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Abstract  

In the big data era large and complex data sets will exceed scientists' capacity to make 

sense of them in the traditional way. New approaches in data analysis, supported by 

computer science, will be necessary to address the problems that emerge with the rise of 

big data. The analysis of the Close Call database, which is a text-based database for near-

miss reporting on the GB railways provides a test case. The traditional analysis of Close 

Calls is time-consuming and prone to differences in interpretation. This paper investigates 

the use of visual analytics techniques, based on network text analysis, to conduct data 

analysis and extract safety knowledge from 500 randomly selected Close Call records 

relating to worker slips, trips and falls. The results demonstrate a straightforward, yet 

effective, way to identify hazardous conditions without having to read each report 

individually. This opens up new ways to perform data analysis in safety science. 
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Introduction 

Great Britain is accelerating the digital modernisation of technological railway systems 

that produce massive amounts of data [1–3]. Ambitious programs as ORBIS (to address 

complex data assets) or SMIS+ (to develop an on-line system for safety management) bring 

a change in railway organisations to improve the acquisition, storage and use of asset 

information for a truly digitised railway. 

This data contains information that may be relevant for safety and risk in the GB 

railways. The Institute of Railway Research at University of Huddersfield attempts to use 

this data to improve safety and risk management in the Big Data Risk Analysis (BDRA) 

program [4]. BDRA investigates big data analytics techniques for efficient methods of risk 

management in the future. Moving to BDRA is not simply a matter of scaling-up existing 

analysis techniques. BDRA has to coordinate and combine a wide range of sources with 

different types of data and accuracy, and that is not straight-forward. 

This paper treats a specific challenge of the BDRA program: extracting safety 

knowledge from the GB railway's Close Call database, that is, obtaining information from 

unstructured text-based data. The approach is to work with a sample of Close Call records 

to explore the potential benefits and shortcomings of visual analytics of word-nets.  

Theoretical background 
The benefits of analysing near-misses have been proved in different industries for safety 

management [5–7]. The GB railways wish to exploit the potential of near-miss reporting 

with the Close Call system. Workers in the GB railway industry can report concerns about 

hazardous situations by entering free-text descriptions of hazards into the Close Call 

database. This reporting method provides the freedom for workers to describe any safety 

concern. With more than 150,000 Close Calls being reported each year it is a success from 

the reporting culture point of view but analysing them all is no easy feat. The task is 

complex in the sense that close calls are related to a vast number of different parts of a 

railway system. It is also time-consuming to extract the critical information from this large 

body of data. Currently, the analysis of the database relies on expert knowledge from safety 

analysts [8], but this approach has its limits: a single analyst can unintentionally introduce 

biases into the results [9, 10]; different analysts may have very different skills and 

knowledge about the domain and, depending on their risk perception and understanding of 

goals, the interaction with the system and the way to represent and communicate the results 

might be different for each user. A consolidated work process that is assisted by visual 

analytics could circumvent such shortcomings [11] and speed up the process. 

 

Visual Analytics 
The term ‘visual analytics’ (VA) arose around 2005, being defined as a combination of 

“…automated analysis techniques with interactive visualisations for effective 

understanding, reasoning and decision making on the basis of very large and complex data 

sets” [12]. By definition, VA shares many similarities with big data analytics, and it might 

be said that VA is a variant of ‘big data analytics’ supported by interactive visualisation 

techniques [13]. VA encompasses five mature disciplines: data management; data analysis; 



human-computer interaction; dissemination and communication; and 

information/scientific visualisation to enhance the analysis and discovery of information 

from data (e.g. recognition of distributions, patterns or trends). VA engages creative 

interpretations in humans beyond those that a computer can detect automatically. It is also 

a valuable tool for reducing the subjectivity that can occur within groups of users, and can 

ultimately lead to better decision-making [11, 14, 15]. In this paper, we are interested in 

the use of VA to perform data analysis and enable interactive learning.  

 

Network text analysis 
Three different computer-based text analysis approaches are possible for retrieve 

information from text: thematic, semantic and networks [16]. Thematic analysis has been 

the main approach for a long time and it is based on the frequency of concepts (e.g. words 

or “bag of words”) that allows classification of the topics of texts. Semantic analysis also 

takes into account the relationships among the concepts encoding the semantic grammar 

(e.g. subject, verb and object). Network analysis is based on network text analysis to obtain 

semantically linked concepts.  

 

Network text analysis is a method that represents text as a graph: the words or 

concepts are the nodes, and their relationships are the edges [17–19]. This analysis provides 

a richer analysis than word frequency analysis, since it is possible to analyse the strength 

of relationships among main concepts from a text. Paranyunshkin demonstrated the 

benefits of this technique in text analysis. His work shows that the best results were found 

when the normalised text is presented as a graph using a context window of two and five 

words. That is, considering the relationships between the words within a window of two 

words in a first stage and a window of five words in a second stage, and using network 

analysis for detecting contextual clusters and key concepts that are junctions for meaning 

within a text [19]. The network analysis was done using the measures of degree and 

betweenness of a node. The degree is the number of edges connecting a node [20]. The 

betweenness is a centrality measure that is the frequency with which a node falls between 

pairs of other nodes on the shortest paths connecting them [21]. If these concepts were 

translated into a map, the degree would be the number of entrances or exits to a city, and 

the betweenness would be the frequency with which a city falls on the shortest route 

between two other cities. The number of entrances to a city would be a reference of the 

importance of that city (a concept in text analysis), and the betweenness would be the value 

of the city in connecting other places (words that connect and therefore belong to different 

contexts). These attributes form the backbone of the analysis in this paper.  

 

Methodology 

A data set of 500 records was constructed selecting a random sample of 12,171 Slip, Trip 

& Fall Close Call records. These records were pre-processed using the NLTK toolkit in 

Python [22] in order to eliminate anomalies that could obscure the text analysis [23]. The 

records were cleansed of stopwords (e.g. a, an, and or the), tokenised and tagged as 

described in Hughes et al. to create the text for visualising [8]. The tokenisation process is 

based on a non-standard lightweight ontology in the form of list of terms that creates unique 



tokens from multi-words related to railway safety. The ontology is non-standard in the 

sense that it was custom-made by railway safety experience of the authors since standard 

linguistic ontologies were unable to deal with jargon. For example, essential multi-words 

TRIPPING_HAZARD_ and NETWORK_RAIL were hard to find with standard linguistic 

ontologies. Table 1 demonstrates a NETWORK_RAIL_ instance that normal parsers could 

not capture. The tagging process condenses information into tags such name of places, 

codes, numbers or measured entities. For example, name of places and codes are condensed 

into the tags GEO_PLACE and _CODE_, see Table 1.  

The cleansed text was transformed into a network by creating a word-per-word co-

occurrence matrix following the method of Paranyushkin [19] for a context window of  two 

words. The nodes of the matrix are words of the text, tokens or tags. This matrix shows 

how the nodes of a network are linked into pairs of nodes and it is a common input for 

visualisation tools. Because we are not considering the direction of the link between words 

the network is undirected. That means that the co-occurrence matrix counts the frequency 

of relationships between adjacent words, that is, between the prior and posterior word.   

 

Source record 

"A N/R Supervisor called to report while working on VS148 Signal someone has run a 

power cable going across the middle of the ladder causing a tripping hazard. 

Location, Penge East, ELR VIR  - Aprox 7m 15chain. 

Cleansed record 

A NETWORK_RAIL Supervisor called to report while working on _CODE_ Signal 

someone has run a power cable going across the middle of the ladder causing a 

TRIPPING_HAZARD_. Location, GEO_PLACE, ELR _CODE_ Aprox 

DISTANCE_TAG. 

Table 1. Example of the pre-process of a Close Call record. Non-desired characters are 

deleted and the tokenization and tagging process are applied.  

 

Text visualisation 
Following Paranyushkin [19] the resulting co-occurrence matrix was the input for the 

visual representation of the network. Gephi software was selected for the visualization [24]. 

It is an open graph visualization platform that allows exploratory data analysis by network 

manipulation in real-time. Force-directed graph drawing algorithms from Gephi were used 

to draw the network. For simplicity, the mature Force Atlas technique was chosen. Through 

experimentation, we found that the following parameters suited our purposes best: 

Inertia=0.1, Repulsion=10000, Attraction strength=10, Maximum displacement=10, 

Autoslab Strength=80, Autoslab sensibility=0.2. Setting these parameters allow us to see 

the nodes and the links how the Figures 1, 2 and 3 look.  

 



Clustering 
The Louvain Method (LM) for community detection was applied by Paranyushkin to detect 

contextual clusters in the text network with high accuracy. This clustering method is one 

of the most popular and it has been used with success in different social science studies in 

order to discover clusters and zoom within these clusters to discover sub-clusters [25]. It 

also present good characteristics of scalability, speed and performance [26].  

LM extracts clusters of a network based on modularity optimisation. Modularity is 

a measure of the structure of networks that provide information about the division of a 

network into modules. High modularity means high density between the nodes of a cluster 

but sparse connections between different clusters. In plain words, it groups nodes in density 

areas to create clusters.  

LM uses resolution as a sliding ruler to identify clusters but there is no exact answer 

to what the resolution has to be other than a rule of thumb that it should be higher than 1.0 

to identify larger clusters. Above the threshold, higher values of resolution create a few 

large clusters. Lower values (close to 1.0) create many small clusters that we found to be 

irrelevant for identifying safety concerns. In this paper, resolutions of 2.0 and 2.5 were 

found to discover large clusters that capture safety-relevant information [27]. The largest 

cluster, that contained safety information, was extracted as an independent network in order 

to detect secondary clusters.   

Results 

The resulting text network is an undirected graph of 1844 nodes and 5002 edges. The 

primary clustering with the Louvain method identified three large clusters with a 

modularity of 0.430 (Figure 2) that represents 98.43% of the network. The secondary 

clustering yielded four large clusters with a modularity of 0.428 (Figures 3 and 4) that 

represents 99.15% of the primary safety cluster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sub-networks that represent the primary clusters of degree nodes from the 

cleansed network: a) Safety cluster (56.89%); b) Location cluster (33.35%); c) Staff and 

method of reporting cluster (8.19%). Resolution=2. Modularity=0.430. Filtered by 5 

degree node. 

a) 

b) 

c) 



Figure 1 shows the primary clusters. Figure 1.a has high degree nodes such as missing, left, 

cess, up, down, track, cable, cables, sleepers, lid, troughing, not, over, causing and 

tripping_hazard. Moreover, the nodes missing, left, cable, not, cess, up, down, over, track 

and tripping_hazard are among the top 25 betweenness nodes. This cluster shows safety 

hazards. The highest degree and betweenness nodes in Figure 1.b include geo_place, 

_code_, distance_tag and number. In addition, there are numerous medium- and low-

degree nodes such as access, platform, area, depot, yard, bridge, station, level_crossing, 

junction, permanent_way, tunnel, car_park and relay_room. This cluster describes 

locations. Figure 1.c has high-degree nodes such as network_rail and telephone. 

Furthermore, it has medium- and low-degree nodes such as technician, employee, 

team_leader, signalling_and_telecommunications_, operative, section_manager, 

manager, email, calling, app, reporting and report. This cluster describes people and the 

method of reporting.  

 Figures 2 and 3 show the secondary clusters that were derived from the primary 

safety cluster (Figure 1.a). Figure 2.a contains high-degree nodes such as left, cable, rail, 

cess, up, down, route, walking and sleepers. In addition, it has medium- and low-degree 

nodes such as overgrown, vegetation, pallets, ballast, hole, tarmac, timbers, materials, 

rubbish and surface. This cluster shows abandoned objects. Figure 2.b shows a cluster has 

high- and medium-degree nodes such as missing, lid, lids, catch_pit, troughing, wood, 

rotten, timber and boards. This cluster shows hazards that arise from missing covers. 

Figure 2.c has high-degree nodes such as trip_hazard_, tripping_hazard_, tripping, trip, 

slip, slippery, fall, damage, potential, hazard and risk. This cluster shows the risk scenario 

under consideration: slip-trips and falls. Finally, Figure 3 has just three high- medium-

degree nodes, not, track and member_of_staff, and many low degree nodes such as secured, 

protected, supported, filled, happened, sited, banded, member_of_public_, inspection, 

inspections, obscuring, track, workers, third and party. This cluster refers to procedural 

errors.  

 

 

 

 

 

 

 

 

 

 

Figure 2. Sub-networks that represent the secondary clusters of degree nodes: a) abandoned 

objects cluster (50.91%); b) missing covers cluster (18.88%); c) risk scenario cluster 

(19.16%). Resolution=2.5 Modularity=0.428. Filtered by 5 degree node. 

a) 

b) 

c) 



 

 

 

 

 

 

 

 

Figure 3. Sub-network that represent a secondary cluster of degree nodes. Procedural 

errors cluster (10.2%). Resolution=2.5. Modularity=0.428. Not filtered. 

 

Discussion 

Text analysis results  
The word-net investigation of 500 Close Calls on slip-trip fall incidents identifies a number 

of issues on the railway: abandoned objects, missing covers and procedural errors. The 

reported abandoned objects are overwhelmingly leftovers from work on railway systems 

(scrap rail, sleepers and old cables) along railway tracks (up cess and down cess) but also 

include: rubbish, overgrown vegetation and scrap. Procedural errors are mostly related to 

track work procedures. The method identifies concerns that the reporters consider 

important enough to report about in their working environment. The reports treat hazardous 

situations during work and since these situations also appear in accident reports the findings 

may cautiously be considered to be causal factors. In that sense the analysis method can 

identify safety risks on the railway. However, we observe that the concerns of staff are 

limited. One notable observation is that natural factors of the environment are absent in 

these records: weather conditions, night-time and the shape of the cess (e.g. a narrow cess) 

do not feature in the records. This indicates that Close Call reporters overwhelmingly report 

man-made factors, which leads to the speculation that that the reporters are mainly focussed 

on the responsibilities of railway staff for good housekeeping. This may indicate that 

housekeeping rules are poor but it could also mean that it is an easy way to blame other 

railway staff and/or colleagues. It also suggests that the Close Call system is not being used 

to report the full spectrum of causal factors of slip-trip-fall hazards.  

 

 



VA in network text analysis 
Although network analysis is a consolidated area of computing text processing, the visual 

analytics method that is introduced in this paper is new for railway risk analysis. Since the 

scope of this exercise was focused on risk identification a certain amount of information 

loss was accepted during the pre-processing of the text (like geo_place_). This focussed 

the attention to identifying slip-trip-fall hazards and not on high-hazard hotspots. However, 

depending on the purpose of the analysis, different types of pre-processing rules could be 

used to detect different trends and/or anomalies [23]. Thus, the network text analysis has 

the interesting property of allowing to show data in different perspectives depending on 

the level of aggregation or disaggregation of the information. With more elaborate 

tokenisation and tagging rules it might be possible to process specific problems completely 

automatically by statistical means, thus relinquishing the necessity for visual analytics. 

Elaborate tokenisation schemes can also elevate text analysis to the field of knowledge 

representation and sematic networks [28, 29].   

After the pre-processing the graphs still show some words that could be considered 

stopwords (e.g. from and over) or the same concept that represent another node (e.g. lid / 

lids, cable / cables, trip and tripping_hazard / trip_hazard_). These nodes could be removed 

in refined cleansing rules but since they did not interfere with the identification of reported 

hazardous situations they were left in to enable a more rapid identification process.  

The analysis was based on the network measures of degree and betweeness. The 

degree provided information of the importance of the words within the cluster. The 

betweeness provided information of the relationship of the nodes between the different 

clusters. That means that nodes with high betweenness (e.g. geo_place, _code_, 

distance_tag and number) could be removed in order to integrate large clusters such as the 

safety cluster and the location cluster, however their inclusion points the way to further 

analysis that could be used to uncover new findings. These measures have proved to be 

enough for risk identification, but additional centrality measures such as closeness or 

eigenvectors could support particular analysis for safety management in railways.  

Making sense of Close Calls  
For the Railways, the network text analysis of close calls records has highlighted which 

hazardous conditions railway staff is concerned about when it comes to slip-trip and fall 

risks on tracks. The rapid analysis helps the railway duty holder to identify major concerns 

of staff quickly and could even be used to develop automated processes for trend analysis 

(which was beyond the scope of this paper). For the analysis of the Close Call database it 

offers a process to speed up the analysis of over 10,000 in for every monthly report. The 

methods in this paper can be refined to identify low-frequency hazard detection, trend 

analysis (for instance to monitor the effect of safety programmes), and mixing in alternative 

text-documents such as accident reports. It seems unlikely that this method can help to 

detect emergency signals that require immediate attention such as a fridge dumped on the 

track or a suicide attempt.  

For safety science, this method offers an investigation tool to link hazardous 

situations to accidents. Safety science has struggled with the link between precursors and 

accidents. Heinrich was the first one to assign a causal relationship between non-injury 



events and accidents. He considered these non-injury events to be causally linked with 

accidents since he considered causal factors to be the same [30]. Fault trees can make the 

causal link between causes and accidents clearer but they do not always work when the 

precursors are not defined well. Hollnagel is more cautious in assigning causality in the 

sense that the relation between an observable cause and its observable effect is a non-

observable “metaphysical” process [31]. Finally, near misses and Close Calls can be 

considered in the sense of “weak signals” for safety management [6]. In this school of 

thought, Close Calls identify areas of trouble in an organization that might indicate that the 

probability of (particular) accidents is on the rise due to the rise of troublesome 

preconditions for those accidents. If that perspective is chosen, Close Calls can help to 

understand the risk space to identify areas of trouble but not to match causes to a defined 

sequence of an accident.  

For cognitive sense-making, this paper sheds some light in the relation between 

cognitive processes and the way data-analysis tools can be supported humans. It is beyond 

the scope of this paper to provide an overview so we work from Grolemund & Wickham’s 

paper to provide an overview of this research area. They argue that traditional sense-

making, where a mental model is constructed in the mind of a single analyst, cannot work 

with the amount of data that has to be considered in contemporary scientific problems [11]. 

For safety analysis, this is relevant since it is a multi-disciplinary domain in which many 

different sources of data have to be considered. Grolemund & Wickham propose that 

analysts should work from explicit models throughout an investigation. A number of 

analysts can add their viewpoints and interpretation to develop the model into a 

substantiated theory based on their interactions. VA is one of these tools that can assist 

such group efforts by allowing them to apply their perceptual abilities to deal with large 

quantities of data [14, 32]. This is exactly the way that the authors worked in this 

investigation.  

Conclusions 

The paper considers the use of VA to identify potential causal factors in 500 randomly 

chosen Close Call records about slip-trip-fall hazards. The paper shows VA to be a 

powerful technique that makes it relatively straightforward to identify hazardous 

conditions on the railways without having to read each of the 500 Close Calls. This is a 

very useful property as the number of close calls increases to 150,000 and beyond, although 

further work would be required to refine the method for such numbers of records. 

Nonetheless, this approach speeds safety analysis up considerably for large data sets. At 

the same time, the method is a tool that allows for analysis by groups of investigators rather 

than a single one which should reduce interpretation bias. The method can also be 

developed further for low-frequency risk detection automated trend analysis, and mixing 

different text-based data-sources.  

This work paves the way to model-assisted sense-making that enables the analysis 

of huge amounts of data that cannot realistically be handled by manual analysis. Close 

Call analysis for the GB Railway benefits from a quicker analysis. The technique is not 



limited to Close Call reports, the method can be tuned for any text-based source such as 

accident reports, safety procedures and standards and accident reports in any industry.  
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