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ABSTRACT 
Early reflections play a large role in our perception of sound and as such, have been 
subject to various treatments over the years due to changing tastes and room 
requirements. Whilst there is research into these early reflections, arriving both 
vertically and horizontally in small rooms regarding critical listening, little research 
has been conducted regarding the beneficial or detrimental impact of early vertical 
reflections on listener preference, in the context of listening for entertainment.  

Two experiments were conducted through subjective testing in a semi-anechoic 
chamber and listening room in order to assess subjects’ preference of playback of a 
direct sound against playback with the addition of the first geometrical vertical 
reflection. Program material remained constant in both experiments, employing five 
musical and one speech stimuli.  

Experiment one used a paired comparison method assessing a subjects’ preference, 
and perceived magnitude of timbral and spatial difference provided by a frequency 
independent ceiling reflection. Each comparison was followed by a free 
verbalisation task for subjects to describe the perceived change(s). Experiment two 
investigated this further by focusing specifically on subjects’ preference with a 
frequency dependent reflection. A more controlled verbalisation task provided a list 
of descriptive terms which the subject’s used to describe which attribute(s) 
influenced their preference. 

The results show that preference for playback with the inclusion of a vertical 
reflection was highly varied across both subjects and samples. However both 
experiments suggest that the main perceptual attribute with which subject’s based 
their preference was timbre, common spatial attributes (image shift/spread) cannot 
be used to predict preference. Experiment two suggests that the alteration of the 
frequency content of a vertical reflection, may also provide a more consistent level 
of preference for certain stimuli. It is also shown that while certain attributes occur 
frequently (brilliance/fullness) for describing preference, others less frequently used 
(nasal/boxy), may influence preference to a greater extent.  
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CHAPTER 1 

 INTRODUCTION  

1.0 INTRODUCTION 

Reflections within concert halls have always been an integral part of the performance. Extensive 

research has studied the use of absorbing or promoting early reflections within a large diffuse 

sound field. These changes result in different spatial attributes which, depending on the desired 

sound, are made to ultimately enhance enjoyment. When focus shifted to understanding our 

perception of reflections within small rooms, this was done mainly through our knowledge of 

concert hall acoustics and measurements. However, little research has been done to understand 

early reflections within small rooms from a subjective perspective, to discover if they provide 

a positive or negative spatial and/or timbral impact, on our listening pleasure. This research 

presents two experiments investigating the effect(s) of the first geometrical vertical reflection 

from above on subject preference in the context of listening for entertainment or pleasure 

within a small room. With the lack of research in terms of subject preference in this field, this 

work opens further questions within small room acoustics for investigation. The author’s intent 

throughout this research was to make any conclusions as relevant as possible to practical 

application and as such, listening tests conducted in both experiments utilised five musical and 

one speech stimuli. 

1.1  SCOPE OF THIS THESIS 

Small rooms referred to in this thesis are those typically found in a domestic environment 

utilised for home theatre systems. Reflections arriving vertically may also originate from a low 

hanging surface (reflector/absorber) as opposed to a ceiling. Therefore, stronger reflections are 

considered here for the purposes of investigating their perceptual effect(s). In order to remove 

perceived unintentional lateral effects, a single mono sound source was used to play the direct 

sound on axis to all subjects at head height. Although it is acknowledged that this (mono source) 

may not be applicable to everyday scenarios, an understanding of a simple vertical reflection 

without inter-aural differences from stereophonic reproduction was necessary in order to 

propose further research. 
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The main aim of this research is to achieve a greater understanding of a vertical reflection’s 

impact on a listeners’ preference of reproduced sound, through perceived timbral and/or spatial 

attributes. Two experiments were conducted in order to meet this aim:  

• Experiment 1 – Frequency independent semi-anechoic room test 

a. Assessment of subject’s level of preference for playback with a frequency 

independent reflection present, against playback with just the direct sound.  

b. Subjective experiment assessing the level of timbral and/or spatial difference 

perceived by subjects in the presence of a frequency independent vertical 

reflection in comparison to just the direct sound. This was followed by a brief 

free verbalisation task after each comparison discussing any perceived 

difference.  

• Experiment 2 – Frequency dependant listening room test 

a) Subjective experiment conducted in an ITU-R BS.1116 compliant listening 

room assessing subject’s level of preference for playback with a frequency 

dependant reflection present, against playback with just the direct sound. This 

was followed by a constrained verbalisation task identifying reasons for 

subjects’ preference via provided descriptive attributes (Appendix D). 

 

1.2 STRUCTURE OF THIS THESIS 

The literature review presented in Chapter 2 aims to provide the reader with a brief overview 

of the development of small room acoustics and designs for critical listening. Although in a 

different context, understanding critical listening environments provides useful information 

regarding the control of early reflections within small rooms. In addition, there is a discussion 

of objective measurements and perceptual attributes and the sensory relationship between the 

two from the literature within this field. While experiments conducted in this thesis do not 

specifically analyse objective measurements (RT60, C80, D50) against subjective preference, 

understanding of measurement values is important in the discussion of perceptual descriptions 

and resulting preference (Kaplanis, Bech, Jensen, & van Waterschoot, 2014). Measurements 

taken within experiment two (section 5.1), showing certain physical parameters are included to 

provide understanding of the reproduced sound field in the context of the literature discussed.  
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Chapter 3 discusses the simulation process of a single vertical reflection. Testing was conducted 

and checked against the response of a real reflection with minimal absorption, taking into 

consideration loudspeaker frequency dispersion of the direct sound. Chapter 4 introduces the 

first experiment with a breakdown of the methodology and test administration, followed by a 

discussion of these results concluded with a summary. Some observed limitations of the 

experiment are discussed. Chapter 5 follows the same discussion process for experiment two. 

Chapters 6 and 7 further evaluates the results of both experiments and discusses the novel 

contributions to this field of study regarding vertical reflections and preference. 
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CHAPTER 2 

LITERATURE REVIEW 

1.0 INTRODUCTION 

The following chapter presents literature and theory surrounding reflections in both small rooms 

and concert halls, the applicability of measurements used in concert hall acoustics for small 

rooms and how these relate to perceptual attributes and descriptors. Auditory spatial and timbral 

sensations of lateral reflections are then covered, followed by a discussion of elevated sound 

sources and reflections. Little research has been done solely investigating vertical reflections, 

therefore literature reviewed in the context of elevated sound reproduction will be highlighted, 

along with any limitations in the application to this thesis.  

In an outdoor environment, sound is allowed to propagate freely with minimal reflections 

reaching our ears. In a closed environment sound is constrained by boundaries and objects 

which, when summed at a singular point alter its original characteristics. Depending on a room’s 

design and its intended purpose, these alterations could be perceived to be beneficial or 

detrimental. Large auditoria and concert halls employ the use of natural reverb to carry the 

music across to each listener position. The reflections created by an environment, add tonal and 

spatial qualities to the sound that we (up to a point) find pleasant (Olive & Toole, 1988). A 

small rooms’ acoustics are different and theory cannot be directly applied from concert hall 

acoustics in the same way. Small listening spaces with too much reverb would be 

disadvantageous to the room’s purpose of enjoying audio. Vice versa, listening in an 

acoustically ‘dead’ room could be strenuous and un-enjoyable. It is important to note in 

comparison to a large concert hall, a cinema could be viewed as small room. However in the 

context of this thesis, small rooms are those typically found in a domestic home, office spaces, 

small classrooms and recording studios.  

The amount of reverberation generated in concert halls is not naturally possible in small rooms 

(Toole, 2006), however the level of reverberation is still a key aspect, much to the point where 

design requirements limit reverb to certain amplitudes at specific frequencies (ITU-R BS.1116-

1:1997)(ITU-R BS.6840-13:1998). At lower frequencies, the internal dimensions cause 

standing waves (room modes) around the room and are often said to be harmful to the 

perception of an audio signal through frequency response errors (Reiley & Grimani, 2003). 
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Therefore, rather than considering overall reverberation time, focus of this investigation is to 

examine the influence of early reflections on the way we perceive audio through timbre and/or 

spatial attributes. More specifically vertical reflections, since first reflections typically originate 

from the floor and ceiling rather than laterally (Kaplanis et al., 2014).  

2.1  CONTROL OF REFLECTIONS IN STUDIOS 

Although people’s perception of room modes can differ, the general consensus in studios is to 

control them as much as possible, to create as smoother frequency response at the listening 

position. Research of early reflections and reverberation at higher frequencies in these small 

rooms has resulted in many different designs over the years. With changes in trends and 

opinions, it is impossible that one single design will meet the requirements of everybody’s 

tastes. The need for an effective design became apparent when music was beginning to travel 

between locations and with the introduction of stereo playback. Prior to this, mono loudspeakers 

and the listening position could be moved to achieve a reasonably desirable sound (Newell, 

2007). 

Tom Hidley’s designs became one of the first commercially viable studios where interestingly, 

he chose to promote early ceiling reflections with a ‘compression ceiling’ (Cox & D’Antonio, 

2009). A design with a low hanging ceiling at the listener position, then elevated towards the 

front above the speakers and at the rear behind the listening position. Voetmann (2007) also 

states that Hidley’s early designs incorporated a ceiling canopy however, this was later 

removed.  

In the late 1960’s Time Delay Spectrometry (TDS) was introduced by Richard Heyser which 

in turn led to the objective measurements of Hidley’s designs by Don and Carolyn Davis (Davis, 

1979). TDS was an improvement of the current sine sweep method of a rooms frequency 

response (sometimes known as house curve) whereby a microphone records from a specified 

offset of time from the initial signal and processed through a narrow-band filter, thus allowing 

the selective spatial data of a sound field (Heyser, 1967). These measurements revealed 

significant regular inconsistencies along the frequency response that we now know as comb 

filtering1. This use of TDS led to the development of the ‘Live-End, Dead-End’ (LEDE) in the 

late 1970’s (Davis & Davis, 1980). The control of reflections is highly contrasting to those of 

Hidley’s, proposing the front should be highly absorptive (dead) and the rear reverberant (live). 

                                                                 
1 Discussed further in section 2.4.4 
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The reason behind this change is the perception of the early reflections, recognising that they 

provided the listener with important information about the environment. Direction, density and 

frequency of these first reflections affect our perception of timbre and tonal imbalance (Newell, 

2007) that helps create an impression of our surroundings and so the LEDE aspires to place us 

in a neutral environment by removing these properties.  

This design was well received and later built upon by D’Antonio utilising Schroder diffusers 

on the rear wall and broadband absorption of early reflections at the front. A continuation of 

this design was the Reflection Free Zone (RFZ), which utilised the room’s geometry in such a 

way that no reflections entered the listening position without abundant need for absorbers 

(Everest & Pohlmann, 2009). This was effectively able to create a stereo image across a 

frequency range of 500 to 5000 Hz (Voetmann, 2007). In addition to this, Angus (1997) 

demonstrated that the use of diffusers can also be implemented to achieve the desired RFZ. He 

states that due to the diffusion of the early reflections, the listener is granted more freedom in 

terms of ‘listener position’ and a reduction in comb filtering at higher frequencies and offers 

the potential for a better control room in combination with other techniques.    

It is apparent that the consensus in modern designs is to remove early reflections from the 

listener’s position as they hinder the judgement of playback material during critical assessment. 

These early reflections add properties of an environment that would otherwise be absent in 

another room. However, a number of questions remain: How do these early reflections impact 

our perception of audio? How can we objectively observe and subjectively describe these 

auditory sensations? Are these auditory sensations categorically present or absent, or we able 

to perceive varying magnitudes of change? 

 

2.2  OBJECTIVE METRICS  

The perceived differences of the same sound played in different environments may be related 

to objective measurements of the sound field. The change sound undergoes from propagation 

at source, to interpretation by listener, may be observed as a filter model (Figure 1). It is 

therefore useful to compare what measures of the sound field h(t) correspond to what perceived 

aspect of y(t). ISO 3382-1:2009 outlines five specific subjective listener aspects 2  in 

                                                                 
2 1 – Subjective level of sound, 2 – Perceived reverberance, 3 – Perceived ‘clarity’ of sound, 4 – Apparent source 
width (ASW), 5 – Listener envelopment.  



CHAPTER 2.  LITERATURE REVIEW   
 

- 18 - 
 

performance spaces which, within each, hold one or more acoustic quantity. However it seems 

difficult to categorically state that any one variable affects one perceived perceptual effect, and 

more so the application of objective measurements used in concert halls to small rooms. The 

following section will briefly introduce objective measures used in concert hall acoustics and 

their applicability to small rooms.   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

2.2.1  REVERBERATION TIME  

One of the most common objective measurements is reverberation time (RT). Documents such 

as ANSI S12.60-2010, ITU BS.1116-1:1997 and ISO 3382-2:2009, all discuss limitations and 

tolerances of reverberation times for different uses and criteria. In RT60, the use of 60dB is 

used as a ratio for how much the energy must dissipate. However, in small rooms ratios of 20dB 

(-5 to -25dB) and 30dB (-5 to -35dB) are often used and then scaled up relative to a 60dB ratio, 

for a uniform measurement no matter room size. Room impulse responses (Figure 2) are 

measurements taken to visually investigate decay rate, density and amplitude of the reverberant 

sound field rather than just a value. Griesinger, (1996) and Seetharaman & Tarzia, (2012) both 

discuss techniques for capturing RT, along with visualised 3-dimensional method by Dunn & 

Protheroe, (2014). This may be beneficial in identifying areas of a sound field that propagate 

certain attributes associated with a standard impulse response, especially in smaller rooms such 

as from a ceiling or floor.  
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Source output x(t) 
altered by environments 
transfer function h(t), to 
receiver y(t). 
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FIGURE 1: FILTER MODEL ADAPTED FROM KAPLANIS ET AL. (2014) 
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2.2.2  FIRST AND EARLY REFLECTIONS 

Between the direct sound and the first reflection is a notable gap for the time taken for sound 

to travel the second shortest distance to the receiver: the ‘Initial Time Delay’ , or ‘Initial Time 

Delay Gap’ (ITDG – Figure 3) (Beranek, 2008). The understanding of ITDG resulted in the 

success of the LEDE studio design, whereby this control of early reflections in the control room 

did not mask the ITDG of the studio (Davis, 1979). ITDG however, is still criticised as a higher 

value could imply a greater distance laterally however it is often reflections from the median 

plane that arrive first (Ouis, 2003). This is especially true in small rooms where (from the centre 

of the room) distances to the floor/ceiling are generally shorter than to the sides. Therefore, the 

use of this measurement within small rooms could be misinterpreted. 
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FIGURE 2: SIMPLISTIC REPRESENTATION OF AN IMPULSE RESPONSE. A = INITIAL SOUND. B = DIRECT 
SOUND. C = EARLY REFLECTION FROM CEILING, FLOORS AND WALLS. D = LATE REFLECTIONS 

FIGURE 3: INITIAL TIME DELAY GAP 
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Progressing through the room impulse response we see discrete early reflections. A rooms’ 

early lateral reflections can be objectively measured through two methods: lateral energy 

fraction and inter-aural cross correlation. Lateral energy fraction JLF (sometimes denoted as LF, 

LFE, JLFC, ELEF) (Equation 1) is a ratio of energy between measurements taken with figure-of-

eight (between 0.005s and 0.080s) and omnidirectional microphones (between 0s and 0.080s), 

where pL(t) is the sound pressure of the figure-of-eight microphone and p(t) of the omni-

directional microphone (Figure 4) (ISO 3382-1:2009).  

IACC (sometimes seen as IACCE for energy arriving early, before 80ms) is measure of 

difference in sound arriving at the two ears (Beranek, 2008) and also associated with lateral 

arriving energy. Cross correlation is a measurement rated from values 1.0 - exactly the same, 

to 0.0 - being totally different and via a binaural dummy head. The uses of these metrics provide 

information about how we may perceive a rooms spatial attributes (Section 2.4). 

 

[1] – Lateral Energy Fraction 

[1] 
 

 

 

 

 

 

 

 

 

 

 

 

2.2.3   EARLY TO LATE REFLECTIONS 

Another objective measurement used to analyse a room’s acoustic is ‘Clarity’. However, this 

can be ambiguous in terms of how we define what clarity actually is. Depending on the stimuli 

used, this may be the ability to perceive musical detail, the onset of notes or the intelligibility 

of speech (Speech intelligibility S.I) etc. These perceptual attributes are discussed in further 

Sections. As a standard objective measure, clarity is defined as a ratio of early to late arriving 
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energy (Equation 2),  and noted as C50 or C80, expressed in dB (John S. Bradley & Soulodre, 

1995a). Depending on the stimuli and room, 50 or 80ms is chosen as the dividing point. The 

perceived aspect of ‘clarity’ (in ISO 3382-1:2009) is also associated as a function of definition 

(Equation 3) and centre time (Equation 4).  

Definition (D50) is a ratio of the early to total sound energy expressed as a percentage using 

50ms as a dividing point. Centre Time (TS) is the “time of the centre gravity of the squared 

impulse response” (ISO 3382-1:2009) and expressed in milliseconds.  The greater level of early 

energy (or reduction in later energy) increases the levels of C80/C50 and D50 and therefore 

generally improves clarity, suggesting that early reflections are beneficial for this attribute.  

With more/stronger early reflections TS would decrease as the centre of gravity shifts more 

towards the direct sound and away from the reverberance. In Bradley and Soulodre's (1995a) 

paper, the use of C80 in conjunction with an adaptation of sound strength (denoted as G(A) - 

with an A weighting frequency response more typical to that of human hearing sensitivity), was 

found to be more accurate in the prediction of clarity than singularly C80 or TS. This however 

was in the context of concert hall and was not considered in small room acoustics.  

 
 
[2] – Clarity Index (80ms division) 
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Figures 5, 6 & 7 – View of energy used along the impulse response in respective equations. For all 
equations, p(t) is the instantaneous sound pressure of the impulse response measured at that point. 

 

[4] – Centre Time Index 
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It is important to note the applicability of these parameters in the context of small room 

acoustics. Most of the definite integrals above have divisions corresponding at times that 

separate early and late arriving reflections. This is for concert halls and large auditoria, between 

50-80ms. Given that a small rooms RT will seldom achieve this naturally, some metrics such 

as LJF, C50/D50 and C80 may not be representative of the real subjective impression, being based 

on the time division of early and late energy (Kaplanis et al., 2014). Metrics such as TS may be 

a more useful tool in seeing the distribution of energy and not relying upon a finite point in time 

to yield an effective result.  

 

2.3  THE EFFECTS OF EARLY REFLECTIONS 

Changes of first reflections have a great impact on our perception of the incident signal, 

producing differences, whilst still having a negligible effect on the total reverberation time 

(Niaounakis & Davies, 2002). The following section discusses research that has investigated 

the effect of early reflections from varying directions.  

Kishinaga, Shimizu, Ando, and Yamaguchi, (1979) conducted subjective testing to provide 

supporting evidence that early reflections strongly impact the sound field. Their experiment 

included the set-up of multiple configurations of absorptive and reflective material on all walls. 

The floor, was constructed of parquet and the ceiling, of rock wool absorbing board (floor and 

ceiling materials remained constants throughout). Subjects were instructed to record their 

impression on certain attributes and compared against IACC measurements. Results showed 

that for critical listening, absorptive side walls are desirable yielding an IACC of 0.44. To enjoy 
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the music, reflective walls are preferred with the IACC value measured at 0.26. This would 

imply that early reflections have a detrimental impact for the critical evaluation of audio and 

beneficial for enjoyment. 

Investigations into the effect of singular reflections on the timbre of reproduced audio within a 

sound field have proven reflections from above impact our perception. Bech's (1994a) research 

investigated which early reflections are strong enough to impact perceived timbre individually, 

and the required level of these reflections needed to produce this change. Results showed that 

only floor and ceiling reflections could possibly be heard as individual reflections affecting 

timbre within the sound field. Unlike previous experiments considering individual reflections 

(Olive & Toole, 1988), Bech simulated a reverberant sound field using six additional 

loudspeakers. Bech (1995a) later reinforced his findings confirming that floor reflections 

contribute to the overall timbre of the sound field given noise stimuli. Bech’s work and 

methodology is discussed further in detail in Section 2.7 regarding the effects of vertical 

reflections.   

Griesinger (2009) states that lateral reflections from 10 to 50ms contribute to the feeling of 

“distance” to the sound image creating space between the listener and source, mentioning that 

it is not specific reflections by themselves that generate this effect, but collectively. Griesinger 

also highlights an ‘Insitution of Acoustics’ (IoA) conference, Krokstad3 explains the sense of 

“involvement” is actually what acousticians are seeking to accomplish in concert halls and that 

the direct sound to reverberation ratio (D/R), has a strong impact on this perception of distance 

rather than “envelopment” (see Section 2.4.3). Although related to concert halls, Griesinger 

does go on to mention that the addition of early reflections in smaller halls often hinders clarity 

rather than improving it and the direction of these early reflections is not audible where there is 

dominant reverberation energy. His experiment on treating a small concert hall (350 capacity, 

RT occupied 1.0s at 100Hz) showed that the addition of 700ft2 of absorption on stage and 

absorbing first order lateral reflections above 1kHz dramatically improved the sound, implying 

that even in rooms larger than critical listening spaces, the attenuation of lateral reflections has 

a positive impact on the sound field. However, in small rooms the energy of late reflections will 

seldom dominate those of early reflections, thus the directionality of these early reflections 

could potentially alter a person’s preference.  

                                                                 
3 No reference given in Griesinger (2009)  
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Imamura, Marui, Kamekawa, and Nakahara, (2013) recently carried out an experiment to see 

how this directionality of early reflections within a sound field is perceived by a listener. Using 

a dummy head, nine impulse responses were taken with various patterns of acoustic treatments 

using absorptive panels. These were then convolved with three music stimuli. The author notes 

that the difference of RT was almost equal throughout the patterns and therefore, specifically 

focused on early reflections. Through headphones, subjects were asked to rate stimuli against 

each other using evaluative terms on individual listening impressions. Terms used were: timbre 

brightness, width of sound image, envelopment, clarity, timbre naturalness, reverb suitability 

and listeners’ preference. Out of these, width, envelopment and clarity displayed significant 

differences throughout the nine arrangements. It was concluded that as more first lateral 

reflection points are covered with absorption, width of sound image will narrow and also 

envelopment will lower. Vertical panels were not added individually, but simultaneously with 

front wall absorption thus the influence of early ceiling reflections cannot be solely assessed. 

However, the author points out that absorption at these points not only decreased sound image 

width but increase clarity. Imamura, Marui, Kamekawa, and Nakahara, (2014) further 

investigated perceived clarity based on previous results and simulated reflections via a lateral 

loudspeaker array varying directionality and delay times of reflections. The paper concludes by 

stating lateral reflections have a strong effect on perceived spatial clarity, apparent source width 

and listener envelopment. However this investigation did not incorporate vertical reflections, 

when previous results stated that increased clarity was also in conjunction with ceiling 

absorption.  

Subjective studies assessing the effect of lateral energy on the adaptability of an engineer 

carried out by King, Leonard, & Sikora, (2011) asked users to create a simple mix between 

orchestral backing and solo soprano stereo stems within critical listening spaces. Subjects were 

instructed to change the level of a stem by 0.5dB increments until satisfied with the mix. Two 

control rooms were utilized to increase the subject pool with RT60’s of 200ms and 175ms. The 

surfaces of first geometrical reflections points were altered three times using: absorptive, 

diffusive and reflective treatment. It is important to note acoustical alterations were made 

behind acoustically transparent fabric, and the treatment unemployed remained in the room to 

maintain RT. After three training attempts, each acoustic treatment contained three trials of 

three music excerpts totalling 27 individual mixes per engineer.  The results showed that the 

treatment had no significant impact on the variance of level but interestingly when asked which 

treatment was easiest to mix with, subject’s preferred reflective treatment. A continuation of 
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this work shows that the room treatment has a significant effect on the levels of reverberation 

set within a mix (Leonard, King, & Sikora, 2012). Reflective panels added laterally at ear height 

(increasing the high frequency reverberation time by 20ms) resulted in a lower mean mix of 

added reverberation. Therefore, although the human brain may be able to adapt to varying sound 

fields, lateral energy can still affect judgement in reverb related mixing tasks. 

From the papers discussed it is clear that early reflections can alter the way in which we perceive 

the direct sound as well as altering the way in which we perform certain tasks. However, it is 

necessary to try quantify the effects of these reflections within the perceptual domain into 

specific attributes. As pointed out by Kaplanis et al. (2014), although many of the aspects are 

from concert hall acoustics, assessment of these attributes could identify common 

characteristics which may also affect perception in smaller rooms. 

2.4 PERCEPTION OF LATERAL SOUNDS 

In the previous section, papers were discussed showing that early reflections impact the way in 

which we perceive sound through subjective testing.  Aspects such as: apparent source width, 

listener envelopment, spatial impression, timbre, depth, distance, colouration and clarity are 

some of the many terms which comprise auditory sensations of an environment. In relation to 

Figure 1, this is the perceptual domain of the psychoacoustic relationship. The following section 

outlines numerous perceptual attributes we use to describe sound fields and the relevant theory 

behind the auditory processes.  

The ability to localise where a sound is coming from is dependent upon a number of factors. As 

seen in Figure 8, a direct sound in an enclosed space will bounce off surfaces and create multiple 

reflections with varying characteristics which will ultimately arrive at the receiver. The 

summation of these reflections, allows us to localise signals. Consequently, these reflections 

will provide spatial differences which will alter our spatial impression of a sound. This may 

also be an attribute on which subjects may base their preference.  

The precedence effect (sometimes known as ‘law of first wavefront’ or ‘haas effect’) is the 

binaural phenomenon that enables us to determine the origin of a sound in an acoustically 

complex environment (Olive & Toole, 1988). When the direct sound is followed by a delayed 

version of that sound within less than 1ms, then ‘summing localisation’ occurs and the incident 

and lagged sound are fused together. From 1ms – 5ms, sounds are still fused together 
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FIGURE 8: ITD’S AND ILD’S PROVED BY A LATERAL REFLECTION 

(depending on the stimuli used) and the image is still perceived as one, this stage is called 

‘fusion’. Above a certain point, roughly 5ms, referred to as the ‘echo threshold’, the image 

begins to split into two spatially separate sources (Litovsky, Colburn, Yost, & Guzman, 1999). 

The binaural cues used ascertain the information needed from these reflections to process the 

perceived direction of the auditory event using two receivers. Inter-aural level difference (ILD) 

is the amplitude difference of a sound arriving at two ears. Inter-aural time difference (ITD) is 

the difference in time is takes for a sound to reach one ear from the other. As our ears are 

positioned along the horizontal plane, these cues are paramount in comprising what we 

conclude to be the ‘spatial impression’. These ITDs and ILDs can also be provided by a direct 

sound and a delayed and attenuated version of that sound from a reflection which we have 

control over, and as such may be able to alter our preference. 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.1  SPATIAL IMPRESSION  

Upon entering a sound field, we build an impression of our surroundings based upon the 

properties of reflections given by geometrical boundaries. The arriving angles of certain 

reflections contribute to different auditory sensations, it is understood that the energy received 

laterally is beneficial to our understanding of ‘spatial impression’ (Toole, 2008). Spatial 

impression has been subject to more than one definition over the years and thus presents some 

confusion. Describing a physical aspect, and to perceive a phenomenon based on the 

relationship between said aspect and phenomenon, are different things (Lehnert, 1993). For 

instance, one may describe a sound field as spacious attempting to define a rooms’ physical 

scale. However, this may be interpreted as a feeling of distance and the space between listener 
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and source as a result of the rooms’ scale. In concert hall acoustics, spatial impression is often 

broken up into two main components: apparent source width (ASW) and listener envelopment 

(LEV). These are standard components referred to in criteria of performance spaces such as 

ISO 3382-1:2009.  

2.4.2  APPARENT SOURCE WIDTH 

ASW is influenced by the relative strength of early reflections, it is the combination of the direct 

sound and the lateral energy that gives the perception of how horizontally wide a sound source 

is. This attribute can be objectively interpreted though lateral energy fraction (JLF), or an inter-

aural cross correlation (IACC) measurement at the listener position. Bradley & Soulodre 

(1995a) state that increasing early lateral reflection energy only leads to a broadening of the 

source image and those late arriving reflections (typically above 80m) contribute to LEV, 

though once again this is in the context of concert hall acoustics. Griesinger (1998) however, 

proposed new metrics: ‘Diffuse Field Transfer’ function (DFT) related to envelopment, and 

‘Average Inter-aural Time Delay’ (AITD) relating to early lateral reflections within small 

rooms.  Griesinger also describes spatial impression as ‘Early Spatial Impression’ (ESI), given 

that most reflected energy in small spaces occur within 50ms and is perceived to be 

predominantly frontal.  

Data from Ando (1977), Hidaka (1997) and Barron & Marshall (1981) is collated by Toole 

(2008) regarding the directionality of reflections, ASW and preference. Results from Ando and 

Barron and Marshall show that a decreasing IACC values are much preferred, and (given that 

IACC is a measure of ASW) subsequently relates to greater spatial impression. Frequency 

dependant studies on ASW have also shown some frequencies may be more effective at creating 

a wider image than others. Hidaka also concludes that ASW strongly corresponds to frequencies 

from around 350 to 2800Hz. He created IACCE3 to represent this as a function of average IACC 

over three octave bands (500Hz – 2kHz). He also concluded that lateral reflections arriving at 

60° provided the greatest contribution to sense of ASW. Morimoto & Iida's (2005) show that 

objective measures of IACC (referred to as ICC) are not affected by frequency content above 

1kHz, but subjective assessments of ASW did increase as lateral reflections moved closer to 

90° and not 60°. This was found by increasing low pass filter cut-off points, on broadband noise 

from 200Hz - 1, 2, 4 and 8kHz.  
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ASW has been noted by many studies within concert halls to be a major factor in subject’s 

preference. Kuusinen, Pätynen, Tervo, & Lokki (2014) mention that early energy arriving 

laterally comprising of higher frequency content, correlated well with listener’s preference for 

classical music excerpts in nine varying concert halls. It is also stated that the increase of ‘width’ 

is also in combination with ‘depth’ when broadband lateral reflections are provided. In multi-

channel reproduction Choisel and Wickelmaier (2007) demonstrate the change in subject 

preference through four musical stimuli of varying loudspeaker configurations and rating of 

attributes comprising of spatial and timbral listings. Although difficult to pinpoint preference 

with a singular auditory sensation, is it noted that for a centred listening position stereo 

configuration was among the most preferred playback formats than that of mono, supporting 

evidence that a greater ASW is more preferable.  

 

2.4.3  LISTENER ENVELOPMENT 
 

The other component to spatial impression is listener envelopment (LEV). And while the ASW 

is influenced by angle, intensity and frequency of early lateral reflections, LEV is impacted by 

the reverberance of a room’s impulse response – typically above 80ms for concert halls (J.S 

Bradley & Soulodre, 1995b). It is the sense of being surrounded by, or being in the centre, of a 

reverberant sound field succinctly expressed by Blesser & Salter (2006) as “analogous of 

swimming underwater, [rather] than being sprayed by a water hose”. The reverberant field is 

constructed via the increasingly shortening spatial distribution of reflections from all 

geometrical boundaries. However, reflections arriving from the rear of the listener are more 

enveloping than frontal energy (Griesinger, 1999). With regards to frequency, reverberation 

time at both low and high frequencies significantly affect the listener envelopment  (Morimoto, 

Jinya, & Nakagawa, 2007). In small rooms however, it is reasonable to say that true 

envelopment cannot be achieved due to their small volume incapable of producing longer 

reverberation times, and can only be achieved via the use of multichannel loudspeaker arrays 

(Toole, 2008).   

2.4.4  EARLY LATERAL REFLECTIONS AND TIMBRE 

Timbre is often associated with descriptors such as; rich, dull, bright, harsh, coloured, smooth, 

mellow and so on (Howard & Angus, 2013). In terms of sound reproduction in a listening 

environment, acoustical barriers and use of treatments influence the way in which one sound 
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FIGURE 9: COMB FILTER FREQUENCY RESPONSE.  

can be perceived in multiple ways. Although late reflections have been shown to impact our 

perception of timbre, with changing echo density and intensity resulting in  different 

characteristics (Huang & Abel, 2007) (Huang, Abel, Terasawa, & Berger, 2008), it is the early 

reflections which provide the ‘unique fingerprint’ of the room that are of interest here. As 

briefly mentioned in Section 2.3, research has shown that early reflections contribute to our 

sense of timbre and clarity (Bech, 1994b) (Imamura et al., 2014).  

Comb filtering is one of the most discussed effects of lateral energy in relation to timbre. The 

effect is a result of the repetition of a signal added in rapid succession to its predecessor which 

can be objectively seen from frequency response measurements of a room. In the context of this 

thesis, this would be the summation of individual delayed reflections arriving at one receiver.  

Regularly spaced peaks and troughs, constructive and destructive interference respectively 

(Toole, 2008), are the result of early reflections being added to the direct sound. Two 

phenomenon may occur in the presence of comb filtering: at low frequencies resonances are 

generated, but will be mostly dominated by room modes, and at higher frequencies provide 

alteration to the timbre of the sound.  Using white noise as stimuli, this periodic repetition 

constructive and destructive filtering (Figure 9) is known as harmonic and anharmonic cosine 

noise respectively (Rubak & Johansen, 2003). 
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However, even though this comb filter pattern may occur annalistically it cannot be 

immediately condemned and can, as mentioned by Clark (1983), may actually be a preferable 

response. In his experiments the assessment of a delayed signal reaching two ears was employed 

in multiple ways - through stereo playback, mono playback with a single reflection (vertically 

then horizontally) and finally mono playback with a delay replicated though the same speaker. 

His conclusions provided evidence that comb filtering through stereo playback was pleasing to 

the listener and can be preferred over a flat response. A single lateral reflection produces 

minimal audible notches and the delayed sound through the same loudspeaker produced an 

unpleasant degrading effect. Interestingly, notches produced by a delayed reflection arriving 

vertically became more noticeable. Clark suggests this is a result of the reflections paths 

arriving from the same horizontal angle, but still poses thought for the contribution of vertical 

reflections to comb filtering, timbre and consequently subject preference. Overall, this paper 

highlights significant audible differences can occur even when objective measures of comb 

filtering look very similar, dependant on angle.  

In binaural hearing, there is also evidence to suggest the human auditory system may possess 

the ability to disregard such comb filtering distortions (Blauert, 1997), altering our timbral 

perception of the event. The use of a “central spectrum”, summed from two subtly different 

responses significantly reduce colouration from lateral reflections (Toole, 2008). In monaural 

listening (listeners with one ear plugged), the colourations in timbre are far more distinct. One 

consideration involving ILD, is the acoustic shadowing effect produced by a centre body 

between the two receivers resulting in the head becoming an obstacle.  The acoustic shadowing 

provided by the head means that early lateral reflections reaching the furthest receiver will be 

attenuated at higher frequencies. Given the average breadth of the human head (measured above 

and behind the ears) is 14-16 cm, frequencies with smaller wavelengths above 2450Hz would 

be attenuated thus meaning the effect of comb filtering will also be reduced. The idea that 

objective observation of comb filtering only gives us a small impression of what we will 

actually hear is quite apparent.  

Research into audibility of comb filtering (Brunner, Maempel, & Weinzierl, 2007) shows that 

under good listening conditions, noticeable differences still occur when a reflection’s level 

difference is 18dB below the direct sound. Research from Barron & Marshall (1981) regarding 

spatial impression also highlighted lateral reflections’ contribution to colouration, but in the 

context of concert halls. Although the predominant effect with a single reflection was indeed 

‘spatial impression’, reflections between 10 and 20ms were noticeable for producing ‘tone 
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colouration’. For noise signals, reflections arriving from a left wall are suggested to 

individually alter timbre (Bech, 1995b) with a delay of 9.94ms and attenuation of 9.7dB relative 

to the direct sound. Although this paper does not critically assess the detection of comb filtering, 

it is pointed out this effect is a result of an added delay reflection, which produced timbral 

alterations.  

This section has identified perceptual attributes provided when a direct is sound summed with 

a delayed version of itself. In small domestic rooms, unaltered reflections will be louder than 

those in a concert hall and could therefore, be increasingly destructive (or constructive) to the 

initial signal. Altered reflections from frequency dependant surfaces will also add varying levels 

of timbral change due to their spectral content. It has also been shown that binaural listening 

may have the ability to attenuate comb filtering effects. Therefore it may be seen that comb 

filtering along the median plane may have a greater impact on our perception timbre, as both 

ears will be provided with the same signal.  

2.5  PERCEPTION OF VERTICAL SOUNDS 

Section 2.4 focused on early lateral reflections, this chapter aims to review the literature of 

sound arriving from a vertical source. There is little literature specifically discussing vertical 

reflections therefore, the following chapter also incorporates discussions of multichannel 

elevated audio systems. The applicability if not in the context of reflections will be highlighted. 

Throughout research into vertical reflections, variations in terminology have been used 

regarding the axis and the reflection surface. Therefore, the term ‘median plane’ will henceforth 

be referred to in this thesis as the vertical plane split symmetrically down a listeners head, front 

to back (Figure 10). 
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FIGURE 10: PLANES USED THROUGHOUT THESES TO DESCRIBE AS TAKEN FROM HARTMANN (1993) 
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2.5.1   DETECTION OF VERTICAL REFLECTIONS 

The work of Olive & Toole, (1988) provides some fundamental information about vertical 

reflections related to a “domestic or control-room size” environment. By way of sound field 

synthesis, the aim was to ascertain the threshold at which reflections within a room affected 

aspects of the sound or, sound field. Users were given control of over a multi-turn potentiometer 

(so that no positional cues could be used) and instructed to adjust the level of a test reflection 

somewhere between ‘just audible’ and ‘just not audible’. Subjects could also switch the test 

reflection off, and to its maximum level of 10dB above the direct sound. No time constraints 

were imposed. The audibility target was to identify any change to the sound or the sound field. 

This would be considered the absolute threshold. Pulse noise, pink noise, speech and castanet 

signals were used as stimuli throughout testing. Results showed the angle of reflection (i.e. side 

wall or ceiling) produced no notable difference in level of detection, but the use of stimuli 

proved to be very sensitive. Absolute thresholds for delays below 10ms were considerably lower 

(subject’s required minimal level to identify a change) for continuous sounds – (noise). Above 

10ms, pulse stimuli retained a lower threshold revealing a crossover of around 10ms.  

Interestingly, the level for the discontinuous stimuli to provide any change, could be as low as 

-40dB below the direct sound at 20ms delay regardless of angle of reflection. The paper 

reinforces findings for the absolute threshold of a single vertical reflection with three different 

listeners, all showing the same pattern using pink noise. Observing the results Figure 11, it can 

be seen that from up to 5ms, the absolute threshold for the relative stimuli used is roughly at its 

lowest, meaning any change is most noticeable up to this point. It is also noted by the authors 

that the change in timbre was quite apparent for the vertical reflection.  
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FIGURE 12: BECH EXPERIMENTAL SET-UP DERIVED FROM INFORMATION IN TABLE 1 IN - BECH, 1995 

The paper also recognised that previous work has often used delayed signals which contain the 

same spectral content as the incident sound. With surfaces absorbing/reflecting varying energy 

levels across the frequency spectrum it is necessary to consider reflection as frequency 

dependant signal. 

Bech (1995) produced a number of studies regarding timbre within small rooms with the aim 

of investigating: which early reflections can individually contribute to changes in timbre and 

what is the required level needed to produce this change? His methodology included 

electroacoustic simulations in an anechoic chamber similar to that of Olive and Toole. The 

sound field simulated was typically separated into three components: direct sound, early 

reflections up to 21ms-22ms and a reverberant field with reflections greater than 21ms -22ms. 

The experiment did not simulate an individual reflection solely in the presence of a direct sound, 

but unlike Olive and Toole, was incorporated into a sound field using multiple loudspeaker 

sources. Therefore, the amount of speakers needed to individually produce early reflections up 

to 22ms would be too great and were restrained under the following rules. Only reflections 

above -20dB relative to the direct sound were implemented and multiple early reflections would 

be produced by the same loudspeaker resulting in: the direct sound, 17 reflections produced by 

15 loudspeakers and the reverberant sound field simulated by six, evenly spaced laterally 

distributed speakers (Figure 12).  

 

 

 

 

 

 

 

 

 

 Incident sound is propagated from the RED loudspeaker (-22°H, 0°V). BLACK loudspeakers represent 
the reflections. The reverberant sound field is generated from the CYAN loudspeakers. 
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Importantly, the directivity of the direct loudspeaker was modelled in a cardioid pattern 

independent of frequency, thus SPL was radiated evenly at all frequencies. In conjunction with 

this, absorption coefficients applied to the reflections were also independent of frequency with 

values: ceiling = 0.05, floor = 0.3 and walls 0.44 resulting in an RT of 0.4s. Loudspeakers were 

positioned on a 3m hemispherical radius to the listener position and supporting structures 

treated with acoustic absorbent material to reduce reflection interference. Processing of 

reflections ranged from 1.64ms – 14.98ms delay and 3.6dB – 15.5dB level attenuation. The 

listener was situated on a motorised chair to position the listener’s ears and SPL measured at 

the listener position was 66dB and 50dB for noise and speech stimuli respectively. The stimulus 

used was 1s pink noise (20Hz – 20kHz) and 3.8s sample of male speech. Eight subjects 

participated (five male / three female) and were free to move their heads as this experiment did 

not involve localisation.  

Each of the 17 reflections were assessed in the presence of the sound field whereby subjects 

were to ascertain two psychoacoustic properties corresponding to the two aims mentioned 

previously: The threshold of detection (TD), and just-noticeable difference (JND). The 

interpretation of timbre was given to the subjects as the American Standards Institution (Section 

2.6.2).   

Bech’s results indicate reflections one, three (median plane), eight and twelve (left wall) 

resulted in a TD lower in dB, or not significantly higher, than the natural levels of reflections 

in a standard listening room (Table 1). This suggests these reflections are likely to individually 

contribute to timbre within the context of a sound field. More specifically only reflections one 

and three will be potentially audible for speech signals and noise signals.  

Reflection No# Delay Attenuation Lateral Position Vertical Position 

1 – Floor 1.64ms 3.6dB -25° -28° 

3 – Ceiling  4.16ms 9.2dB -25° +48° 

TABLE 1: VERTICAL REFLECTIONS CONTRIBUTING TO TIMBRAL CHANGE WITHIN A SOUND FIELD (BECH, 1995) 

After identifying the applicability of this work, frequency response characteristics were then 

taken into consideration (Bech, 1996). The experimental set-up remained the same however, 

loudspeaker simulating reflections were then altered by added frequency dependant 

characteristics. Six filters were applied as a function of frequency dependant absorption 
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coefficients at octave-bands 125Hz – 8KHz to selected loudspeakers simulating individual 

reflections. The method and stimuli used was the same as detailed in the previous experiment.   

The results from this experiment build on those from the first report, that only the floor 

reflection had a TD lower than that of a natural room for a noise signal. TD was not ascertained 

for reflection ‘3’ (ceiling) but is stated that this is also likely to be lower than that of a natural 

reflection.  A TD test, with and without the transfer function filters for the loudspeaker revealed 

that for a noise signal, detection values for individual reflections five (floor), seven (ceiling) and 

nine (left wall) increased significantly in dB with the filter on. Bech highlights that this is due 

to the removal of energy in the frequency region 500Hz – 2kHz. Whilst these reports conclude 

that the first order floor reflection (and possibly ceiling reflection) is most likely to individually 

contribute to timbre, of great importance to this study is that Bech notes these are only threshold 

detection tests and not a prediction in terms of timbral quality.  

The impact of vertical reflections from above have also been the focus of a study regarding 

auditory envelopment (Furuya, Fujimoto, Takeshima & Nakamua, 1995). In the context of 

concert hall acoustics, three experiments were conducted to subjectively assess the 

contributions of:  

• A single reflection from above along the median plane on “auditory size of sound 

image” 

• Energy of multiple early reflections from above and “auditory impression of 

envelopment” 

• A repetition of experiment two in the presence of a reverberant sound field. 

All experiments utilised musical stimuli and the reflection and sound field were electro 

acoustically simulated. In relation to this thesis investigating a singular reflection, experiment 

one demonstrated that as the delay time of a singular reflection increased, the sound image 

grows vertically in size. Regarding auditory envelopment, experiments two and three show that 

as long as the ratio of lateral and vertical energy remains constant up to 200ms, envelopment 

becomes stronger as energy arriving from above increases. The author does note however that 

lateral arriving energy must be the “predominant factor to perceive envelopment”.  

2.5.2   VERTICAL LOCALISATION  

Section 2.4 discussed auditory cues needed for localisation mainly on the lateral plane. The 

following chapter reviews literature studying localisation along the vertical plane. Outlined in 
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FIGURE 13: ROLFER AND BUTLER EXPERIMENT OF PITCH HEIGHT EFFECT 

Section 1.1, this thesis investigates the subjective preference of an early vertical reflection 

through timbral and spatial differences. Therefore, the understanding of spectral and spatial 

cues used in localisation along the median plane will be useful in discussing results. Although 

much of the reviewed research is in the context of audio reproduction, the process of localising 

an elevated source along the median plane remains the same with a reflection. 

Early research into localisation with source elevation was conducted by Pratt (1930). Using 

tonal stimuli he concluded that subjects could not locate the incident sound along the vertical 

plane.  However, they did observe that when a signal is presented ‘diotically’4, the auditory 

event was systematically perceived to be physically low, for low tones, and higher for high 

tones. This experiment was repeated by Roffler and Butler, (1968a) who observed the same 

phenomenon. Subjects were asked to localise the sound source and were unaware of 

loudspeaker quantity or placement. Program material used was varying tonal and filtered noise 

signals. The results of the experiment confirmed those by Pratt (1930) that the ability to localize 

tonal stimuli and broadband noise is poor from frequency content below 7kHz. Also the 

perceived auditory event was located higher along the vertical plane with respect to higher 

frequency and that for accurate localisation along this axis, the signal must be complex. Roffler 

and Butler (1968b) investigated this further whilst subjects lay in different orientations and 

distances from a loudspeaker array and also using blind people and young children. Using 

frequency bursts ranging from 250Hz – 7200Hz the subjects were asked as before to localise 

the sound source, but even in different positions localisation was still poor.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 
4 A Monaural signal – To be presented at both ears from a single source along the median plane 
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A great amount of work in this area has been conducted by Bleuart (1997), who has carried out 

a number of investigations with regards to localisation along the medium plane. The test 

resulted in clues about the angle of incidence with regards to the frequency content of the signal. 

Broken into three sections h, o and v (behind, overhead, forwards respectively), 1/3rd octave 

noise stimuli was presented once from the direct speaker and rear speaker alternately and 

subjects were asked to localise the auditory event based on the three locations presented, the 

results of which can be seen in Figure 14 showing the relative probability of subjects answering 

“behind”, “overhead” or “forward”, with respect to frequency. The results show that the 

probability of someone perceiving an auditory event from above with frequencies roughly 

between 7 – 10kHz is great even if the sound source is from the front or rear. Most importantly, 

Blauert has demonstrated that the localisation of an auditory event may be influenced 

independent of direction and more through frequency content. Regarding this thesis, this may 

impact subject’s preference when strong frequency content is perceived to be located at a 

particular angle when emphasised with a reflection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In the context of multichannel reproduction, experiments by Lee, (2011) investigated both the 

masking and localisation thresholds of a sound, using a vertically placed loudspeaker with a 

delayed signal. The masking threshold being - the level (dB, not height) at which the vertical 

loudspeaker had no audible effects. The localisation threshold - the level the vertical speaker 

needed to be so the sound source is localised only from the primary speaker. The ICTD’s (Inter-

channel Time Difference’s) used were 0, 0.25, 0.4, 1.0, 2.5, 5.0, 10, 25, 50ms and presented at 
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an average 75dB(A) to the subject. Results of the localisation threshold test revealed for time 

delays greater than 1.1ms and below the echo threshold (roughly 5ms), the precedence did not 

operate. All assessments of delay times needed to be attenuated for the source to be fully located 

at the direct speaker and could not be localised on just ICTD. 

 

 

 

 

 

 

 

 

 

 

 

The vertical channel’s level attenuation up to 5ms, was consistently around -9/-10dB for 

localisation threshold, and -6/-7 dB attenuation for the masking threshold. With regards to 

timbre in this investigation, Lee points out that from informal discussions with the subject post-

test, it was clear that the most prominent factors were indeed tonal colourations and 

localizability. This further supports work discussed, regarding the effect of elevated sources 

and reflection on the median plane altering our perception of timbre. However still no research 

has identified is this is a positive or negative effect on the listener.  

In contrast to Lee’s results (2011), Hartmann (1993) previously suggested that the precedence 

effect does operate within all planes. A simple experiment using click stimuli with delays of 0, 

0.1, 0.2, 0.5 1.0, 2.0, 5.0 and 10ms along the same plane, with three loudspeakers to represent 

each plane (frontal, lateral and median)  was used to investigate if the precedence effect was a 

higher order cognitive process, not seldom based upon frequency. His results concluded that 

the ability to localise along the sagittal plane was still achieved through the precedence effect 

without the need for Interaural differences. In the context of this paper, this would indicate 

reflections arriving from a vertical source may still be localised through the precedence effect 

and independently, frequency content may be manipulated to achieve beneficial or detrimental 

timbral effects. 
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FIGURE 15: LOCALISATION EXPERIMENTAL SETUP IN LEE (2011) 
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2.6   PERCEPTUAL ASSESSMENT  

Previous chapters have discussed some of the literature relating to the both the physical domain, 

and then the perceptual domain regarding both lateral and vertical early reflections. Whilst these 

papers discuss the timbral and spatial effects of a rooms early reflections, a way of identifying 

what these changes are, and how we describe them in more detail needs to be explored through 

the use of specific descriptions. It is also important to consider the aspects of the methodology 

that enables subjects to record the magnitude of a sensation to a physical value such as rating 

scales.  

2.6.1  ATTRIBUTE SCALING   

In order to quantify a user response to a given question, a format must be chosen that can be 

interpreted equally throughout subjects with no bias. Commonly in audio assessment, ratings 

scales are employed to retrieve a subject’s response to a perceptual attribute. The use of ‘direct’ 

scaling procedures lends a simple way to convert the magnitude of a sensation to a 

corresponding scale whilst ‘indirect’ judges the degree in which a sensation is different in one 

stimulus, compared to another (Bech & Zacharov, 2006). The most common of which are 

Difference threshold (DL) and Paired comparison methods (PC). Difference threshold tests, as 

discussed throughout papers in previous chapters  (Olive & Toole, 1988) (Lee, 2011), identify 

values of Just Noticeable Difference by increasing or decreasing program material with a single 

controllable parameter in specific increments (e.g 1dB). Paired comparison testing (Imamura et 

al., 2013) is the assessment of two stimuli or playback systems against one another, whereby 

the user rates an individual attribute such as fidelity, or preference. A number of scales have 

been developed to asses sensory attributes and are discussed below. 

A series of papers investigating the problematic trade-off between bandwidth limitation and 

down-mixing algorithms in delivery systems show insightful methodologies on subjective 

testing. Psychoacoustic testing of subjects provided information on which attributes may be 

less/more desirable to retain with limitations transmission conditions (Zeilingski, et al, 2003). 

In Zeilinski et al’s (2005) paper, subjects were asked to grade three attributes: timbre, frontal 

and surround spatial fidelity. This method of identifying fidelity requires users to rate the 

‘trueness’ of which a stimulus is replicated in comparison to the original. This can be likened 

to that of an impairment scale (Table 2) and as mentioned “quality of processed items used was 

degraded considerably”. Therefore, the use of a double-blind multi-stimulus test method with 
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TABLE 2: ITU – R 5-POINT CONTINUOUS 
IMPAIRMENT SCALE 

80-100 Excellent 
60-80 Good 
40-60 Slightly Better 
20-40 About the Same 
0-20 Slightly Worse 

 

a hidden reference and anchors (MUSHRA)(ITU-R BS.1534-3:2015) was used as a response 

format. This allowed rapid comparison of multiple program material. All stimuli were equalised 

in order to eliminate any bias due to loudness change and presented in a randomised order to 

reduce carryover effect. Whilst such a methodology could be applied to the context of this 

research into vertical reflections, as shown in the literature, reflections may be beneficial thus 

a degradation scale may not be suitable.  

 

 

 

 

 

 

 

Zacharov & Lorho's (2004) investigation into home theatre systems and multichannel 

algorithms is of interest due to the experimental design and response scale. One of two 

experiments consisted of a loudspeaker test whereby six algorithms, chosen as the dependant 

variables, are assessed in terms of ‘reproduction quality’. A Comparison Category Rating (CCR 

– Table 3 & 4) is chosen with a paired comparison (also referred to as an A/B comparison) 

methodology. ITU-R P.800:1998 has an extensive overview of all Absolute, Degradation and 

Category Comparison Ratings. However, the CCR method employed allows the user to 

compare unprocessed stimuli against processed stimuli whereby the order of processed and 

unprocessed for each pair is randomised.  

The CCR method unlike degradation comparison rating (DCR), also allows ratings of 

improvement. This may be used in conjunction with modified MUSRHA style testing (Fenton, 

Bruno & Wakefield, 2009) to consider the possibility that the assessment stimuli may exceed 

the reference in criteria such as audio quality. In this investigation (Zacharov & Lorho, 2004), 

14 subjects for the loudspeaker experiment were instructed to grade their preference in terms 

of ‘overall quality’ considering both spatial and timbral characteristics. The program material 

selected used excerpts of “Music, Movie Sound and Gaming sound”. These were selected for 

specific timbre and spatial cues and averaged at 78 dB(A) SPL across each program material 

for loudspeaker reproduction. Before subjective testing, administrative familiarisation took 

place using the ‘GuineaPig 2 listening system’.  



CHAPTER 2.  LITERATURE REVIEW   
 

- 41 - 
 

 

 

 

 

 

As mentioned by Bech & Zacharov (2006), subject familiarisation is key to ensuring 

understanding of variables under examination and that consistency of instructions both verbal 

and written should be maintained across all subjects. Bias was also eliminated by adding extra 

0.5 “run-offs” at opposing ends of the rating scale (extending the sable range to -4.5 to +4.5) to 

eliminate subject reservation in using extreme end points. This methodology allows comparison 

of each individual stimulus directly against each other, rather than a group of stimuli against a 

single reference as with a MUSHRA test. 

A way of rapid comparison of a large number of samples is that of the rank order method or, 

round robin. Discussed in Zacharov & Huopaniemi's (1999) paper, the aim was to be able to 

quickly compare numerous VHT (Virtual Home Theatre) systems using a large number of 

samples assessing sound quality split into timbral and spatial attributes. This rank order method 

is advantageous due to its simplicity in acquiring data and involves little preliminary subject 

training, requiring only the rating of program material from 1 to N (N being number of samples) 

based on a criteria and direction of ranking specified. The major disadvantage of this method 

that it provides no scaling information between comparisons (Otto, 1997) and therefore, are 

only used when an indication of how sounds compare is needed.  

Adaptations of this rank order method have also been investigated and compared to paired 

comparison with respect to speed and accuracy of results by way of ‘ranking by elimination’ 

(Wickelmaier, Umbach, Sering, & Choisel, 2009). Although this may yield similar results to 

that of the rank order method, the scaling between ranks is still an issue that only paired 

comparison reveals. Whilst all scales have been established and used in research for some time, 

recent work possibly suggests that some of these scales could still be misrepresentative of how 

our psychoacoustic assessment (both sensory and cognitive filters – Figure 1) is processed.  

Even though that scales may be presented in a linear fashion by anchoring labels at an 

3 Much Better 
2 Better 
1 Slightly Better 
0 About the Same 
-1 Slightly Worse 
-2 Worse 
-3 Much Worse 

 

4 Prefer B extremely 
3 Prefer B very much 
2 Prefer B moderately 
1 Prefer B slightly 
0 Neither Prefer A or B 
-1 Prefer A slightly 
-2 Prefer A moderately 
-3 Prefer A very much 
-4 Prefer A extremely 

 

TABLE 4: MODIFIED 9-POINT HEDONIC 
SCALE (ZACHAROV & LORHO, 2004) TABLE 3 ITU P.800 CCR 

GRADING SCALE 
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equidistant point along an axis, this does not mean that the interpretation of these labels are not 

perceptually linear (S. Zielinski, Brooks, & Rumsey, 2007).  

2.6.2  ATTRIBUTE DESCRIPTIONS 

When an attribute change such as quality, degradation or fidelity is the result of a perceived 

characteristic and we want to know why, the attribute response becomes far more complex as 

the number of individual adjectives needed just to describe timbre is extensive. Most of the 

literature discussed throughout has assessed audio quality through general timbral change. 

However, rather than a global quality, it can be useful to identify certain attributes within timbre 

that may separately impact preference.  

For the assessment of sound quality Gabrielsson & Sjögren  (1979) used over 50 adjectives to 

describe playback systems. These were a result of questionnaires given to 170 people, 

consisting of roughly 200 descriptors and were used in scales varying from 0-9 to indicate that 

particular attributes ‘quality’. The assessment of loudspeakers conducted by Staffeldt, (1974) 

utilized 35 descriptors and were recorded in a binary format from a paired comparison test, ‘1’ 

– indicating system ‘i’ possess this characteristic, and ‘0’ indicating system ‘j’ possess this 

characteristic. The process of attribute selection can be done through a combination of personal 

experience, interviews, literature research, elicitation etc. However, an elicitation is not within 

the scope of this research therefore, the following sections discuss literature assessing timbral 

definitions to use during experiments.  

 

 

 

 

 

 

 

 

 

FIGURE 16: FREQUENCY RESPONSE SHOWN AGAINST A KEYBOARD 20HZ – 20KHZ AND RESPECTIVE TIMBRAL 
DESCRIPTORS - NOTE THAT ONE ATTRIBUTE MAY BE ACHIEVED (“WARM” OR “SWEET”) BY REDUCTION OR 

AMPLIFICATION AT DIFFERENT FREQUENCIES. ADAPTED FROM HOWARD & ANGUS (2013) 
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Words such as bass, mid and treble are often seen amongst audio engineers and musicians but 

are somewhat broad-stroke in terms of frequency range. Figure 16, adapted by Howard & 

Angus (2013) from Katz (2007), demonstrates the relationship between frequency content and 

timbral descriptors. It is interesting to see that the perception of a physical change may be 

induced in multiple ways (‘warm’, ‘sweet’) by exciting different frequencies. Reflecting on this 

scale of pitch and descriptors how is it, that two instruments demonstrating the same pitch and 

loudness exert completely a different timbre? The classic, much-quoted definition of timbre by 

the American National Standards Institute (ANSI S1.1-1960)5 is as follows: 

“…that attribute of sensation in terms of which a listener can judge that two sounds having 

the same loudness and pitch are dissimilar.” 

This however, implies that sounds must possess a pitch for the definition to apply (Bregman, 

1994), and that sounds which do not contain pitch such as “scraping a shovel in a pile of gravel” 

cannot contain timbre. Bregman describes timbre as an “ill-defined wastebasket category” and 

that the only reason loudness and pitch are accounted for is that they are easy to manipulate on 

a musical instrument. Regardless of its definition, it is clear that timbre in some way 

incorporates the spectral content of a signal. As it cannot be scaled on a singular axis such as 

low-high or quiet-loud, it should therefore be recognised as a multi-dimensional attribute. 

Erickson (1975) has elicited a list of some subjective parameters of timbre and their 

counterpoints within the physical domain (Table 5) with regards to “music-orientated” sounds. 

These are based upon five dimensions from Schouten (1968) which he describes as an excellent 

classification of perceptual analysis. These objective features take a step further than just 

frequency content into identifying timbre and include dynamics and ‘musicality’ of the signal. 

One technique employed to analyse the timbre of a sound is a spectrogram, whereby the whole 

envelope, frequency content, duration and steady-state6 changes are captured. This allows 

identification of not only the harmonic content and amplitude (as with an FFT) but the time at 

which these harmonics occur and their duration. The onset phase of a musical note is 

particularly important at perceiving timbre, as colouration of the direct sound from early 

                                                                 
5 It is recognised that this document is now superseded by revision ANSI S1.1-2013, however subjective testing 
assessing timbre (Bech - Section 2.5) are all consistent with the definition in ANSI S1.1-1960. 
6 Steady-state does not mean that no changes are present but the sustain period to which a note is held.  

http://en.wikipedia.org/wiki/Loudness
http://en.wikipedia.org/wiki/Pitch_(music)
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reflections may only impact the perceived timbre after the note-on has occurred (Howard & 

Angus, 2013). 

SUBJECTIVE OBJECTIVE 
Tonal Character, usually pitched Periodic Sound 
Noisy, with or without some tonal character Noise, including random pulses 
Colouration Spectral Envelope 
Beginning/Ending Physical rise and decay time 
Colouration glide or format glide Change of spectral envelope 
Micro-intonation Small change (one up and down) in frequency 
Vibrato Frequency modulation 
Tremolo Amplitude modulation 
Attack Prefix 
Final sound Suffix 

TABLE 3: LIST OF SUBJECTIVE ASPECT AND THEIR PHYSICAL COUNTERPOINTS REGARDING MUSICAL 
INSTRUMENTATION TIMBRE 

 

Assessments of audio quality are often broken up into two main sub-categories comprising of 

spatial attributes (Section 2.4), and timbral attributes. However with so many descriptors 

available for timbral characteristics, subjective testing can prove to be a difficult task. Previous 

studies have assessed a subject’s perception of timbral quality as a whole (S. K. Zielinski, 

Rumsey, Kassier, & Bech, 2005), whilst other research delves further identifying which 

descriptive terms can best describe this perceived change (Torben Holm Pedersen, 2008). 

Experiments conducted with the use of individual vocabulary profiling (IVP) have also been 

conducted (Kuusinen et al., 2014). This gives subjects the freedom to develop their own set of 

descriptions in the assessment of stimuli.  

With perceptual evaluation and sound quality assessment becoming more popular in recent 

years, there has been much need to try to consolidate verbal descriptors from across the 

literature in an attempt to provide uniformity throughout research and as such, is the focus of 

Pedersen & Zacharov's (2015) paper. In the context of reproduced sound, this study takes a step 

closer in delivering a universal list of descriptors for general usage. Taken across English, 

German and Nordic material including scientific literature, papers, product descriptions and hi-

fi magazines were 200 words. These were selected after the removal of repeated words and 

words relating to preference and subjective liking, the end result was a “sound wheel” (Figure 

17) This also included assessing loudspeaker systems (recorded with a Bruel and Kjaer head 
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and torso simulator) through headphones and 4 mono loudspeakers across a broad price range, 

describing timbral/spatial attributes and differences that were most prominent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Whilst there are many descriptors and even debates regarding the definition of timbre, most of 

the evaluative terms seem to be in assessment of a sound source and not in describing the timbral 

difference a reflection provides. Where first reflections have been assessed on the influence on 

timbre (Søren Bech, 1994b) (Bech, 1995b) (Bech, 1996), definitions of timbre have been that 

of the American Standards Institute. Therefore, the description of timbre given to subjects will 

also follow the majority of research in using ANSI definition.  

 

2.7 SUMMARY 

Through the review of this literature, a number of research gaps have been identified. A large 

proportion of studies discussed have demonstrated that early reflections affect our timbral and 

FIGURE 17: SOUND WHEEL AFTER PEDERSEN & ZACHAROV (2015). INNER RING IS MAIN PERCEPTUAL 
ATTRIBUTES. MIDDLE RING CATEGORISES AND OUTER RING PROVIDES ADJECTIVES. 
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spatial perception of a sound. However, little has been investigated regarding their effect on 

listener’s enjoyment (Kishinaga et al. 1979). Particularly for early vertical reflections (and 

elevated sound sources along the median plane), research considering their impact on listener 

preference is even less apparent, even though a number of studies have discussed their ability 

to alter the perceived timbre of the direct/incident sound (Clark 1983)(Bech 1995)(Bech 

1996)(Lee 2011). Much of the literature discussed has also employed minimal musical stimuli 

and where musical stimuli is assessed, it is not in the context of listeners’ preference. Therefore, 

the need to investigate the perceptual effect of these timbral (and spatial) changes on preference 

provided by a vertical reflection using musical stimuli, will provide useful information in our 

understanding of sound within small rooms.  
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CHAPTER 3 

REFLECTION MODELLING 

3.0  INTRODUCTION  

Literature discussed throughout Chapter 2 has shown that room reflections have a great impact 

upon the way we perceive sound. However, there is still a clear gap within research needing 

investigation to determine if these early reflections have a positive or negative timbral or spatial 

effect when listening to audio for entertainment. In order to assess the effect of a singular 

reflection on our perception in comparison to playback with no reflections, material with the 

desired properties could be placed at the point of reflection. However, in order for quick 

assessment of different properties of this single reflection, changing material would be 

unfeasible potentially introducing bias. The reliability of a subject’s acoustic memory in any 

time gap also reduces any accuracy of any comparison (Pike, Mason, & Brookes, 2014). 

Therefore, a reflection was electro-acoustically simulated by a loudspeaker. This chapter 

demonstrates the setup of a secondary loudspeaker for correct simulation of a reflection along 

with validation of the processing used.   

3.1 INITIAL MEASUREMENTS 

For the purpose of electroacoustic simulation of vertical reflections a number of preliminary 

tests were needed to collect data and simulate the required set-up. The testing took place in the 

University of Huddersfield’s semi-anechoic chamber. A brief experiment was conducted to 

clarify the audible timbral effect discussed throughout Chapter 2, whereby a 16mm plywood 

panel with reflective veneered surface was installed at the first calculated geometrical reflection 

point acting as a low hanging reflector. Sitting at the listening position, the author could clearly 

hear an audible difference in timbre along with certain spatial attributes for musical stimuli.  

For comparison, impulse responses were taken with the above measurements with 

accumulating acoustic treatment along the floor and ceiling panel trussing. Once floor 

absorption had been incorporated, no interfering reflections were observed above -18dB to that 

of the direct sound. (An impulse response of the set-up dimensions below can be seen in Figure 

21). 

• Listening height – 1.15m, 
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• Listening distance – 2m, 

• Ceiling height – 1.95m 

• Loudspeaker – Genelec 8040a 

• RoomEQ Wizard Measurement Software 

• Interface – Focusrite Safire Pro 14 

• Dbx measurement Microphone 

3.2  LOUDSPEAKER DISPERSION 

To prevent confusion, the following terms will be given to loudspeakers used. The loudspeaker 

used to play the direct sound will be referred to as the ‘direct loudspeaker’.  The loudspeaker 

used to replicate the reflection from above, will be referred to as the ‘reflection loudspeaker’. 

These can be seen in Figure 18.   

 

 

 

 

 

 

 

 

To make the ceiling reflection realistic to replicate, it must also be representative of what is 

being projected by the direct loudspeaker (Bech, 1990). If a reflection is simply replaced by a 

loudspeaker pointing on axis to the receiver, the spectral content will not be accurate due to the 

direct loudspeakers’ frequency dispersion. Published with the Genelec 8040a, are the frequency 

responses at horizontal angles 15°, 30°, 45° and 60° but no vertical information. Therefore, 

measurements at a 1m radius at 15°, 30°, 45° and 60° were taken of the frequency response 

vertically (Appendix B). Finally, the angle of projection for the dimensions above was 

calculated and measured (Figure 19). 

Y° 

X° 1.28m 

1m 

0.8m 

1.15m 

Reflection Loudspeaker 

Direct Loudspeaker 

FIGURE 18: REFLECTION SIMULATION SET-UP 



CHAPTER 3.  REFLECTION MODELLING   
 

- 49 - 
 

 

           [5] 

 

           [6] 

 

 

 

 

 

 

 

 

 

 

 

119 values of equal logarithmic distance were exported representing the difference between the 

loudspeakers on-axis response and calculated angle across 20Hz – 20kHz. This difference was 

then applied to cascade filters within MAX MSP to ensure frequencies delivered at the correct 

amplitude by the direct loudspeaker, are replicated by the reflection loudspeaker.  This can be 

seen as a Delta Spectrum in Figure 20. The dip seen between 2-3kHz is most likely due to the 

Genelec 8040a crossover point around 3kHz.   

 

 

 

 

 

 

 

 

 

 

 

3.3 CALCULATION ACCURACY  
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FIGURE 19: FREQUENCY DISPERSION OF GENELEC (0°H 0°V - SOLID, 0°H 38°V – DASHED) 

FIGURE 20: DELTA SPECTRUM OF FREQUENCY DIFFERENCE APPLIED TO SIMULATING REFLECTION CHANNEL 
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7.44𝑚𝑚𝑐𝑐 −  5.81𝑚𝑚𝑐𝑐 = 𝟏𝟏.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 

(20 ∗ log(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)) = 6.0𝑑𝑑𝑑𝑑 

 

(20 ∗ log(𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)) +  (10 ∗ log(1 − 𝛼𝛼)) = 8.2𝑑𝑑𝑑𝑑 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
344

= 5.81𝑚𝑚𝑐𝑐 

Finally calculations were used to ascertain the required delay and global attenuation7. Using 

dimensions specified in Section 3.1, the calculations result in a time interval of 1.63ms 

(Equation 9) and level difference of 2.2dB (Equation 12) between the direct and reflected sound 

as calculated below. 

Direct sound delay (loudspeaker to listener) 

 [7] 

Where ‘DirectDistance’ = 2m  

Ceiling reflection delay (loudspeaker – reflection point – listener)              

  [8] 

Where ‘CeilDistance’ = 1.28m × 2 (see Figure 18)  

Therefore the resulting time interval between the direct sound delay [7] and ceiling reflection 

delay [8] is:   

[9] 

Direct sound attenuation 

[10]  

Where ‘DirectDistance’ = 2m 

Ceiling reflection attenuation 

[11]  

Where; ‘CeilDistance’ = 1.28m × 2 and a boundary absorption level ‘α’ = 0.01. This 
absorption level was chosen to represent a highly reflective surface with the least amount of 
absorption possible.  
Therefore the resulting level difference of attenuation between the direct sound [10] and the 

reflected sound with minimal absorption at point of reflection [11] is: 

                                                                 
7 Associated with the amount of attenuation produced by inverse square law, without frequency dependant 
alterations made by reflecting surface properties or loudspeaker dispersion.  

𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
344

= 7.44𝑚𝑚𝑐𝑐 
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FIGURE 22: IMPULSE RESPONSE TAKEN USING 
SIMULATED REFLECTION WITH VALUES OF -
4.1DB ATTENUATION AND 3.72MS DELAY 

FIGURE 21: IMPULSE RESPONSE TAKEN USING 
GENUINE REFLECTION 

8.2𝑑𝑑𝑑𝑑 −  6.0𝑑𝑑𝑑𝑑 = 𝟐𝟐.𝟐𝟐𝟐𝟐𝟐𝟐 
[12] 

These calculated results were then compared against the genuine measured reflection (Figure 

21), and show a small difference of 0.21ms delay and 0.37dB attenuation difference. It is 

recognised that whilst these differences are present between the calculated results and the 

genuine reflection, changes in room temperature and absorption may possibly account for the 

discrepancy. As these factors may always fluctuate, the author deems it acceptable to simulate 

the vertical reflection using the calculations above. 

As the reflection loudspeaker is placed halfway along the reflection path, values of 3.72ms 

delay (7.44ms from Equation [8] ÷ 2) and 4.1dB attenuation (8.2dB from Equation [11] ÷ 2) 

were applied, with the inclusion of the dispersion filter (Figure 20) for the simulated reflection. 

The results from the impulse response with an electro-acoustically simulated loudspeaker using 

these values of  attenuation and  delay, show an accurate simulation with a delay interval = 

1.48ms and level difference = 2.52dB. A comparison of the genuine reflection against the 

simulated reflection using the calculated values can be seen in Figures 21 and 22, along with 

related frequency response measurements in Figure 23.  

 

 

 

 

  

 

 

 

 

 

 

 

 

It is also noted that the differences between the genuine reflection (Figure 21) and 

simulated reflection (Figure 22), are smaller than those between genuine reflection and what 

was calculated in Equations 9 and 12. Therefore it is reasonable to assume that subtle changes 
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within a rooms’ environment may be the cause of small differences however, the calculations 

can still be used to replicate an accurate reflection.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has shown that following these equations and calibration process, an effective 

ceiling reflection can be modelled using a loudspeaker. This will allow quick comparison of 

playback with and without a reflection, along with further manipulation of the ceiling 

reflection’s frequency characteristics. 
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CHAPTER 4 

EXPERIMENT ONE 
4.0 INTRODUCTION 

 

With little literature in the field concerning the preference of a vertical reflection, the aim of 

this first experiment was to provide new data regarding the magnitude of perceived timbral and 

spatial differences and a listeners’ preference of a singular ceiling reflection. As reviewed in 

the literature throughout Chapter 2, the importance of first geometrical reflection points have 

been of particular interest in studio/control rooms, concert halls and more recently small rooms. 

It has also been demonstrated that these floor and ceiling reflections add timbral and also spatial 

alterations to our sensory process of the direct sound. Therefore, this study will focus on the 

first geometrical ceiling reflection. Floor reflections will not be covered in this thesis but will 

be a topic of discussion later (Chapter 7).  

4.1  METHODOLOGY 

Subjective testing was employed to study the level of preference of a listener between the 

reproduction of sound with or without a reflection as well as investigating any correlation 

between this preference and the magnitude of perceived timbral and spatial differences. The 

motivation behind this experiment was to ascertain if this increased or decreased magnitude of 

perceived timbral or spatial change could indicate a beneficial or detrimental contribution to 

our enjoyment of audio and consequently, if the reflection it actually needs to be removed or 

not. A vertical reflection was electro-acoustically simulated following the procedure shown in 

Chapter 3 within the University of Huddersfield’s semi-anechoic chamber (Figure 24). This 

was to ensure that subjects would be assessing a single vertical reflection without the presence 

of any other early reflections or reverberation. The reflection replicated was based on the 

following dimensions: 

Listener distance – 2m, Listener height – 1.15m, Reflection Point – 1.95m 

A listener distance of 2m was chosen as minimum outlined in ITU-R BS.1116:1997, however 

with certain height limitations of the semi-anechoic chamber a slightly shorter value of 1.15m 

for listener height was chosen rather than the recommended 1.2m. The value of a 1.95m vertical 
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FIGURE 24: UNIVERSITY OF HUDDERSFIELD SEMI ANECHOIC CHAMBER – SET-UP OF EXPERIMENT ONE 

boundary was chosen as an extreme case. The author recognises that ceilings are seldom this 

low, or that reflectors/absorbers are very rarely hung from the ceiling at such a low height. Due 

to available resources of an acoustically dead environment, this was a physical limitation of the 

semi-anechoic chamber’s size. However, for this first experiment an exaggerated reflection 

would be useful to determine initial results and provide a comparison for further studies. This 

reflection path of 2.56m (source to receiver) would result in a delay of 1.63ms and attenuation 

of 2.2dB below the direct sound which is similar to that of the frequency independent floor 

reflection of that reviewed in the literature (Bech, 1996)(Section 2.7.1), but with differing angle 

of incidence and frequency content.  

 

 

 

 

 

 

 

 

 

 

 

A paired comparison method of assessment was chosen (Section 2.6) whereby subjects had the 

ability to switch between two playback methods of a stimuli, as many times they wished. 

Broken into two sections, the first assessment was to simply ascertain subject’s preference 

between stimuli. The second section focused on the magnitude of perceived timbral and spatial 

difference between stimuli. The labelling of stimuli was presented as ‘Reference’ and 

‘Processed’. Reference triggered playback of program material through just the direct 

loudspeaker, and processed through both the direct loudspeaker and its respective simulated 

reflection through the reflection loudspeaker. The author understands the use of such labelling 

may possibly bias subjects’ response (as a processed sample might imply an improvement). 
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Main sample triggers are placed in thumb locations for ease of use without subjects 
having to move their head.  

FIGURE 25: TABLET INTERFACE DESIGN 

However, participants were unaware as to the nature of the experiment and all equipment was 

obscured via an acoustically transparent curtain to eliminate any visual bias (Toole & Olive, 

1994). In addition to this, subjects were told that playback of the ‘processed’ sample could 

result in better, worse or even no change in reproduction. A tablet interface was designed and 

used throughout all testing to minimise any possible reflections that would otherwise be present 

when using laptop on a table. The ergonomic design of the tablet software8 (Figure 25) was 

such that subjects required minimal head movement whilst assessing audio, with stimuli 

triggers located at thumb locations. All data was sent/received wirelessly via a MAX/MSP patch 

where all processing and stimuli control took place.  

 

 

 

 

 

 

 

 

 

 

4.1.1  SUBJECTS AND ADMINISTRATION 

Subjects participating in this experiment were mixed ability from selected assessors to expert 

assessors (ISO 8586-2:1994 recommended application to the field of audio (Bech & Zacharov, 

2006)) within the University of Huddersfield. Thirteen subjects in total took part in this 

experiment and all reported normal hearing acuity. All subjects undertook a familiarisation 

exercise at the beginning of the experiment. This consisted of three paired comparisons of 

different genres presented in a similar style to that in Figure 25 with the absence of any scales. 

Samples used in this exercise were not used for the following tests but are representative of the 
                                                                 
8 Touch OSC software developed by Hexler Ltd. 
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extreme differences of timbral and spatial changes of samples shown in Section 4.1.2. 

Comparing these stimuli, subjects were instructed to listen to any perceived changes the 

‘Processed’ sample had in comparison to the ‘Reference’ sample. This was to confirm that: 

subjects could both hear differences between the two and so they may understand what kind of 

differences may be perceived. 

4.1.2  STIMULI 

Few subjective experiments in the field of vertical reflections have focused on the use of 

musical signals and have mainly used speech, noise or tonal samples. This investigation hopes 

to establish results more applicable to the preference of a signal commonly heard in everyday 

listening of audio. It is highly unlikely for people to be listening to pink noise or sinusoids in 

the context of listening for entertainment, or to base a preference. Therefore, five music signals 

and one speech signal (for comparison) were chosen (Table 6), all possessing different spectral 

and temporal characteristics (see Appendix A for sample FFTs).  

 

 Excerpt Duration  Characteristics 

A Artist: Amy Winehouse 
Track: You know I’m No Good 

4.96s Transient kick and snare drum hits and snare rolls 

B Artist: Newton Faulkner 
Track: Feels Like Home 

11.87s Sustained guitar notes and transient percussion on 
guitar body. Guitar and string noise  

C Artist: Joe Satriani 
Track: Satch Boogie 

4.45s Hi-hats sample chosen for isolation of high frequency 
content  

D Artist: Sam Hulick 
Track: From The Wreckage 

13.75s Full range orchestral sample with sustained notes   

E Artist: Caro Emerald  
Track: That Man 

4.95s Low-fi style piano  

F Artist:  
Track: 

13.0s Foreign speech signal 

TABLE 4: TABLE OF STIMULI 

 

4.1.3  PREFERENCE TESTING 

Verbal and written instructions were given to subjects to compare stimuli ‘Reference’ and 

‘Processed’ and assess them simply based on their preference. It was highlighted that the 

context of this assessment should be thought of as, “listening for entertainment and pleasure,” 

i.e. within a home theatre. The level of preference given would indicate how preferable the 

playback with the reflection (processed) sample was over playback with just the direct 
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loudspeaker (reference). A bipolar rating scale was employed ranging from -50 to +50. ‘Highly 

not preferred’ corresponded to -50 and conversely, +50 indicated ‘Highly preferred’. ‘No 

preference’ was located at the middle equal to 0. Subjects had full freedom of adjustment with 

a step size of 1.0, and were told to think of this scale as a linear progression between the two 

opposing ends.  Each comparison was presented three times and randomised throughout both 

tests of preference and perceived magnitude of change. 18 comparisons were made in total for 

each test. 

4.1.4  PERCEIVED DIFFERENCE TESTING 

Following the preference test, subjects were then instructed to assess the same set of stimuli for 

the perceived timbral and spatial differences. The stimuli were presented in a randomised order 

from the previous test to minimise carryover effect. Unlike studies by Bech (1995, 1996) where 

the amplitude of a reflection required to produce a (timbral) change is investigated, this takes a 

static level and focuses on the perceived magnitude of change the reflection provides timbrally 

and spatially. Descriptions of spatial and timbral characteristics (Appendix C) were presented 

to the subjects and used to aid the assessment, providing attributes the user might feel best 

describe the timbral or spatial change perceived. Subjects were instructed to identify the nature 

of this difference through these descriptions provided (or their own description) and state if this 

was a positive or negative change. The description of timbre was presented to subjects in 

accordance with ANSI standard (Section 2.6.2).    

In replacement of the preference scale for the second test, was a ‘perceived difference’ scale. 

Although this is not a recognised scale within the literature, scales discussed in Section 2.7 and 

in further literature all have negative or positive connotations regarding their labelling. For 

instance, a ‘degradation comparison rating’ (DCR) scale could have been employed however, 

this would imply that the subject is assessing the ‘Processed’ stimuli in terms of it being worse 

and not how much change has occurred. The use of negative and positive labelling of scales 

like this could possibly bias subject’s response therefore, the scale shown in Table 7 was 

employed. It is acknowledged that this scale includes levels of 0-20 as ‘No Difference’ however, 

subjects were clear this was the lowest category on this continuous scale. The order of test one 

and two was conducted specifically so that no preconceived thoughts about timbral and spatial 

attributes would influence subject’s preference, although a subject may prefer one stimuli over 

another based on these attributes, it was purely through their own thought process.  



CHAPTER 4.  SEMI-ANECHOIC - FREQUENCY INDEPENDANT TEST 
  

 

- 58 - 
 

 

 

 

 

 

4.2 RESULTS 

4.2.1  GENERAL OBSERVATIONS 

Shaprio-Wilks analysis of distribution show that for preference, only 2/6 samples were 

normally distributed, 5/6 samples for spatial difference were normally distributed and 6/6 

samples for timbral difference were normally distributed (Table 8).  With a mix of normal and 

non-normally distributed data, standard parametric analysis of data would be unsuitable 

therefore non-parametric statistics were employed (Figures 26 and 27).  

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 5: ADAPTED 5-POINT GRADING SCALE OF 
PERCEIVED DIFFERENCE 

80-100 Extreme Difference 
60-80 Great Difference 
40-60 Some Difference 
20-40 Slight Difference 
0-20 No Difference 

 

FIGURE 26: PREFERENCE RATINGS ACROSS ALL SUBJECTS FOR ALL STIMULI 
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  Shaprio-Wilks Statistical Analysis of Normality 
Preference Timbral Difference Spatial Difference 

Sample DF Sat. Sig. (p) Sat. Sig. (p) Sat. Sig. (p) 
Drums 

39 

0.916 0.007 0.975 0.522 0.955 0.125 
Guitar 0.92 0.009 0.977 0.605 0.95 0.176 
Hi-Hats 0.96 0.178 0.968 0.314 0.959 0.167 
Orchestra 0.919 0.008 0.963 0.231 0.972 0.437 
Piano 0.939 0.035 0.95 0.08 0.906 0.003 
Speech 0.917 0.401 0.967 0.299 0.953 0.101 

TABLE 6: SHAPRIO-WILKS STATISTICAL TEST FOR NORMALITY WITH 5% SIGNIFICANCE LEVEL 

Observing the results of subject’s preference of the ‘Processed’ sample against the ‘Reference’ 

sample, five of the six samples have a median greater than zero. This would initially imply that 

in the majority of cases, playback with the reflection was favoured by subjects. In turn, this 

would suggest that the reflection provided beneficial timbral and/or spatial differences. 

However, this is with the assumption that only spatial and timbral differences contributed to the 

cognitive process for subject’s preference (Figure 1). Sample ‘C’ (Hi-Hats) was the only sample 

whereby playback was preferred without the reflection, with the median lying beneath ‘No 

preference’. As no procedural error (Bech & Zacharov, 2006) was observed throughout testing, 

the outliers observed in Figures 26 and 27 cannot be discounted. Regarding the magnitude of 

perceived change, nearly all subjects did perceive a change both timbrally and spatially. 

However, both tests display a spread of data over a large margin of error and through visual 

FIGURE 27: PERCEIVED MAGNITUDE OF CHANGE RATINGS ACROSS ALL SUBJECTS FOR ALL STIMULI 
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investigation of Figures 26 and 27, it is clear no significant difference can be found. Therefore, 

the use of significance testing for non-parametric data such as Wilcoxon or, Mann-Whitney U 

significance testing is not employed.  

4.2.2   SUBJECT RATING CONSISTENCY  

Some responses for a repeated sample were seen to have a large range therefore, it was within 

the author’s interest to observe each subject’s ‘intrarater reliability’9 (Zacharov & Mattila, 

2001). As mentioned in Section 4.1, six different stimuli were used throughout testing and 

repeated two more times in a randomised order, resulting in 18 ratings per subject. Subjects 

were unaware if any varying processing had been applied to these repeating samples (which 

had not). The main reason for the inclusion of these repetitions was to observe the reliability in 

subject’s responses.  

To identify inconsistent ratings of a subject, a margin of difference was applied in order to 

address any large ranging responses for any one sample. The scale employed ranged from -50 

to +50 therefore, subject’s whose rating for a single sample differed by 25 or more points were 

initially removed from the data set. Although this may seem a large degree of inaccuracy, a 

subject’s ability to reliably and accurately place an indicator on a scale, within a smaller margin 

based on a perceptual attribute was not the focus of this investigation. A range 1/4th of the scale 

would also allow freedom of response. With thirteen subjects taking part in total assessing six 

samples, 78 consistency ranges were reviewed. Highlighting subjects that exceed this 

discrepancy of 25, the following points can be drawn:  

• 21/78 results for subject’s preference exceeded 25. 

• 33/78 results for subject’s magnitude of perceived timbral change exceeded 25. 

• 32/78 results for subject’s magnitude of perceived spatial change exceeded 25. 

• Split of preference can also be observed between positive and negative preference across 

all subjects.  

Shapiro-Wilks normality test and non-parametric analysis was then re-conducted with the 

removal of these results (referred to as ‘selected data’) and were seen to make little difference 

to the normality of results shown in Figures 26 and 27. The range of selected data still spans 

the extremes of the two scales, and median values remaining positive and negative for the same 

                                                                 
9 The consistency of results for repeated comparisons per subject.  
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FIGURE 28: PREFERENCE VS. PERCEIVED TIMBRAL AND SPATIAL DIFFERENCE FOR ALL SAMPLES 

samples as before. Therefore, the author sees no reason to exclude responses greater than a 

discrepancy of 25. Although all subjects can be quantified in terms of ‘selected assessors’ to 

‘expert assessors’ (Section 4.1.1), one cannot argue that subject’s did not hear a different level 

of timbral and spatial difference or preference throughout the assessment for the same stimuli.  

These inconsistent ratings may well be intentional and could be due to a number of factors such 

as: subconscious effects – thinking or presuming each sample must be different, simply 

perceiving something in a repetition not heard previously and/or auditory adaptation (Pike, 

Brookes, & Mason, 2013). Preferential change throughout the testing could be an area of further 

investigation.  

4.2.3  PREFERENCE SPLIT 

 

 

 

 

 

 

 

 

 

 

 

 

Investigating the data further, a scatter analysis of subject’s preference was plotted (Figure 28) 

whereby a split can be observed. It was therefore hypothesised that by splitting these results of 

subject’s preference, two directions of the ‘cognitive processes’ (Figure 1) between the 

‘perceptual domain’ and ‘affective domain’ may be seen. Results of preference were segregated 

into two graphs representing subject’s preference level, with their corresponding values of 

perceived timbral and spatial difference. All values of positive preference were averaged10, 

along with timbral and spatial differences and plotted in Figure 29 and vice versa for values of 

                                                                 
10 Mean averaged values  
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negative preference in Figure 30. Pearson correlation coefficient analysis reveals the following 

relationships between all three response ratings: 

• Correlation of +0.81 for musical stimuli (A-E) between positive preference level and 

perceived timbral change  

• Correlation of +0.85 for musical stimuli (A-E) between positive preference level and 

perceived spatial change  

With the inclusion of sample ‘F’ (speech), correlation coefficients significantly reduced. The 

only correlation noteworthy being between preference and timbre yielding 0.72. These values 

could suggest that when subjects vote increasingly positive for the inclusion of a reflection, they 

do so based on the increasing magnitude of perceived timbral and spatial change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When a subject’s preference was negative with the inclusion of a reflection (Figure 30), the 

perceived level of timbral and spatial differences were very similar throughout all musical 

stimuli (A- E) with high correlation of +0.89. However, this final observation is not in relation 

to preference level, and can therefore, only imply that when subjects do not prefer a reflection 

they may judge the magnitude of timbral and spatial difference it provided at a similar level. 
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4.2.4   DESCRIPTIVE TERMS 

The experiment thus far has shown that both spatial and timbral differences are heard with the 

presence of a vertical reflection, supporting work discussed in the literature review. Also, 

subject’s did not perceive a static amount of change, but that this change may increase and 

decrease dependant on stimuli. Following the results of the correlation analysis, which 

suggested the preference of musical stimuli could be based upon a cognitive assessment of 

timbral and spatial attributes, this section aims to identify which perceived timbral or spatial 

attributes impacted subject preference. A free verbalisation task took place after each 

comparison to describe any timbral and/or spatial differences heard and state if this was a 

positive or negative effect. Semantic analysis of descriptions was conducted to lemmatize 

descriptions and auditory sensations to their base level (e.g. the response of “fuller”, “fullness” 

and “fullest” all possess different suffix, but can all be categorised by their stem adjective 

“full”). By consolidating all subjects’ preference levels and these timbral and/or spatial 

descriptions for each stimulus, a connection was observed regarding subject’s descriptive terms 

and the preference level for that sample.  

 

Preference Timbral Spatial 

0

10

20

30

40

50

60

70

80

90

100

-50

-40

-30

-20

-10

0

10

20

30

40

50

Some DifferenceNo 
Preference

NEGATIVE voting subjects for preference of playback with reflection against 
respective perceived timbral and  spatial difference

Highly  
Preferred

Great Difference 

Slight Difference 

No Difference 

Extreme Difference 

A B C E D F 
    

Highly  
Not Preferred 

Sample 

FIGURE 30: MEAN NEGATIVE PREFERENCE LEVELS AND RESPECTIVE MEAN LEVELS OF PERCEIVED 
TIMBRAL AND SPATIAL CHANGE 



CHAPTER 4.  SEMI-ANECHOIC - FREQUENCY INDEPENDANT TEST 
  

 

- 64 - 
 

0 10 20 30 40 50 60 70 80

Vertical Image Shift

Greater Vertical Spread

Vertical Frequency…

Instrument Separation

Greater Presence

Greater Horizontal Spread

Greater Total Envelopment

More Frontal Envelopment

Localisation Fluctuation

Frequency

Attribute Occurrences

FIGURE 31: FREQUENCY OF SPATIAL ATTRIBUTES – (1) 

 

 

 

 

 

 

 

 

 

 

 

 

Throughout all descriptions of spatial attributes, the most commonly used to describe auditory 

sensations were “vertical image shift” and “greater vertical spread’ (Figure 31). As the 

experiment took place within a semi-anechoic chamber, it is reasonable to assume that the 

addition of a vertical reflection provided these spatial cues. However, in cases where either of 

these two attributes were consistently mentioned from a single subject for all samples, the 

subject’s preference level varies from positive to negative. This could therefore imply that 

another factor is influencing subject’s preference to a greater extent than spatial attributes 

causing it to vary from negative to positive. Or that because these two attributes were 

consistently observed, they were consistently either a positive or negative perceived effect and 

therefore, provided an ‘offset’ to subject’s preference.   

Descriptive terms used by subjects to describe timbre varied (Figure 32). The most commonly 

used adjectives to describe a negative attribute were: “thin”, “nasal” and “boxy”. In contrast, 

those used to describe positive characteristics were: “full”, “rich” and “clear”. Elicitation and 

individual vocabulary profiling are beyond the scope of this paper; the main goal here was to 

see if these negative and positive words corresponded with subject’s preference. Noticeably, 

the use of “bright” was the most frequent but interestingly, was used to describe both negative 

and positive perceived changes.   
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FIGURE 32: FREQUENCY OF TIMBRAL ATTRIBUTES - (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When a subject’s level of preference of playback with reflection was positive, the majority of 

timbral descriptions were also positive characteristics (as mentioned by subjects), and vice 

versa when preference was negative. Overall, 10/13 subject’s timbral descriptions followed 

subjects’ negative and positive preference for 80% of stimuli, unlike spatial attributes that 

remained largely consistent throughout. Therefore, it is not unreasonable to assume that 

regardless of a positive (or negative) spatial impression, most subjects’ preference of a 

reflection is largely based on their perception of a timbral characteristic.  

 

4.3  EXPERIMENT ONE SUMMARY  

This experiment comprises the first of two studies focusing on preference and magnitude of 

perceived timbral and spatial differences. The results have provided new data regarding these 

attributes when playback includes a first geometrical ceiling in the context of listening for 

entertainment. Further discussion of these results is included following the analysis of the 

second experiment in Chapter 6.  
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Initial conclusions from this experiment are: 

• No single correlation can be found between magnitude of perceived timbral and spatial 

difference and subject’s preference to estimate the enjoyment of playback with a 

reflection. 

• No significant difference is observed of the perceived timbral or spatial difference when 

a reflection is present between all stimuli.  

• No significant difference can be seen through variation of program material with regards 

to subjects’ preference of a reflection being present.  

However, the experiment has highlighted some interesting results, with the following points 

possibly leading to further research to provide clarification:  

• Positive and negative levels of preference could possibly be based upon two different 

cognitive processes in a semi-anechoic listening environment. Mean positive voting 

preference highly correlated with mean perceived levels of timbre and spatial attributes 

for all musical stimuli. This Implies that positive preference may be based upon the 

magnitude of perceived changes. 

• When subjects did not prefer playback with the reflection, perceived mean timbral and 

spatial differences were rated similar throughout musical stimuli. 

• Subject’s description of negative and positive timbral attributes generally corresponded 

to subject’s preference of playback with the reflection.  This implies that timbral 

attributes contributed highly to a subject’s preference.  

• Where consistent use of spatial attributes was observed, preference of playback with 

reflection would still vary from negative to positive. This suggests either spatial change 

did not have a great enough impact to sufficiently alter a subject’s preference. Or, 

subject’s consistently perceived these attributes as a beneficial or detrimental effect 

regardless of stimuli.  

 

4.4 LIMITATIONS OF THIS EXPERIMENT 

This experiment suggests some possible results regarding preference and the influence of 

timbral changes.  As previously stated, experiment one was chosen to be conducted within a 

semi-anechoic chamber to remove all other reflections therefore, assessing criteria solely based 
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on the contribution of a vertical reflection. However this is a scenario seldom seen in domestic 

environments and is addressed in experiment two in Chapter 5.  

The loudspeaker used to simulate a reflection had processing of SPL attenuation, dispersion 

characteristics and delay, representative of a true reflection. Nevertheless, playback of the 

program material with the reflection increased the SPL levels at the listener position by roughly 

1.5dB above playback with just the direct sound. Arguments can be made both for and against 

this loudness difference. On one hand, it is often considered that when people are asked which 

sounds ‘better’ out of the same piece of music played at different volumes, they’re likely to 

choose the louder one (Vickers, 2010)(Milner, 2010). This may suggest the majority of people 

would prefer playback with the reflection as the volume at listener position was increased. On 

the other hand, this level difference is representative of what would happen with and without a 

reflection present. Therefore, calibrating playback with the reflection loudspeaker to equal SPL 

levels of just the direct sound would technically not be assessing the addition of a true reflection, 

but of an elevated sound source. This is addressed in the second experiment of this research.  
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CHAPTER 5 

EXPERIMENT TWO 
5.0 INTRODUCTION 

The aim of this experiment is to investigate the effects of a frequency dependant reflection on 

a listeners’ preference in a more realistic listening environment. From the free verbalisation 

task in experiment one, the descriptors given by subjects throughout each paired comparison 

suggested that negative and positive adjectives used to describe timbre, in most cases 

corresponded with subject’s level of preference. No limitations were imposed on descriptive 

words subjects could use to describe any differences heard. As long as subjects used the correct 

terms to describe the auditory sensation, this seemed suitable11. The following experiment 

continues this, focusing mainly on the use of adjectives and subjects’ preference more in-depth. 

As no single correlation could not be found between the magnitude of perceived timbral/spatial 

difference and preference, magnitude of global spatial and timbral differences is not 

investigated here. For this experiment, frequency content of the reflected sound is manipulated 

to investigate if this affects subject’s preference and responding attributes.  

5.1 METHODOLOGY 

Subjective testing was used to investigate levels of preference of sound reproduction with and 

without the presence of a vertical ceiling reflection as before. Subjects were instructed to 

verbally feedback to the assessor descriptive terms, directly describing why they preferred their 

chosen playback option. The previous experiment used adjectives to describe the magnitude of 

perceived timbral and/or spatial change, and then cross-referenced with subjects preference. 

Therefore, an indirect observation could be made as to whether this preference was based on 

the negative or positive perceived changes. In this experiment, directly describing why subject’s 

preferred their choice of playback eliminates any error with interpreting results between the 

two.   

A vertical ceiling reflection was electro-acoustically simulated following the process shown in 

Chapter 3. This time, the experiment was conducted in the University of Huddersfield’s 
                                                                 
11  Discussion during the free verbalisation task with each subject ensured that the responded attribute 
represented the subject’s perceived effect. This was purely clarification and the assessor was cautious not to bias 
attribute response. 
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FIGURE 33: UNIVERSITY OF HUDDERSFIELD’S APPLIED PSYCHOACOUSTICS LAB ITU-R 
BS.1116 LISTENING ROOM 

‘Applied Psychoacoustics Lab’ listening room (Figure 33) compliant with ITU-R BS.1116 

regulations with additional floor absorption. Experiment one was an exaggerated scenario 

conducted in a semi-anechoic chamber with a low ceiling reflection which, when assessing a 

single reflection in a room with no reflections, clearly affected the subjects’ spatial response. 

Therefore, the addition of this sound field will provide better applicability of results to a real 

world listening scenario. The ceiling reflection was replicated based on the following 

dimensions: 

Listener Distance - 2m, Listener Height – 1.15m, Reflection Point – 2.2m 

 

 

 

 

 

 

 

 

 

 

Following the calibration process in Chapter 3 whereby ‘DirectDistance’ = 2m and ‘CeilDistance’ 

= 1.45m × 2 (defined from the dimensions above), Equation [8] results in a ceiling reflection 

delay of 8.4ms and Equation [11] in 9.2dB ceiling reflection attenuation. As before, these values 

are halved to simulate the reflection from halfway along the reflection path, resulting in 

processing of 4.2ms delay and 4.6dB attenuation. Using these values, an impulse was taken and 

a discrepancy of -0.57dB level and 0.296ms delay was observed between calculated and 

simulated results. Whilst not exact, the author feels as though due to subtle differences in room 

temperature and absorption, calculated values may always have a small margin of error when 

compared to a genuine reflection as seen in Section 3.3. Head movements were also not 

restricted by the use of a head clamp for either experiment. Therefore, while subjects are 
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instructed to remain as still as possible facing forward, minor head movements will always 

incur small changes to delay and attenuation at the listener position. For these reasons, the 

discrepancies observed for both experiments were deemed small enough to be acceptable for 

this Thesis.  

Regarding the simulated height, although still not as high as domestic ceilings, the author did 

not want to make too greater change to height in conjunction with the rooms natural 

characteristics. The addition of too many changes to the experiment may prove difficult when 

discussing reasons in any noticeable differences between results.  

A paired comparison test was employed as before, to assess playback with just a direct 

loudspeaker, against a direct loudspeaker with its respective ceiling frequency dependant 

reflection. However unlike the previous experiment, where stimuli were presented as 

‘Reference’ and ‘Processed’, stimuli were presented as ‘A’ and ‘B’ to subjects, eliminating any 

potential bias when choosing preference. Playback with and without the presence of the ceiling 

reflection was also randomised between ‘A’ and ‘B’ ensuring subjects could not become 

accustomed to a certain playback, with a particular stimuli selection and can therefore be 

considered a blind AB comparison test. As before, all equipment was obscured from view with 

an acoustic curtain to retain no visual bias. Subject’s response of preference was performed on 

a tablet (Figure 25) for reasons discussed in Section 4.1. The stimuli chosen for experiment two 

were consistent with those of experiment one (see Section 4.1.2).  

  

5.2.1 SUBJECTS AND ADMINISTRATION 

Subjects participating in experiment two consisted of academic staff, post-graduate students 

and lecturers at the University of Huddersfield spanning assessment abilities outlined in Section 

4.1.1. Eleven subjects in total took part, six of whom participated in the previous experiment. 

All subjects took part in a familiarisation exercise before beginning the test. The six samples to 

be assessed, were presented as a paired comparison with and without the reflection - no labelling 

was necessary (‘A’/’B’) as no subject response was needed. Subjects were instructed to go 

through all pairs and listen for differences between the two playback options per sample 

understanding: frequency content, temporal characteristics, spatial and timbral changes. The 

reflections being simulated for this training exercise were frequency independent, with only the 

direct loudspeaker dispersion altering spectral content of the reflection loudspeaker. To gain a 

controlled response of descriptors, subjects were also handed an adjective response sheet (see 
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Appendix D). This list of auditory sensations and corresponding descriptions meant that 

interpretation of each sensation would remain consistent across all subjects, rather than being 

dependent upon each subject’s own interpretation. The main content of this is taken from 

Torben H. Pedersen & Zacharov's paper (2015) discussed earlier in Section 2.6. However, the 

inclusion of vertical spatial sensations had to be included for the nature of this work, along with 

omitting artefact descriptions such as signal related issues and noise which are not assessed. 

The test began once any remaining questions were answered and subjects agreed that they 

understood all descriptive terms to be used.  

 

5.2.2 PREFERENCE TESTING  
Subjects were given verbal instructions to assess stimuli ‘A’ against stimuli ‘B’ and use the 

presented scale to indicate their level of preference. As in experiment one, the context of this 

assessment should be thought of in terms of ‘listening for entertainment or pleasure’ and not 

critical assessment of mixing. The scale employed was an adapted version of that in ITU-R 

P.800:1996 used in Zacharov & Lorho (2004) seen in Section 2.6.1. The scale employs 9-points 

and full freedom of adjustment, a step size of 0.1, with the addition of 0.5 tails to eliminate end 

bias (subject reservations in going to extreme values). The anchors of the words were presented 

in Figure 34.  

 

 

 

 

 

 

 

After each paired comparison, subjects were asked to describe why they preferred A/B using 

the descriptive sheet provided and instructed to adhere to these as much as possible. If any 

auditory sensation was not categorised by given words subjects felt needed to be used, a note 

was taken by the assessor.  

Throughout the experiment, subjects would be assessing playback with the direct sound vs. 

playback with direct sound and an associated frequency dependant reflection. The varying 

frequency dependant signal would be the removal of one of eight single octave-bands ranging 
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FIGURE 34: REPRESENTATION OF PREFERENCE RATING SCALE EMPLOYED 
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125Hz – 16kHz from the reflection. The applicability of this frequency dependant reflection 

can be thought of as an absorber with an octave-band target frequency, with an absorption 

coefficient of 0.99. This was reasoned to be a more realistic scenario than its counterpoint of a 

reflector, reflecting just a specific frequency. Octave-band removal was achieved using a 12th 

order stop band Butterworth filter applied in MAX MSP, allowing variable input of upper and 

lower bounds, at the -3dB point of the rise and fall at each side. With six samples and eight 

octave filters being applied, 48 comparisons were made per subject. Unlike experiment one, 

each comparison was not repeated three times as this would have resulted in 144 comparisons 

resulting in subject fatigue. Both samples and all octave-band filters were randomised 

throughout the experiment. 

5.2 RESULTS   

This section will provide an overview of the results from experiment two followed by a 

discussion of both experiments in Chapter 6. Initially, the raw results must be sorted in terms 

of how much each subject preferred playback with/without the reflection. Throughout this A/B 

comparison, playback with/without the reflection altered between ‘A’ and ‘B’. Therefore, the 

results need to be sorted so that one particular playback option is anchored to ‘A’ and the other 

to ‘B’. After sorting, values above zero correspond to playback with the reflection (‘B’), 

negative values without (‘A’). Whilst sorting, when this was not observed and positive values 

were associated with playback without the reflection, these values were reversed (e.g. Table 9). 

This technique (similar to that of Lorho and Zacharoz (2004)), assumes that subject’s treated 

the response scale symmetrically.  

Example Preference 
level 

B =   Preference 
level 

B = 

1 2.17 With Reflection -> 2.17 With Reflection 
2 -2.53 Without reflection -> 2.53 With Reflection 

TABLE 7: EXAMPLE OF ANCHORING RESULTS BETWEEN PLAYBACK OPTIONS TO POSITIVE AND NEGATIVE 
VALUES 
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Shaprio-Wilks analysis of distribution for preference values show a split of normal and non-

normally distributed data therefore, following analysis is non-parametric. Observing Figure 35 

and 36, three observations can be made: 

FIGURE 35: PREFERENCE LEVEL OF PLAYBACK WITH THE REFLECTION – GROUPED BY SAMPLE. POSITIVE 
VALUES INDICATE REFLECTION WAS PREFERRED 

FIGURE 36: PREFERENCE LEVEL OF PLAYBACK WITH THE REFLECTION – GROUPED BY OCTAVE-
BAND. POSITIVE VALUES INDICATE REFLECTION WAS PREFERRED 
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• A large degree of spread can be viewed across most comparisons, with the exception 

of some frequency dependant reflections for particular samples providing: a more 

concise quartile range (e.g. Guitar - 500Hz, Orchestra - 2kHz and Hi-Hats - 8kHz) and 

the most extreme median of preference (discussed further in Section 5.2.2) 

• The removal of one single octave band in a reflection is neither consistently preferred 

nor not preferred across all samples. Although removal of octave-band 8kHz does 

provide a median below ‘no preference’ for all samples. 

• Only 14/48 median values are positive for playback with the reflection. 
 

5.2.1  DESCRIPTIVE TERMS  
For the verbalisation task, a list of descriptive terms and their associated auditory sensation was 

given so that no subjects would misinterpret meanings. However, these descriptive terms were 

not labelled positive or negative – this was down to subject interpretation. As before with 

preference values, the descriptions were organised so that the response was always associated 

with playback with the reflection.  For instance in a scenario where ‘A’ = playback with 

reflection, and ‘B’ = direct loudspeaker only, one may moderately prefer ‘B’ because of 

increased brilliance and clarity. To correspond with preference values being always in relation 

to the addition of the reflection, this would then be reversed to - playback with the reflection 

decreased clarity and brilliance. The author’s decision to do this was for the organisation of 

data and to provide a consistent way of interpreting the results. Similarly to preference values, 

this also assumes that subjects would treat the increase/presence and decrease/absence of a 

sensation symmetrically.  This was done for all 48 paired comparisons across 11 subjects 

resulting in 528 paired comparisons spanning all octave bands and stimuli.  

In combination with these descriptive terms it may be possible to identify the reasons as to why 

a particular preference score is given for a sample. As previously mentioned in Section 4.2.4, 

subjects almost always perceived a level of spatial and timbral change. This experiment 

demonstrates which ones influenced subject’s preference directly.  One subject in particular 

had no preference for 26 out of the 48 paired comparisons and thus gave no descriptive terms 

for over half the data. Therefore, with very little preference data and verbal descriptions 

contributing to overall results, this subjects’ data was excluded from further analysis leaving a 

total of 480 paired comparisons.  
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FIGURE 37: RESPONDED ATTRIBUTE TYPES AS A PERCENTAGE 

FIGURE 38: FREQUENCY OF SPATIAL ATTRIBUTES - (2) 

 

 

 

 

 

 

 

Across all comparisons made: 311/480 preference ratings were based on ‘timbral’ descriptors, 

221/480 were based on ‘spatial’, 170/480 were ‘transparency’ descriptors and 39/480 were 

‘dynamic’ (Figure 37). This data could initially suggest that overall, timbre had the greatest 

impact for most subjects’ preference. One could also argue that transparency characteristics 

such as ‘naturalness’ and ‘detail’ given their descriptions (Appendix D), contain characteristics 

that could class them as a timbral quality. 

 

 

 

 

 

  

 

 

 

Out of 221 responses of spatial attributes, only 74 influenced subject’s preference positively. 

When preference was based on spatial attributes (regardless of whether the rating was positive 

or negative), the most commonly described auditory sensations were, ‘vertical spread’ and 

‘vertical image shift’ (Figure 38). Conversely, the third most common spatial attribute - 

As multiple attributes could be given per comparison, 741 attribute responses were given in total. 
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increased and decreased ‘precision’, did correspond with positive and negative preference 

respectively suggesting greater ‘precision’ will lead to a higher preference.  This implies that 

while the increase and decrease of some spatial attributes are always perceived as detrimental 

or beneficial across subjects, the most commonly used attributes, vertical spread and image 

shift are not.  

The use of timbral descriptions varied greatly. Responded attributes that were in the descriptive 

column (third column) of the sheet provided (Appendix D), were stemmed back to the attribute 

group (second column) to remain consistent with responded spatial attributes. The most 

common sensations included increased/decreased: ‘brilliance’, ‘fullness’ and ‘treble strength’ 

(Figure 39). Unlike spatial descriptions, the increase and decrease of timbral attributes always 

correlated with positive or negative preference of playback with the reflection. For instance, the 

use of “increased treble resonance – tinny” always corresponded with negative preference, 

conversely “increased brilliance – clarity” was positive. This observation also highlights that 

whilst descriptions were given for the attributes, subjects were unanimous in interpreting certain 

attributes as a negative and others as positive.  

 

 

 

 

 

 

 

 

 

Unlike experiment one, where global ‘spatial’ and ‘timbral’ difference was measured, the 

perceived magnitude of specific sensations was not studied in experiment two therefore, it is 
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FIGURE 39: FREQUENCY OF TIMBRAL ATTRIBUTES - (2) 
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not possible to statistically correlate their effects to ascertain how preferable individual 

attributes are (i.e. Is ‘brilliance’ more preferable that ‘fullness’?). This could be the basis of a 

more focused study employing techniques such as ‘direct attribute scaling’ (Stephenson, 2012). 

However, as subjects were undivided regarding the positive/negative connotations of responded 

timbral attributes associated with preference, it is possible to investigate the occurrences of 

these attributes (Figure 39) against the mean preference value for that attribute (Table 10).  

The preference values for all 311 timbral responses were split in two groups: when subject’s 

perceived an increase in a sensation and a decrease. Within these groups, the number of times 

subject’s perceived each attribute was counted, along with the cumulating preference value for 

the attribute. This sum preference value was then divided by the number of occurrences of that 

attribute to give a mean preference increase – green or decrease - red, when a subject 

perceives a particular sensation.  

Attribute 
Total 

Occurrences 
(Figure 39) 

 Increased Sensation Decreased Sensation 

Occurrences 
Mean preference 

increase of 
attribute 

Occurrences 
Mean preference 

decrease of 
attribute 

            
Treble strength 25 9 0.49 14 -0.71 

Midrange Strength 11 4 0.68 7 -1.56 

Bass strength  13 8 1.54 5 -1.37 

Fullness 75 33 1.94 42 -1.62 

Brilliance 103 62 1.91 41 -1.61 

Bass Depth 11 6 2.11 5 -2.34 

Tinny  13 9 -1.89 4 0.85 

Nasal 15 7 -2.56 8 0.98 

Canny 6 6 -2.40 0 0.0 

Boomy 8 4 -2.42 4 0.58 

Boxy  6 5 -2.43 1 1.02 

Phasey 25 21 -1.98 4 1.43 

Total 311 174  94  

TABLE 8: MEAN PREFERENCE INCREASE OR DECREASE FOR INDIVIDUAL ATTRIBUTES FOR PLAYBACK WITH THE 
PRESENCE OF A REFLECTION 

This data builds on Figure 39 suggesting that although ‘brilliance’ and ‘fullness’ were the most 

commonly reported timbral attributes, the perception of other attributes may alter preference to 

a greater extent. Regarding playback with the reflection, subject’s that perceived an increase in 

brilliance and fullness, on average, rated their preference +1.9. However, subjects that 

perceived an increase of a ‘nasal’ sound, rated their preference -2.56. Table 10 also shows that 

a direction of a perceived sensation (increase/decrease) may also have a greater impact on 
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preference than the other. For instance where four subjects said that playback with the reflection 

increased a ‘Boomy’ sensation, on average decreased their preference by -2.42, whilst four 

subjects that perceived a decrease of this sensation only improved preference by +0.58.  

5.2.2  SAMPLE VS. FREQUENCY  

This section will discuss the samples used and related frequency content reflected, associated 

with subject’s level of preference for experiment two. Experiment one used a frequency 

independent reflection to assess subject’s preference whereas in experiment two, reflections 

were frequency dependent with the removal of one of eight individual octave-bands from 

125Hz – 16kHz. Frequency content of all samples can be seen through FFT analysis. Although 

the removal of certain octave bands on different samples will have a negligible effect (i.e. the 

removal of low frequency content on sample C – Hi-Hats which contains predominantly higher 

frequencies), for consistency across all samples these comparisons were still assessed. The most 

notable frequency dependant results are shown in Figure 40 (a subset of Figure 35). 

 

 

 

 

 

 

 

 

 

 

Sample A was chosen for strong transient sounds from both a low frequency Kick drum, a Snare 

drum and hi frequency transient content from Hi-Hats (Figure 41) Figure 35 (from the main 

results – Section 2.5) show that the removal of any specific octave bands within the reflection 

did not result in a more consistent level of preference. However, median values for the removal 

of octave-bands 125Hz and 250Hz in the reflection loudspeaker, were much lower than other 

500Hz - Guitar, 2 kHz - Orchestra and 8kHz – Hi-Hats 
FIGURE 40: NOTABLE FREQUENCY DEPENDANT RESULTS 
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octave bands. Therefore, the removal of these octave-bands (where a predominant amount of 

energy lies for this sample) from the reflection loudspeaker in proportion to the output of the 

direct loudspeaker could lead to undesirable effects. Descriptions given for these octave bands 

comparisons are “Decreased bass strength”, “Decreased bass depth”, “Decreased fullness” and 

“Increased treble strength – sharp (negative)” which supports this suggestion. 

 

 

 

 

 

Sample B (Guitar) had both transient and sustaining sounds from percussive slaps on a guitar 

body and sustained strings (Figure 42). Playback of this sample with octave band 500Hz 

removed from the reflection loudspeaker resulted in the highest median preference of all 

comparisons for this sample (Figure 40). Verbal descriptions for this frequency dependant 

paired comparison varied greatly across subjects, suggesting that no single descriptor can 

account for this result.  

 

 

 

 

 

 

Sample C (Hi-Hats) was chosen for specific high frequency content in isolation (Figure 43). 

Although one may argue Hi-Hats are rarely heard in isolation, the experiment needed specific 

high spectral content to use for comparison and any instrument/sound of such high frequency 

will rarely be heard on its own. The results show that for playback with the reflection of octave 

band 8kHz removed, the quartile ranges of preference is reduced as well as producing the lowest 

FIGURE 41: SAMPLE A (DRUMS) SPECTROGRAM 

FIGURE 42: SAMPLE B (GUITAR) SPECTROGRAM 
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median preference overall (Figure 40). This would suggest that subjects prefer the presence of 

this frequency content in the reflection for this sample. Descriptions for this frequency 

dependant playback were based on transparency - “decreased naturalness” and “decreased 

detail” 76% of the time, with the inclusion of one timbral attribute “decreased brilliance”. The 

occurrence of transparency based attributes for other frequency dependant reflection of this 

sample ranged from 7% - 14%. This indicates that the 8kHz octave band content in a reflection 

from above, could be providing naturalness and detail.     

 

 

 

 

 

 

Sample D (Orchestra – Figure 44) showed that a reflection with octave band 2kHz removed, 

resulted in the highest median value and the smallest range in subject’s preference (Figure 40). 

Also, this is the only frequency dependant sample to consistently result in a positive preference 

across all subjects. Both these results suggest that for an orchestral sample, the removal of 2kHz 

from a reflection provides a beneficial effect. Subject’s descriptions of this perceived effect 

were “increased vertical spread’, “increased frontal envelopment” and “increased precision” 

showing that these beneficial effects, were all spatially based. This would suggest that for 

sustained orchestral stimuli, increased spatial attributes are possibly beneficial and that the 

absorption of octave-band 2kHz from a vertical reflection, will increase this beneficial sensation 

even further. 

 

 

 

 

FIGURE 43: SAMPLE C (HI-HATS) SPECTROGRAM 
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Sample E was chosen for a low-fi piano effect (Figure 45). Playback with the reflection of 

octave-band 125Hz removed resulted in the highest median value for preference which is 

contrary to results for sample A (Drums). This frequency dependant comparison of sample E 

also resulted in the largest range of preference. This implies that where 125Hz is not the main 

spectral content of the sample (as in sample A) subjects may prefer its removal from the 

reflection. However, this suggestion is not observed where 125Hz is removed from other 

samples that 125Hz is not the main spectral content (i.e F – speech, D – orchestra). Subject’s 

descriptive response for this comparison varied greatly across timbral, spatial and transparency 

based attributes suggesting no single attribute can account for this result. This may also be why 

this frequency dependant comparison resulted in the largest degree of spread for this sample.    

 

 

 

 

 

 

Sample F was male speech, chosen for a comparison against musical signals (Figure 46). The 

only observation for this sample is that all frequency dependant comparisons resulted in a 

median below ‘no preference’ indicating that the presence of a reflection in general for speech 

stimuli has a negative effect.  

 

 

 

 

FIGURE 44: SAMPLE D (ORCHESTRA) SPECTROGRAM 

FIGURE 45: SAMPLE E (PIANO) SPECTROGRAM 
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5.3 EXPERIMENT TWO SUMMARY  

The aim of this experiment was investigate the effect of a frequency dependant reflection on 

subject’s preference in a more realistic listening environment. By using a more detailed list of 

descriptive terms subjects were able to identify and describe their perceived auditory sensation 

more accurately and consistently. Playback of stimuli through the direct loudspeaker and the 

direct loudspeaker with its relative reflection, were presented to subjects at the same SPL so as 

to not bias perception through loudness and thus influence results.  

The following points can be drawn from experiment two: 

• Timbral auditory sensations were the basis of subject’s preference 42% of the time. 

• Increased/decreased ‘vertical spread’ and ‘vertical image shift’ did not correlate with 

positive and negative preference respectively. This suggests they cannot be categorised 

as a positive or negative attributes, unlike timbral attributes (or the spatial attribute 

‘precision’) which can be categorised into positive and negative auditory sensations. 

• Whilst some attributes are used to describe a listeners preference more than others 

(‘brilliance’ = +1.9), the average impact on preference may be much less than other 

attributes (nasal = -2.56).  

• The alteration of frequency content from a vertical reflection does have a perceptual 

effect on what subjects hear and therefore, which descriptive terms they responded with.  

• The removal of specific octave bands within a reflection for particular samples (where 

key frequency content in the sample corresponded to the frequency removed from the 

reflection), provided a much more concise response of subject’s preference compared 

to playback with other removed octave bands. This was also supported by consistent 

use of certain descriptive attributes for that frequency dependant comparison. 

FIGURE 46: SAMPLE E (SPEECH) SPECTROGRAM 
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CHAPTER 6 

DISCUSSION 

6.0 INTRODUCTION 

The following chapter provides a discussion of both experiments conducted in this thesis. The 

comparison of results between both experiments will be investigated along with further 

discussion as to why these attributes may have been perceived and how this may be applied to 

the physical domain (Figure 1). Some of the limitations of this work have been mentioned, these 

will be discussed further along with the impact of this research.  

6.1 INTER-EXPERIMENT OBSERVATIONS 

Results from experiment one suggested that subjects may base preference in two different ways, 

depending on if their preference response was positive or negative (Section 4.2.3). No direct 

comparison can be drawn against experiment two, as perceived magnitude of timbral and spatial 

difference was not measured. However, results of preference did not infer a split above and 

below the ‘no preference’ region as observed in experiment one. This suggests that listening in 

a more natural environment with more reflections, may reduce this divide. More research on 

subject’s preferential split with musical stimuli would be required to support any hypothesis 

regarding this.  

Highlighted in Section 4.3, experiment one outlined the possibility that subjects may base their 

preference on timbral characteristics, to a greater extent than perceived spatial attributes. The 

use of timbral descriptions that had positive and negative implications generally followed 

subject’s level of preference. This can also be observed in experiment two, with timbral 

attributes being used to base listener preference for 311/480 paired comparisons. Whilst the use 

of spatial attributes such as “vertical image shift” and “vertical spread” were responded 

frequently in both experiments, the perception of these spatial sensations may have either: not 

impacted the listener to enough to influence preference (experiment one) or, impacted listener 

preference positively and negatively with no connection to increase or decrease of the sensation 

(experiment two). With the results of both these experiments, it is possible to suggest that the 

presence of a strong vertical reflection from above will impact subject’s preference based on 

the timbral differences it provides, greater than the spatial differences.  
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Experiment one shows that the median preference value for playback with a reflection is 

generally above the ‘no preference’ origin (5/6 comparisons). Interestingly, the opposite is 

observed in experiment two, showing that the median preference was generally below no 

preference, and only above for 12/48 comparisons. One possibility previously mentioned, is 

that a semi-anechoic chamber is not a natural environment and seldom used for listening to 

audio for entertainment. The inclusion of a single reflection in experiment one may therefore, 

always be perceived as beneficial placing the listener within a more natural environment. 

Section 2.1 discusses how studio design has aimed to remove us from a natural environment for 

critical listening, supports this suggestion. This therefore complies with a previous hypothesis 

from the results of experiment one (Section 4.3), that the inclusion of a vertical reflection in a 

semi-anechoic environment may have consistently provided a positive spatial contribution 

resulting in subjects basing their preference more on timbral qualities. Whereas in experiment 

two, listening conditions included a more natural sound field. The inclusion of a strong vertical 

reflection amongst this, seems to have contributed spatial attributes (to a greater extent than 

previously) to the cognitive process which subject’s base their preference upon. This conclusion 

from both experiments could be applied in different ways depending on the room’s current 

acoustic state. Implying that room’s possessing a great amount of absorption resulting in 

minimal acoustical information to the listener, could benefit from the addition of a vertical 

reflection providing spatial attributes, and vice versa from a more ‘live’ room, in the context of 

listening for entertainment reducing spatial attributes. However, as discussed in the following 

chapter, although a vertical reflection may increase spatial sensations, these attributes within 

these sensations may not always be beneficial.  

6.2 INCREASED AND DECREASED AUDITORY SENSATIONS 

6.2.1 SPATIAL ATTRIBUTES 

An aim of experiment one, was to ascertain if any correlation can be found between perceived 

magnitude of change and subject’s preference, between playback with and without a vertical 

reflection. Only when positive and negative preference values were seperated with respective 

perceived timbral and spatial values, could correlations be observed. However, experiment one 

did highlight that although people perceived a spatial change and described these changes 

throughout, the magnitude of these spatial changes may not matter. Experiment two on the other 

hand shows that increasing and decreasing specific spatial sensations (‘precision’ and 



CHAPTER 7. DISCUSSION   
 

- 85 - 
 

‘distance’) could coincide with subject’s preference. Also, that the response of some spatial 

attributes related to lateral energy is interesting to observe, given the specific monophonic 

layout of the experiment. 

Consistent use of ‘vertical image shift’ and ‘vertical spread’ were observed throughout all 

samples in both experiments and remained present across the majority of subjects however, 

other spatial descriptions were also observed (Figure 38 – Section 5.2.1) such as horizontal 

spread.  Monaural reproduction used in this experiment was to ensure that the listener processed 

no inter-aural time/level differences. However, auditory sensations generally provided by 

lateral energy were still given as a reason for preference. Increased ‘horizontal spread’ was 

given for samples: C (Hi-Hats) and D (Orchestra), a total of eight times for the frequency 

independent test. Following this, experiment two using frequency dependant reflections also 

yielded spatial descriptions that would be associated with lateral reflections such as: 

increased/decreased ‘horizontal spread’ (11 times) and increased ‘frontal envelopment’ (12 

times). Objective IACC measurements taken with a binaural head at the listener position for all 

frequency dependant tests showed that varying the frequency content from a vertical reflection, 

provided varying IACC values. It is acknowledged that given central speakers along the median 

plane and listener position, an IACC of 1 would be expected. However, room variances left and 

right of the listening position may account for discrepancies in IACC measurements such as 

distances from left to right walls, a listening position not symmetrically in line with permanently 

installed equipment and one sided computer monitors. Consequently, frequency dependant 

IACC measurements may have differed due to changing frequency content within reflections. 

Therefore, the only observation that can be made from this result is that a vertical reflection 

may provide properties that contribute to a sensory process (Figure 1), which makes us perceive 

greater ‘horizontal spread’. 

The presence of a vertical reflection also provided spatial sensations such as 

increased/decreased “precision” and “distance’. The subject’s perceived increased/decreased 

level of precision always followed the same direction as their positive and negative preference. 

The term ‘precision’ was described to subjects as “Individual instruments can be placed and 

separated within the sound image” (Zacharov, 2015), therefore suggesting that the easier 

instruments are to localise, the more preferable the sound reproduction is.  However in 

experiment two, playback with the simulated ceiling reflection was not always perceived to add 

precision by subjects, and therefore may not always be beneficial.  
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Finally for some frequency dependant comparisons, subject’s additionally noted pitch and 

height seemed to be unbalanced, describing certain instruments containing low or high 

frequency content were moved to an incorrect vertical position. In particular, expressing that 

the kick drum (sample A) was too vertically high for its frequency content, and violins (sample 

D) too vertically separated from the rest of the ensemble. This may be due to the removal of 

particular octave bands in the reflection affecting subject’s localisation through the ‘pitch-

height’ effect discussed in Section 2.5.2. Exploiting the ‘pitch-height’ effect for localisation,   

Lee (2015) proposes a method for rendering vertical image spread known as ‘Perceptual Band 

Allocation’ (PBA). Within this study, Lee demonstrates the non-linearity of the ‘pitch-height’ 

effect from low to high frequency. In the context of this thesis, this means subjects who reported 

an unbalanced pitch-to-height, may have done so based on the additional frequency content of 

the reflection. This addition may have ‘shifted’ where specific instruments were localised due 

to their frequency content and that it may have only been perceived for particular instruments 

due to its non-linear behaviour. Supporting this may be the theory of directional bands discussed 

by Bleaurt (1997). His work showed that particular frequencies originating from loudspeakers 

horizontally on-axis to the listener may be localised at different angles to the listener along the 

median plane (Figure 14).  Therefore, the presence/absence of particular frequencies within a 

reflection from above, may ‘shift’ the perceived origin of certain instruments containing 

specific frequency content. Bleaurt’s work has since been refined (Wallis & Lee, 2015) 

however, the actual source location was still located horizontally on-axis to subjects. No work 

has been conducted regarding this directional band theory by adjusting source location along a 

radius of the median plane to see if this affects the localisation of frequencies.  

Investigating what attribute would categorise this effect within the perceptual domain could be 

a topic for further study as subjects struggled to relate it to a provided attribute. An argument 

could be made that it regards precision – “Individual instruments can be placed and separated 

within the sound image”, however subjects said that instruments could still be placed and 

separated, just the localisation of instruments within the image was exaggerated. 

6.2.2 TIMBRAL ATTRIBUTES 

Subject’s use of timbral attributes throughout both experiments were very sample dependant. 

Experiment one demonstrated that the response of timbral attributes stated as positive or 

negative perceived change, corresponded with preference for 80% of comparisons for 10/13 
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subjects. This was then explored further in experiment two with the use of a more concise and 

controlled attribute list directly used to describe preference.  

As shown in Figure 16 (Chapter 2.6.2), by Howard and Angus, (2013) it is possible that the 

perception of timbral characteristics (“warm” and “sweet”) can be excited by both the increase 

of certain spectral content at one point, or the decrease of content at another. The verbalisation 

task in experiment one was a free response format allowing subjects to use any attribute to 

characterise their timbral perception 12 . Reflection content from experiment one was also 

frequency independent and therefore, subjects responses of timbre for the same sample was 

relatively consistent. Experiment two however, contained eight individual varying frequency 

dependant reflections of each sample. This resulted in subjects responding with auditory 

sensations that could be related to both the perceptual increase of frequencies at one spectral 

point, and/or the absence of other frequencies at another.  

Playback of reflection with octave band 2kHz removed for stimuli B (guitar), D (orchestra) and 

E (piano) often resulted in subjects defining their preference with ‘decreased brilliance’ and/or 

‘increased bass resonances’ both seen as negative. Given the descriptions of these (Appendix 

D), this suggests that the increase in one sensation and a decrease in another may actually be 

the perception of one phenomenon. These contrapuntal spectral descriptions may be the reason 

as to why descriptions were so varied for certain samples. As mentioned in Chapter 5, the 

intention of attenuating individual octaves, was in the context of an absorber with a high 

absorption coefficient across particular frequency points. It would be interesting to see if this 

effect was observed with the reverse of this experiment, with one specific target frequency was 

reflected and all others absorbed. 

Finally, the use of an additional timbral descriptor ‘phasey’ was noted for 29 of the comparisons 

made, which, given the addition of a delayed signal from a reflection, is not surprising. Whilst 

this was binaural listening (I.e. no ears were blocked during listening tests) each ear was 

receiving the same signal, therefore the summation of left and right may not have been able to 

disregard the comb filtering induced by the reflection (Blauert, 1997). This comb filtering may 

be the perceptual effect subjects were attempting to convey with the term ‘phasey’, however 

with no description given for this attribute it is not possible to say that subjects are uniform in 

interpreting the attribute this way. Regardless of this, without the use of head shadowing (Toole, 

2008) reducing any perceived comb filtering, it is likely that this timbral effect is noticeable to 

                                                                 
12 Although as stated, clarification of these descriptions were discussed between assessor and subject 
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a greater extent when induced by a vertical reflection. In addition to this, with 21 instances of 

subjects decreasing their preference by -2 (on average) (Table 10) when a ‘phasey’ sensation is 

perceived, comb filtering along the median plane may be a negative effect. 

6.3 THE PRECEDENCE EFFECT 

Section 2.5.2 discussed the operation of the precedence effect along the vertical plane, evidence 

that a ‘click’ signal with a specific time delays along the median plane could be located at the 

initial source (Hartman, 1993). However experiments by Lee (2011) demonstrate the 

precedence effect did not operate and sound sources were not fully located at the initial 

loudspeaker. Though these experiments are both different in terms of experimental set-up and 

context, they still assess vertical localisation and precedence effect. The reflection simulated in 

experiment’s one and two had an ICTD of 1.48ms and 2.912ms respectively and therefore, lie 

within the fusion zone of the precedence effect (1ms – 5ms). As this context was assessing 

reflections, the delayed sound was attenuated by at least 2.5dB below the direct sound. For 

experiment one, subject’s repeatedly responded with increased “vertical image shift”, 

suggesting that the precedence effect did not operate, as the sound image was located above the 

direct loudspeaker with reflection playback. This is also observed in experiment two with a 

slightly weaker reflection. These results imply that vertical reflections impact our ability to fully 

localise a sound source at its origin and provides further evidence to suggest that the precedence 

effect does not operate along the median plane and requires ITD and ILD. More research on 

vertical reflections impact on the precedence effect is needed to further this hypothesis. 
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CHAPTER 7 

THESIS SUMMARY 
7.0 CONCLUSION 

The aim of this thesis has been to investigate the perceptual effect of a vertical ceiling reflection 

on a listener’s preference of monophonically reproduced sound. Specifically, to investigate: if 

subjects base their preference on timbral and/or spatial sensations, if any particular perceived 

attributes have the most influential effect in the perceptual domain and how these may be related 

to the physical domain (Figure 1).  

Experiment one’s paradigm was designed such that subject’s level of preference could be 

mapped against the perceived magnitude of timbral and spatial difference. This magnitude of 

difference was not rated along a positive or negative rating scale, but rather from ‘no perceived 

difference’ to ‘extreme perceived difference’. The descriptions provided by the subjects 

allowed the assessor to examine if these perceived differences were beneficial or detrimental 

by comparing them to their preference.  The results implied that subjects based their preference 

on the timbral differences between the two playback cases to a greater extent than the spatial 

differences, in a semi-anechoic listening environment.  

Following these results, experiment two was designed to explore these reflections further, using 

the subsequent adaptations: The assessment environment was in a more natural listening room 

complaint with ITU BS.1116 regulations, playback with and without the reflection were 

normalised to the same level, and frequency dependant reflections were played with removal 

of one of eight individual octave bands 125Hz – 16Khz.  

The results of both experiments lead to the following novel conclusions: 

• When expressing their preference with and without the presence of a reflection, the most 

frequently used attributes were timbral based. 

• Whilst some timbral attributes were used infrequently, when these are perceived, they 

may have a greater impact on preference than other attributes more frequently used.   
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• The increase and decrease of timbral sensations with positive and negative connotations, 

all corresponded with individual subjects increased and decreased preference for 

playback with the reflection. 

• Although the most commonly used, the increase of ‘vertical image shift’ and ‘vertical 

spread’ provided by a reflection cannot be used to increase preference. 

• The removal of any of the individual octave bands from a vertical reflection does not 

consistently result in a more preferable listening environment than others across all 

musical stimuli and speech. However, the removal of particular octave bands in a 

reflection for particular stimuli, result in a more consistent level of preference along 

with a more consistent use of attributes to describe this sensation.   

In addition to these results, the following suggestions can be made in the support of work in 

other fields of audio perception but require further investigation: 

• The precedent effect may not operate along the median plane using musical or speech 

stimuli as ‘vertical image shift’ was reported 131 times across both experiments, thus 

localisation was not fully at the direct loudspeaker sound source.  

• The alteration of spectral content from a reflection, may be described in two 

contrapuntal ways. i.e. - A reduction in certain bass attributes, may also be perceived as 

an increase in certain treble attributes.  

 

7.1 LIMITATIONS OF THIS RESEARCH  

One main consideration of this research has been to ground the results into applicable areas of 

audio reproduction. Unlike other research involving reflections, in these experiments, 

reflections were assessed in the context of listening for entertainment and using musical stimuli. 

Section 4.4 outlines the limitations of experiment one which are addressed in experiment two, 

such as, adapted rating scales and loudness discrepancy between playbacks with/without 

reflection.   

However, it is acknowledged that the subject pool for both experiments was small, making it 

difficult to draw concrete conclusions, and may also not be representative of larger population 

sample. Increasing the subject pool may provide robust statistics, providing a more solid 

foundation to the conclusions. This increase in subject pool may also have resulted in normally 

distributed data and allowed for a different approach in statistical analysis.   
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Regardless of this, the author feels this thesis has contributed to knowledge into the cognitive 

process with which subjects base their preference of sound reproduction with the presence of a 

vertical reflection from above. The research was grounded in the applicability within small 

rooms which has become more relevant in recent years with growing complex sound 

reproduction systems readily available. This research may also provide an insight into the 

perception of height channels in multi-channel audio gaining more popularity. Although this 

simple vertical reflection was relatively strong with a low vertical boundary, the use of elevated 

sources in multi-channel audio (as well as being an elevated source) would in effect reproduce 

a stronger vertical reflection as the source moves closer to a reflection surface.  
 

7.2 FURTHER RESEARCH 

The results from experiment one investigated the perceived magnitude of timbral and spatial 

differences, with a free verbalisation test describing these changes. The descriptive terms used 

in experiment two identified attributes at a level deeper regarding what timbral and spatial 

attributes could be heard with the addition of a frequency dependant vertical reflection and 

which ones may have a greater impact. Further study could investigate the level of difference 

heard from each individual comparison using direct attribute scaling and correlate it to subject’s 

preference to ascertain which attributes are more preferable than others.  

As discussed in the previous chapter, this thesis conducted experiments with a mono 

reproduction13. To progress results from this investigation and apply it to more commercial 

reproduction systems, vertical reflections should be assessed using stereophonic reproduction. 

The direct sound sources would then produce four reflections (one per ear, per source). Section 

2.4.4 discusses work by Clark (1983) who demonstrates that the comb filtering provided 

through stereophonic reproduction can in some cases be a preferred response. Therefore inter-

aural difference of reflections may also be preferable in terms of timbre.  

Section 2.5 discussed the effect of elevated sound sources on subject’s localisation both in terms 

of spectral content and the precedence effect. From the results of experiment two, the vertical 

reflection used provided us with information that resulted in the image shifting and sound 

source elevating and therefore showed us the precedence effect was not operating under 

conditions with a strong reflection from above. Further work should be conducted with varying 

                                                                 
13 Although stereo outputs were used to electro acoustically simulate a reflection, the direct sound was only 
produced through one channel.  
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reflection levels and delay times along the median plane to progress our understanding of 

vertical localisation regarding reflections impacting the precedence effect.  

Reflections arriving from above were chosen for investigation in this thesis as this is where 

most acoustical treatment will be applied in small rooms. However reflections arriving from 

beneath us may still impact our preference. It is also apparent that sound reproduction systems 

are placed closer to the floor than the ceiling and therefore, will produce a stronger reflection 

which will contribute to our perception of timbre (Bech 1995). In conjunction with this, 

obstacles with surfaces may generally be placed in-between the reflection path and thus reduce 

delay time even more. Research into reflections arriving from a low angle could therefore, be 

important in understanding subject’s preference along with timbral and spatial difference 

added. The correlation between pitch and height discussed in Chapter 2.7.2 show that 

localisation is impacted upon by frequency content, and that removal of frequency content alters 

our perception of spatial attributes (Chapter 5.2). Consequently a similar experiment conducted 

with floor reflections may yield interesting results for comparison.  
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FIGURE 47: SAMPLE A - DRUMS FFT 0HZ - 1600HZ 

FIGURE 49: SAMPLE C - HI-HATS FFT 50HZ – 16000HZ 
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FIGURE 48: SAMPLE B - GUITAR FFT 50HZ – 1600HZ 
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FIGURE 50: SAMPLE D - ORCHESTRA FFT 0HZ – 16000HZ 

 

 

FIGURE 51: SAMPLE E - PIANO FFT 50HZ – 16000HZ 

 

 

FIGURE 52: SAMPLE F - SPEECH FFT 50HZ – 16000HZ 

 

50 125 250 500 1000 2000 4000 8000 16000
0

1000

2000

3000

4000

5000

6000

7000

Frequency (Hz)

M
ag

ni
tu

de

50 125 250 500 1000 2000 4000 8000 16000
0

500

1000

1500

2000

2500

Frequency (Hz)

M
ag

ni
tu

de

50 125 250 500 1000 2000 4000 8000 16000
0

100

200

300

400

500

600

700

800

900

1000

Frequency (Hz)

M
ag

ni
tu

de



APPENDICIES 
 

- 102 - 
 

B. EQUIPMENT & INTERFACE OPERATION 
 

 

 

 

 

 

 
 

1 – Mac running MAX MSP programmed patch to wirelessly send and receive data from interface. 

2 – Focusrite Saffire Pro 14 firewire soundcard. 

3 – Genelec 8040a Direct Loudspeaker. 

4 – Genelec 8040a Reflection Loudspeaker  

5 – Android table running Touch OCS software wirelessly linked to MAX MSP 
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C. EXPERIMENTS ONE – SUBJECTS PROVIDED DESCRIPTIVE TERMS  
 

Subjects were provided with a ‘prompt sheet’ with listings of popular descriptive terms for 

timbre used throughout audio assessment. As stated in Section 4.1.4, the description of timbre 

given to subjects was consistent with that of the ANSI standard, and that these terms were only 

used as a prompt to help. If the subjects felt a word better suited their auditory sensation then 

this may be used. The spatial information provided, were brief descriptions of sensations the 

author may feel be heard. Again, subjects were free to use other sensations as long as 

clarification could be given as to what this meant.  

Timbral Definition 

Timbre – The description of timbre is the perceived difference between two similarly presented sounds of equal 
loudness and pitch sounding dissimilar. 

Timbral Descriptors 

Bright  Rich  Nasal  Fat  Full  Tight 

Muddy  Warm  Middy   Thin  Boxy  Harsh 

 Other: _____________________________________________________________________ 

 

Spatial Descriptors (Adapted from: Pederson & Zacharov (2015) and Kaplanis et. al (2014) 

Image Shift – The sensation of the original image moving in location  

Envelopment – The sensation of being in the middle of the sound rather than the sound arriving 

from a specific direction  

Presence – A sense of space within the environment, as opposed to looking on through a 

window and no impression of being within the ambience  

Other: ______________________________________________________________________ 
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D. EXPERIMENT TWO – SUBJECTS RESPONSE SHEET 

Ti
m

br
al

 b
al

an
ce

 Treble Strength 

Covered, Un-sharp 
A soft sound without being dull 
Clearly distinguishable instruments 
Raised treble, sharp, hard sounding 

Midrange Strength Relative level of mid frequencies, low/high/balanced 

Bass Strength Relative level of bass, low/high/balanced 

Fullness Both low and high frequencies well represented with good 
extension  

Tr
eb

le
 Brilliance 

(high frequency extension) 

Muffled, blurred or dull 
Extended treble range, airy, and open treble. 
Lightness, purity and clarity with space for instruments 
Clear without being sharp or shrill.  

Tinny Resonances or narrowband frequency prominence in the 
treble or high frequencies.  

M
id

 Nasal A closed sound with pronounced midrange. 

Canny Being played through a can or tube  
Prominent narrowband resonances in the midrange 

Ba
ss

 

Bass Depth Low frequency extension  

Boomy Prominent resonances in the low bass 
Tends to become muddy and imprecise  

Boxy Hollow sounding  
Resonances in the upper midrange  

 

So
un

d 
im

ag
e 

Distance Perceived distance between listener and sound sources  

Vertical/Horizontal width Vertical width of the sound image 
Greater spread across axis 

Depth The depth of the sound source 
(Not to be confused with distance) 

Lo
ca

lis
at

io
n 

Precise Individual instruments can be placed and separated within the 
sound image.  

Envelopment 
Are you surrounded by the reproduced sound? 
Does it give a space of sense around you? 
Frontal, Rear or total envelopment? 

Shift Does the localisation of the sound source shift  
(Not to be confused with spread or width)  

  

Dy
na

m
ic

s 

Punch Strokes on drums or bass are reproduced with ‘clout’ as you 
can feel the blow. 

 

Tr
an

sp
ar

en
cy

 

Presence Is the sound present, distant or absent? 

Detailed 
Sound rich in detail 
Details that cannot be measured that seem to give to music 
‘soul’ or ‘feel’ such as audible nuances. 

Natural Sound is reproduced with high fidelity  
Representative of the real sound without and timbral/spatial 
colouration or distortion.  
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