figure 5a. A Unit graph with 3 Inputs, 4 Outputs,

4 static SynthDefs, and 1 dynamic SynthDef.

Figure 5b. The graphical representation of the resulting

Unit, as to be used in the Unit Patcher

Figure 5a reveals permissiveness as one essential prin-
ciple of SCPGP. Nothing prevents the user to patch any
output into any input. An audio rate (red) output can send
signal into a control rate (orange) input and conversely; a
stereo output can be patched directly to a 4-channel in-

10 As Units are in many cases derived from one single SynthDef, a but-
ton also enables the direct creation of a Unit from one SynthDef.
11 These configurations enable: multiple object and/or cord selection
(with shift), multiple selection with a selection rectangle, copy of select-
ed objects (with alt), copy of selected objects with copy of the cords of
the copied objects (with cmd/ctrl). Connecting the inlet of an object to
the outlet of another or the same object, or conversely, is done by click-
ing on the first connector and clicking on the second connector. By
cmd/ctrl-clicking and dragging the virtual connector of a dynamic
SynthDef, the user can increase or decrease its number of virtual inputs
or outputs. Renaming an object with an existing Input, Output, or
SynthDef name replaces it with the corresponding object and maintains
the patch cords.

put12; an audio output can be connected to the audio input
of a SynthDef that is not below the origin SynthDef in the
DSP graph (leading to the implicit creation of a block-
size feedbacker)13; and it is possible to have as many
cords from one output or to one input as needed14. All the
corresponding signal conversions, block-size delaying for
feedback, and mixing are handled by implicit Synths,
automatically compiled when the entering the Unit
Patcher, and are entirely transparent to the user.

4.3 Edition of the bypasser graph of a Unit

In the Unit Patcher, all Units can be bypassed by ctrl-
clicking them15. In the Unit Maker, the user can define a
specific bypasser graph for Units. When going to the by-
passer graph editor, the workspace shows the Unit graph
with only its Inputs and Outputs. The user can then drag
cords between those to define the Unit signal graph when
bypassed.

4.4 Edition of the arguments of a Unit

The right sidebar of the Unit Maker displays the parame-
ter arguments of the edited Unit. By default, these argu-
ments are those of the static SynthDefs constituting the
Unit, excluding those relative to Buses and to Buffers.
The arguments of the dynamic SynthDefs are not dis-
played: they are to be handled entirely by Patterns.

In some cases, the user might want to map her/his own
parameter names to the SynthDef arguments. A simple
example of such a case is a Unit made of four parallel
‘oscillator’ SynthDefs, only taking ‘frequency’ as a pa-
rameter argument. Rather than having four ‘frequency’
arguments for the unit, it may be useful to only have one
‘BaseFrequency’ parameter and one ‘Detune’ parameter.

The Unit argument editor of the Unit Maker is a text-
field in which the user can declare parameters as key-
words, and then type formulas to map them to the low-
level arguments. Following the example described above,
the user can type the lines of text as in figure 6.

parameter BaseFrequency
parameter Detune
frequency[0] = BaseFrequency + (0 * Detune)
frequency[1] = BaseFrequency + (1 * Detune)
frequency[2] = BaseFrequency + (2 * Detune)
frequency[3] = BaseFrequency + (3 * Detune)

Figure 6. Example of argument mapping

In the Unit Patcher, each Unit of this type will then ap-
pear with value fields for ‘BaseFrequency’ and ‘Detune’.
Any formula that is valid SuperCollider code can be used

12 The built-in behavior of number of channels conversion in SCPGP
depends on the ratio between the number of channels of the source and
the number of channels of the destination. Should the user need a spe-
cific behavior, the SuperCollider algorithm is flexible enough to be
changed with a minimal of amount of recoding. It is also possible to
create SynthDefs with specific channel conversion behaviors and use
them explicitly in the Unit graph.
13 In figure 5a, the reverberation is fed back into one of the recorders.
14 The SuperCollider design of SCPGP is such that one output writes to
one unique bus whatever the number of destinations, but one input reads
from several distinct buses (one bus per origin). Implicit mixer Synths
are created when an input needs to read from more than one bus.
15 Including Units with only inputs or Units with only outputs, for which
there is no bypasser graph, and bypassing means muting.

for the mapping. The Unit argument editor also allows to
set minimum, maximum, and default values, as well as
user-readable names for all parameters.

All the information of the Unit Maker (Categorisation
of Units and template SynthDefs, Unit graphs, bypasser
graphs, edited argument) can be saved for later restora-
tion from the GUI application16. When ready with the
Units from a new or restored GUI session, the user can go
to the Unit Patcher of the GUI application to patch and
play her/his Units.

5. THE UNIT PATCHER
The Unit Patcher is where the user actually generates
sound by sending commands to SuperCollider via the
GUI application. When the Unit Maker configuration has
been modified (i.e., some Units have been created and/or
edited) and the user goes to the Unit Patcher, the GUI
application dumps information on all its Units to the
SuperCollider session. The SuperCollider algorithm then
makes a database of Unit types, so that any command
sent from the Unit Patcher is as efficient as possible for
use in a real-time critical context.

5.1 Patching Units together

As for the Unit Maker, the left sidebar of the Unit Patcher
is a template palette from which the user can drag and
drop items to the central workspace. However, this side-
bar only contains Units17: while patching, the user only
considers Units, and SynthDefs are transparent. Apart
from the type of handled objects, patching operations are
identical in the Unit Patcher and in the Unit Maker (crea-
tion, selection, move, copy, deletion) and patching is en-
tirely permissive: the output of a Unit can be patched into
the input of any Unit, including itself, regardless of signal
rates, numbers of channels, relative positions on the DSP
graph, number of already incoming signals. The GUI
application sends compact messages over the UDP net-
work to the SuperCollider session, which then handles
Group, Synth, and Bus creations, modifications, and dele-
tions. For patching, these messages are as follows:

- createUnits [Unit type, position on SC graph];
- deleteUnits [Unit index];
- moveUnits [Unit index, new position on SC graph];
- createConnections [Origin Unit index, Origin Output

index, Destination Unit index, Destination Input index];
- deleteConnections [Origin Unit index, Origin Output

index, Destination Unit index, Destination Input index].
Each of these commands can take any number of argu-

ments, and commands can be combined into one single
message to SuperCollider. Therefore, the design of
SCPGP has a built-in distinction between user actions in
the Unit Patcher workspace and updates of the SuperCol-
lider DSP graph. This enables the user to choose between
two main patching modes: in the direct mode, the DSP

16 The GUI session is saved as a JSON document. When restoring a
session, SCPGP checks the restored SynthDef information against the
SynthDefs of the SuperCollider session; if no mismatch is detected, the
restored GUI session is validated and the user can go directly to the Unit
Patcher.
17 Along with user-defined categories of Units for display and naviga-
tion convenience.

graph is updated on each user action on the Unit Patcher
(as would happen in Max or Pd). In the indirect mode, the
user can perform several successive actions and only up-
date the DSP graph with all modifications happening in
one go by clicking an “update” button. This enables di-
rect transitions between significantly different DSP
scenes.

While the user acts solely upon Units and patch cords,
the SuperCollider interprets the commands by handling
the DSP tree reordering and the instantiation of transpar-
ent Synths and Buses: figure 7 shows a diagram of all the
Synths created in SuperCollider (figure 7a) given the
graph as seen by the user in the GUI application (fig-
ure 7b).

Figure 7a. A Unit graph as deployed in SuperCollider.
Each box represents one Synth. In bold are the Synths
corresponding to the core SynthDef of a given Unit.

Figure 7b. The same Unit graph as defined by the user

in the Unit Patcher

In addition to the direct and indirect modes of patching,
some patching operations facilitate fluid changes in graph
configurations. Those are especially useful when used in
the direct patching mode, as they go beyond what is pos-
sible as one single action in standard visual programming
environments for sound and music. These operations in-
clude:

- delete selected Units but maintain the cords going
through them. In the example of figure 7b above, the user
can for instance delete the “Mono Audio Osc” Unit –
consecutively, the cords from “Mono Control Osc” and
“Stereo Audio Osc” will be automatically repatched to

“Stereo Dac”, and the output of “Stereo Audio Osc” will
also be patched into “Mono Control Osc”.

- insert new or copied Units directly on an existing
patch cord.

- rotate selected Units clockwise or counter-clockwise,
maintaining patch cords. When the number of selected
Units is two, this is a direct swap of both Units.

These operations are useful to change graph configura-
tions quickly for experimentation in the studio, but are
also enhancing performance expressivity: as McCartney
stated in 2002, “The SuperCollider 3 Synth Server is a
simple but flexible synthesis engine. While synthesis is
running, new modules can be created, destroyed, and re-
patched, and sample buffers can be created and reallocat-
ed. Effects processes can be created and patched into a
signal flow dynamically [9, p. 64]”. The specific patching
operations featured in SCPGP can benefit from the dy-
namism of scsynth: simple or complex modifications of
the graph do not interrupt the signal processing, and can
thus be used smoothly within a performance.

5.2 Handling Units on the graph

When a Unit has been created, the items of the right side-
bar of the Unit Patcher enable a number of operations.
The parameters, as defined in the Unit Maker, are modi-
fiable via number boxes and are clipped between the us-
er-defined minimum and maximum. As mentioned in
paragraph 4.3, all Units can be bypassed by ctrl-clicking
them on the Unit Patcher workspace.

Patterns are accessible as a list of names. They can be
dragged and dropped onto the Pattern slot of a Unit’s
parameter panel: once the Pattern has been successfully
checked against the internal dynamic SynthDef of the
Unit, the user can simply play it and pause it with a tog-
gle button. Here again, the GUI application is permissive.
The user may have designed a Pattern with a specific
SynthDef and Unit in mind, but in many cases the Pattern
can be applied to another Unit that contains one or sever-
al dynamic Synths. Pattern values for existing parameter
names will apply, values for non-existing parameters will
simply be ignored. Parameters with no Pattern values will
be played at their default values18.

Buffers are not set in the SuperCollider session: they
are allocated by the user from the Unit Patcher. There are
two ways of allocating a Buffer from SCPGP: one is cre-
ating an empty Buffer by providing a number of channels
and a duration in seconds, the other is to choose a sound
file and fill a Buffer with it. Available Buffers can be
simply dragged and dropped to a Unit’s parameter panel
for allocation to the appropriate Synth.

6. CONCLUSION
At the time of writing this article, the permissive graph-
ical patcher for SuperCollider is fully functional regard-
ing the features presented above, and is under internal
alpha testing at the University of Huddersfield. The re-
lease and distribution of its first beta version will be pub-

18 Here, permissiveness is increased if the user gives consistent names to
the arguments of all SynthDefs (e.g. all ‘freq’ or all ‘frequency’, all
‘amp’ or all ‘amplitude’).

licly announced at the ICMC, on the presentation of this
article. SCPGP offers great flexibility for those users who
want both to design advanced DSP modules in SuperCol-
lider and to interconnect them intuitively and fluidly into
complex graphs. The environment can also be useful to
beginners, who can focus on the UGen graph syntax of
SynthDefs and adopt a modular approach immediately to
test their Synths in different contexts, without having to
write any code regarding Bus management.

Future work will consider user feedback following the
first release of SCPGP, but two main threads are already
under consideration. First, a Pattern editor will be devel-
oped in the GUI application itself: in the current state of
SCPGP, Patterns cannot be modified after execution of
the SuperCollider session. The Pattern editor will im-
prove live flexibility for the control of dynamic Synths.
Secondly, the implementation of a Unit Patcher scenario
manager will enable the user to memorise particular
patches and to navigate smoothly between her/his own
previously defined DSP scenes.

7. REFERENCES
[1] SuperCollider, software homepage on GitHub,

available online at http://supercollider.github.io
(retrieved May 11th, 2016).

[2] J. McCartney, “Foreword”, in S. Wilson, D. Cottle,
N. Collins (eds), The SuperCollider Book, The MIT
Press, 2011, pp. IX-XI.

[3] J. Rohrhuber, A. de Campo, “Just-in-Time
Programming”, in S. Wilson, D. Cottle, N. Collins
(eds), The SuperCollider Book, The MIT Press,
2011, pp. 207-236.

[4] T. Magnusson, “Interface Investigations”, in
S. Wilson, D. Cottle, N. Collins (eds), The
SuperCollider Book, The MIT Press, 2011, pp. 613-
628.

[5] J. Bresson, J.-L. Giavitto, “A Reactive Extension of
the OpenMusic Visual Programming Language”,
Journal of Visual Languages and Computing,
vol. 25, no. 4, 2014, pp. 363-375.

[6] K. N. Whitley, “Visual Programming Languages and
the Empirical Evidence For and Against”, Journal of
Visual Languages and Computing, vol. 8, no. 1,
1997, pp. 109-142.

[7] R. Kuivila, “Events and Patterns”, in S. Wilson,
D. Cottle, N. Collins (eds), The SuperCollider Book,
The MIT Press, 2011, pp. 179-205.

[8] F. Dufeu, “Une interface graphique de manipulation
d’unités modulaires dans SuperCollider”,
Proceedings of the 2012 Journées d’Informatique
Musicale, Mons, 2012, pp. 123-132.

[9] J. McCartney, “Rethinking the Computer Music
Language: SuperCollider”, Computer Music
Journal, vol. 26, no. 4, 2002, pp. 61-68.

