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Abstract

Methods for the evaluation of evidence in the form of measurements by means of
the likelihood ratio are becoming more widespread. There is a paucity of methods
for the evaluation of evidence in the form of counts by means of the likelihood ratio.
The outline of an empirical method based on relative frequencies that takes account
of similarity and rarity is described. It is compared with two methods based on an as-
sumption of independence of counts and one assuming dependence between adjacent
Bernoulli variables. Examples of their performance are illustrated in the context of a
problem in forensic phonetics. There is discussion of the problems particular to the
evaluation of evidence for discrete data, with suggestions for further work.
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Introduction

The interpretation of scientific evidence may be thought of as the assessment of a compar-
ison. The evidence F is evaluated by its effect on the odds in favour of a proposition put
forward by the prosecution H,, compared with a proposition put forward by the defence H,.
Thus:

PT(HP ‘ E) o Pr(E ‘ Hp) PT(HP)
Pr(Hy | E) Pr(E|Hy)  Pr(Hg)

The evidence F may be written as (X, Y') where X is the control data, evidence whose
source is known and Y is the recovered data, evidence whose source is unknown. The
statistic used to evaluate the evidence is the likelihood ratio

_ Pr(E|H,) Pr(X,Y|H,)

LR = = .
Pr(E | Hy) Pr(X,Y | Hy)

Other than for DNA profiling, there is a paucity of methods when the data X and Y
are discrete. The methods described here are motivated by a problem in forensic phonetics
being investigated in The University of York under the aegis of the Bayesian Biometrics for
Forensics Network (BBFOR2)!. The data are the number of ‘clicks’ (a parameter that can
be analysed in speech) in each of a succession of minutes ranging from four to six. A click is
defined as ‘a stop made with an ingressive velaric airstream, such as Zulu [||]” (Ladefoged,

'BBFOR2 is an FP7 Marie Curie Initial Training Network that is working in the areas of speaker recog-
nition (comparison), face recognition and fingerprint recognition. These disciplines are being studied both
individually as well as in combination.



2006). The first two methods, a method assuming independence between counts and using
a Poisson distribution and a method based on a bivariate Bernoulli model are described in
Aitken and Gold (2013).

Data of independent counts with a Poisson distribution

Consider control evidence which has a succession of independent observations with a Pois-
son model, with mean A, (c for control) on a particular item. There is recovered evidence
which also has a succession of independent observations with a Poisson model with mean
Ar (r for recovered) on a particular item. If these two items come from the same source, an
assumption which is normally the prosecution proposition H,, A, = A,. If these two items
come from different sources, an assumption which is normally the defence proposition Hy,
Ac may or may not equal \,. There is variability in A across a population; the mean num-
ber A of counts for an item in the population varies from item to item. If there were N
items then item ¢ may be said to have mean A;,¢ = 1,..., N. In the simple situation de-
scribed here, the variation in A across the population is taken to have a gamma distribution,
characterised by two parameters, « and (5. Subjective choices are made for a and /3.

Consider a crime in which a piece of recorded speech is of importance. A characteristic,
S, of the speech is noted. The number of occurrences of S in each of a succession of
consecutive time periods, k, in total, in their speech is noted. It is assumed that these
characteristics are independent between time periods and follow a Poisson distribution.
These are the recovered data. A suspect is identified and the number of occurrences of .S in
each of a succession of consecutive time periods, k, in total, in their speech is noted. These
are the control data.

Assume the time periods are minutes. Let the number of occurrences of .S per minute for
the control speechbe x = (1, . .., 7, ) and for the recovered speechbe y = (21, ..., yk, ).

Lett, = Zfﬁl x; and t, = Zfil y;. Then, the likelihood ratio for the value, V, of the
evidence x and y is

~ D(a+ty +ty)I () y (B + ky)* = (B + k)t
Cla+t)T(a+ty) BB+ ky + ky)ottetty
(Aitken and Gold, 2013)

)]

Bivariate Bernoulli model

The second simple situation assumes a dependency between adjacent observations. The
observations are taken to be binary in nature: presence (e.g., at least one click) or absence
of a characteristic, normally denoted 1 and 0, respectively. Thus, there are 2 categories,
hence m = 2 and there are m(m + 1)/2 = 3 probabilities to consider. These are

(a) the probability of the presence of a characteristic in the first member of a pair;

e probability of the presence of a characteristic in the second member of a pair
(b) the probability of the p f a ch terist th d b fap
given the presence of the characteristic in the first member of the pair;

(c) the probability of the presence of a characteristic in the second member of a pair
given the absence of the characteristic in the first member of the pair.

Two pairs of observations per source are considered, for example, of two minutes of
speech in each period, for control and recovered speech. The control evidence has two pairs
of independent observations with a bivariate binary model with parameter 6. (¢ for control)
on a particular item. The recovered evidence has two pairs of independent observations with
a bivariate binary model with parameter 6, (r for recovered) on a particular item. If these



two items come from the same source, normally the prosecution proposition H, 0. = 0,.. If
these two items come from different sources, normally the defence proposition Hy, . may
or may not equal 6,.. The parameter 6 has three components to it, one for each of the three
probabilities. In the simple situation described here, the variations in the three components
of A across the population are taken to have beta distributions.

Let x = (w41,%2),% = 1,2 be the control data, whose source is known, for periods
i =1,2where z;; = 0or1; (i=1,2,j = 1,2) according as whether the characteristic
(for example, click) is absent or present. Let y = (y;1,y;2) be the recovered data, whose
source is unknown, for periods ¢ = 1,2 where y;; = Oor 1; (i =1,2,j = 1, 2) according
as whether S is absent or present. The probability of an absence is denoted # and the
probability of a presence is then (1 — ). Subscripts are introduced to indicate the particular
circumstance of the absence or presence of S.

Two independent periods for the control and recovered data are assumed in order to
develop a model beyond one bivariate binary observation for each source. Thus

p(xin = 0) = p(yin = 0) = by, plein=1)=plyn =1)=1—10p, i =1,2;
p(ie=0]21=0) = pyia=0|yn=0)=0p i=1,2;
pip=0|zi=1) = pYe=0|yn=1)=01p i=1,2.

Assume independent beta(c, 3) distributions for 6y, 6o, 010 where again subscripts
are introduced to indicate the particular circumstance for the prior. Thus the parameters
are (o, o), (@00, Boo), (10, B10), respectively, which may be estimated by appropriate
method of moments estimators from sample proportions and variances from some relevant
population. Alternatively, they may be chosen subjectively to indicate some personal belief
in the probabilities of these various circumstances. The likelihood ratio, V/, then has the
form

ng X nogg X N0
Vo = 2
const x doc X dooc X lec X dOr X dOOr X ler

where, apart from const, the terms are functions of gamma functions with full expressions
given in Aitken and Gold (2013).

Empirical model

Consider a piece of speech from an unknown person (e.g., audio recording associated with a
crime) (recovered speech). The number of minutes of speech are k£ and the number of clicks
per minute are y = {y1,...,yx}. Consider a piece of speech from a known person (e.g.,
suspect) (control speech). The number of minutes of speech is chosen to be equal to that of
the recovered speech. The number of clicks per minute are x = {z1,...,x;}. Let p(x) =
p(x1,...,x) and p(y) = p(y1,. - -, yx) be the probabilities of x and y, respectively under
some statistical model. Part of the problem is to determine the appropriate model. The
following statistic is proposed for the likelihood ratio (LR):

eXP{— Z?:l(mi - yi)z}
p(T1s k) X P(Y1, -5 Yk)

3

The numerator measures similarity. The more similar the control and recovered speech are
in terms of numbers of clicks in each minute, the larger the value of the numerator and
hence the larger the LR. The denominator measures rarity. The more rare the control and
recovered speech are in terms of numbers of clicks in each minute, the smaller the value of
the denominator and hence the larger the LR. Of course, multiplication of (3) by a constant



results in a statistic with the same properties as this one. Also, the probabilistic behaviour
of the statistic has to be investigated. The absolute value of the statistic is not meaningful.
However, relative values are meaningful. It is possible then to consider relative support of
one pair of speech comparisons with another.

Results

Results are given in Table 1 (an extract from Aitken and Gold, 2013) of an application of
(1) for various combinations of a and 3. Very small values of the evidence, much less than
one, occur when a control piece of speech with no clicks in six minutes is compared with
a recovered piece of speech with twelve clicks in six minutes. For example, V' = 0.006 ~
1/170 when t, = 0, t, = 12; k, = k, = 6; a = 2, 3 = 2. This result provides support
for the proposition of different sources for the speech: the evidence is 140 (170) times more
likely if the two pieces of speech (x and y) were uttered by different people than by the
same person.

Value of the evidence V' (1)

ty = ty = a=3 a=2 a=4 a=9
Yie Xtwo B=1 =2 p=1 =3
E(X)=3 EX)=1 E(X)=14 E(X)=3
Var(X)=3 Var(X)=05 Var(X)=4 Var(X)=1

0 0 53.5 5.22 201.84 198.36

4 4 5.3 1.50 13.45 12.25

8 8 2.6 1.82 4.62 3.20

0 4 4.5 0.56 16.97 25.71

0 8 0.4 0.06 1.43 3.33

0 12 0.03 0.006 0.12 0.43

Table 1: Values of evidence (1) for lengths of observations k, = k, = 6 for various numbers of outcomes
of control z and recovered y evidence and various values of parameters («, 3) of the gamma prior distribution.
Further results are available in Aitken and Gold (2013).

Results are given in Table 2 (an extract from Aitken and Gold, 2013) of applications
of (2) for various combinations of bivariate Bernoulli models and prior parameters. A
distribution such as beta(2,1) or beta(3,1) suggests a high belief in a high probability of a
0 observation (the variable x is the probability of a zero, absence of a characteristic). This
results in a lower likelihood ratio when the data are all zeros, compared with the value
obtained with a uniform prior, as a match in zeros is then more common in the former
cases. Likelihood ratios less than 1 occur when there is a mismatch between outcomes as
illustrated in 6. Rows 4 and 5 show two values greater than one and one value less than one,
illustrating the importance of prior values in situations with few data.

The empirical model (3) requires input from a data set. A data set provided by the
BBFOR?2 project records the numbers of clicks per minute for 100 speakers over periods of
4 to 6 minutes. The relative frequencies for each of the possible number of clicks from 0
to 17 are given in Table 3, where 1 was added to all observed frequencies to allow for zero
entries (for numbers of clicks per minute less than the maximum observed) in the original
data set. Two sample results are given in Table 4.

Discussion

The two models in Aitken and Gold (2013) are basic models, the exact situations for which
will rarely occur in practice. The empirical model requires considerable further study to



Row (z11,212) (@21,%22) (v11,%12) (y21,y22) Likelihood ratio values
LR1 LR2 LR3

1 (0,0) (0,0) (0,0) (0,0) 324 178 142
2 (1,1) (1,1) (1,1) (1,1) 324 323 335
4 (0,0) (0,0) (1,1) (1,1) 030 040 048
5 (1,0) (0,1) (0,0) (1,1) 053 072 081
6 (0,0) (0,1) (0,0) (0,1) 216 160  0.94

Table 2: Values of the likelihood ratio (2) for given control (z11,12), (z21,222) and recovered
(y11,y12), (Y21, y22) observations and for three different sets of prior parameter values. [LR1] Uniform priors:
a0 = Po = apo = Poo = aio = Pio = 1.: no preference given to any particular set of values for the
probability of a zero. [LR2] ap = 2, Bo = 1, aoo = 2, Boo = 1, aio = 1.5, Bio = 2.5: more weight
to zero in first place, to zero in second place given zero in first place and to one in first place given one in first
place. [LR3] ap =3, Bo =1, aoo = 3, Boo = 1, ai0 = 1.5, B10 = 2.5: more weight to zero in first place,
to zero in second place given zero in first place and to one in first place given one in first place. Further results
are available in Aitken and Gold (2013).

Clicks per minute 0 1 2 3 4 5
Relative frequency 0.563 0.233 0.086 0.037 0.035 0.016

Clicks per minute 6 7 9 11 15 17
Relative frequency 0.005 0.007 0.005 0.005 0.005 0.005

Table 3: Overall relative frequencies for the numbers of clicks per minute. If a previously unob-
served number of clicks per second is observed in a particular case, record the frequency as 1/431
and adjust the other frequencies appropriately.

investigate its probabilistic properties. However, all models illustrate issues that need to be
considered in the analysis of discrete data and provide a foundation on which other models
may be built.

The values obtained of the likelihood ratio are small but intuitively sensible. The size
of the likelihood ratios is a function of the small size of the data sets used. The sets are
deliberately small to enable the calculations to be done with very few lines of computer
code, or in individual cases, with a pocket calculator. The small size of the datasets means
that the choice of the prior parameters makes a big difference to the values of the likelihood
ratio.

The model based on independent Poisson counts is easier to implement than the bi-
variate Bernoulli model but has an unrealistic assumption of independence. An extension
to more than two variables and more than two categories will lead to a more complicated
model and a requirement to consider more prior parameters, care will be needed to avoid a
decrease in the robustness of the model. Various issues need to be considered in extensions
of this work.

e Data collection: More practical work is needed to collect data sets appropriate for
analyses by these models, or extensions of them, and for interpretation of the results.

e Autocorrelation: The Poisson model assumes the data are independent. The bivari-
ate Bernoulli model allows for correlation at a simple level of adjacent items with
binary responses. A multivariate Dirichlet model provides an obvious extension to
a bivariate Bernoulli variable when there is a multinomial response. However, the



X y @k —w)?  pe Py LR (3)
0000 0000 0 0.563% 0.563% 99.07
0000 1000 1 0.563%  0.563% x 0.233 88

Table 4: Comparison of two pairs of speech patterns, all over periods of [ = 4 minutes. The
first is where there are no clicks in either the control (x) or recovered speech (y), the second
where there is a click in the first minute of the recovered speech. Relative frequencies p,
and p,, are given in Table 3.

example of forensic phonetics is concerned with counts within fixed time periods of
one minute in length. Thus a Poisson distribution with correlated responses would be
more appropriate.

An alternative approach would be to record the times at which the clicks were made
and use a Poisson point process. This could also be extended to a point process with
autocorrelation.

o Variability between and within items: Current results are based on prior assumptions
about speech variation within and between speakers as the available data are for 100
speakers, each making one utterance. There is no measure of within-speaker vari-
ation. Ideally, each speaker should repeat the same piece of speech several times.
These would be realisations of a multivariate discrete random variable as a model for
the within-speaker variation and whose distribution could be estimated from these
data. Summary statistics for each speaker could be derived from which between-
speaker variation could be determined.

e Nonparametric distributions: It may be that a multivariate Poisson distribution which
allows for correlated responses may not be appropriate. A nonparametric approach
may overcome this problem. A discrete kernel probability mass function would allow
for distributions which did not fit more standard distributions such as the Poisson or
negative binomial when the variance was larger than the mean.

o Temperament: Some standardisation of performance will be required to allow for dif-
ferent levels of stress in the speaker. Stressful situations include committing a crime
and being interviewed as a suspect for a crime. In both situations, the characteristics
of speech will differ from when the speaker is relaxed.

e Relevant population: Characteristics of speech are very dependent on the population
from which the speaker comes. Care will be needed in the evaluation of evidence
based on speech that the relevant population is determined by what is known about
the criminal rather than what is known about a suspect.
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