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Abstract 24 

The structural relaxation properties of high-solid gelling polysaccharides, gelatin and 25 

whey protein with small-molecule co-solutes have been reviewed focusing on the glass 26 

transition region and glassy state of the mechanical master curve. Compliance with the 27 

principle of thermorheological simplicity is established allowing horizontal superposition of 28 

viscoelastic functions in the form of small-deformation stress relaxation or dynamic 29 

oscillation modulus. Numerical calculations via the Tikhonov regularization yield smooth 30 

stress relaxation spectra over a broad timescale that encompasses the isothermal process of 31 

vitrification in these systems. Next, the molecular coupling theory addressed the polymer 32 

chain dynamics of the local segmental motions that determine the glass transition temperature 33 

(Tg) of condensed matrices. Thus a more complete picture of the physics of intermolecular 34 

interactions in the short-time region of the glass dispersion has emerged. It allows estimation 35 

of the relaxation time for local segmental motions at Tg, and the extent of cooperativity 36 

between adjacent chemical moieties governing kinetics of viscoelastic relaxation in 37 

hydrocolloid based systems at the glass transition region.  38 

 39 

 40 

Keywords: structural relaxation; Tikhonov regularization; relaxation time; glass transition; 41 

molecular coupling theory. 42 

 43 
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1. Introduction 47 

Hydrocolloid chains have a large number of motions at different length scales due to the 48 

plethora of monomers that result in numerous degrees of freedom. For instance, the rapid 49 

local groups or segmental motions observed at the vicinity of the glass transition region of 50 

concentrated preparations contrast vividly with the slow movements due to the reptation of 51 

the entire chain along its contour in the elastomeric plateau response leading to the molecular 52 

flow region of the viscoelastic master curve (Rubinstein & Semenov, 2001). 53 

 Molecular motion is of the outmost importance for the physical properties of 54 

hydrocolloids, including viscoelasticity, diffusion and glass transition, which are controlled by 55 

chain dynamics. Macromolecular motion, also termed structural relaxation, is accompanied by 56 

changes in chain conformation leading to a reduction in chain stiffness, hence mechanical 57 

network strength, and if allowed to proceed over a prolonged timescale of observation to 58 

eventual molecular flow. It usually takes place over long times as different length-scale 59 

components relax at characteristic times, τ. Timescales of various molecular motions can be 60 

plotted on a relaxation spectrum that describe chain dynamics. As a result, relationships 61 

between molecular structure and physical properties are drawn to optimize techno-62 

functionality.  63 

Physicochemical techniques (e.g., NMR relaxation, light scattering, calorimetry etc.) 64 

probe molecular motions at different length scales. Rheological tests, which are the interest in 65 

this treatise, focus on motions occurring between 0.00628 – 628 rad/s although this range can 66 

be extended with appropriate (horizontal only) superposition of data obtained at different 67 

temperatures. In the following sections, we shall discuss approaches to calculate the relaxation 68 

spectrum from rheological data underlined by prevalent schools of thought. 69 
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2. Calculation methods of relaxation spectra 70 

Relaxation spectra cannot be measured directly but instead calculated from rheological 71 

data, most commonly dynamic, creep or stress relaxation, performed in the linear viscoelastic 72 

response of the material. Mechanical perturbations (e.g., stress) displace chains from their 73 

equilibrium positions but they attempt to return to a thermodynamic stable state via an array 74 

of molecular motions known as relaxations. The objective of calculating relaxation spectra is 75 

to identify characteristic relaxation times (τ) with which polymeric chain-populations of 76 

known molecular weight and fine structure relax to equilibrium. Correct identification of the 77 

characteristic times is important, as it gives information on mechanical features at desired 78 

temperatures of operation or storage that links to molecular architecture. 79 

The process of extracting relaxation spectra is, mathematically speaking, an inverse 80 

problem defined as the process of first obtaining the rheological responses (e.g., relaxation 81 

modulus) and afterwards linking them to molecular motion. Fredholm integrals of the first-82 

kind are used to generalize the response of various viscoelastic functions: 83 

                                  
g(x) =

0

a
∫ K(x,τ )Η(τ )dτ ,0 ≤ s ≤ a        (1) 84 

where, g(x) is the measured signal and x is either t or ω for G(t), G΄(ω), G΄΄(ω), and H(τ) is 85 

the unknown solution that represents the continuous relaxation spectrum of the material.  86 

Depending on rheological measurement, the kernel K(x, τ) is either e -t/τ, (ω2τ2/(1+ω2τ2) 87 

or ωτ/(1+ω2τ2) for G(t), G΄(ω), G΄΄(ω), respectively. Numerical calculation of H(τ) from 88 

equation (1) results in ill-conditioned algebraic systems of equations, which means that small 89 

perturbations in the measured signal g(x) results in large deviations in the solution H(τ) (i.e., 90 

relaxation spectrum). If the ill-posed nature of the problem is overcome then the relaxation 91 

spectrum can be calculated with accuracy and provide structural information for the material 92 
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under investigation. Early attempts to calculate the relaxation spectrum have been met with 93 

numerical difficulties and the non-uniqueness of the solution (Ferry, 1980). To resolve such 94 

problems, various algorithms that perform numerical calculations have been proposed over 95 

the years. The major issue at hand is whether the resulting spectrum is a characteristic feature 96 

of the material or an artifact of the algorithm. The desired properties of the algorithms have 97 

been outlined in the literature (Winter, 1997) but an important characteristic of the calculation 98 

process is the ability of several algorithms to return similar relaxation spectra (McDougall, 99 

Orbey, & Dealy, 2014).  100 

Various mathematical approaches have been proposed to calculate the relaxation spectra 101 

of polymeric materials over the years (Baumgaertel & Winter, 1989; Elster & Honerkamp, 102 

1991; Jensen, 2002; Provencher, 1982; Stadler & Bailly, 2009), and more recently  (Bae & 103 

Cho, 2015; Ciocci Brazzano, Pellizza, Matteo, & Sorichetti, 2016; Soo Cho & Woo Park, 104 

2013). In practice, very few are used, as most are either proprietary information to the 105 

researchers who developed them or a suitable computer program is not available. To 106 

overcome these hurdles, regularization methods, attempting to calculate a smooth solution, are 107 

commonly employed in the calculation of relaxation spectra. They incorporate ancillary 108 

information about the attributes of the sought solution (e.g., non-negativity) and facilitate the 109 

calculation of a meaningful spectrum (Elster, Honerkamp, & Weese, 1991).  110 

In order to determine a relevant approximation of H(τ), the initial system of linear 111 

equations describing the relaxation process is replaced with a set of equations that is less 112 

sensitive to noise. Solution of the latter system of equations results in the best possible 113 

approximation of H(τ), with the entire process being referred to as regularization. An 114 

established methodology to numerically calculate the relaxation spectrum is through the 115 
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Tikhonov regularization (Tikhonov, Goncharsky, Stepanov, & Yagola, 1995). In common 116 

least squares problems (e.g., linear regression for construction of a calibration curve), the 117 

approach is to minimize the sum of squares of errors and arrive at the best approximate 118 

solution (i.e., linear curve fitting). In ill-posed problems, the Tikhonov regularization favours 119 

and achieves a desirable solution by including a regularization term in the minimization 120 

process.  121 

Utility of the regularization term is controlled by the regularization parameter, λ, which 122 

plays a central role in successful calculations to yield the final relaxation spectrum. In 123 

regularized calculations, the solution is dominated by two types of errors: the regularization 124 

error caused by the numerical calculation and the perturbation error being inherent to 125 

measurement (e.g, G΄(ω) or G(t)). Choice of λ away from the optimum being either smaller, 126 

with the perturbation error dominating the solution, or greater, with the regularization error 127 

dominating the solution, result in either noisy spectra with a meaningless number of peaks or 128 

over-smoothed solutions that lack information. For a fixed set of data, there is an optimal λ 129 

that balances the two types of errors yielding the best H(τ) approximation. A common method 130 

to find the optimum λ is with the aid of the L-curve criterion that addresses in the calculation 131 

the two types of errors (Hansen, 1992; Rezghi & Hosseini, 2009).  132 

Once the spectrum has been calculated, it is important to assess the range of relaxation 133 

times that result in meaningful properties for the hydrocolloid system under investigation. It is 134 

common practice to determine the relaxation spectrum within a reciprocal frequency range of 135 

ω-1
max <ω-1 <ω-1

min for measurements that have been carried out at the corresponding 136 

frequency range of ωmin<ω<ωmax. However, this practice is incorrect due to various 137 

experimental limitations associated with the rheological measurement (Davies & Anderssen, 138 
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1997). The interval on which the relaxation spectrum should be determined is eπ/2ω-1
max < ω-1 139 

< eπ/2ω-1
min, i.e. shorter than ω-1

max < ω < ω-1
min by 1.36 decades (Davies, et al., 1997).  140 

A software platform that is readily available to the experimentalist for numerical 141 

calculations of relaxation spectra is MATLAB. There are several MATLAB algorithms that 142 

employ the Tikhonov regularization to estimate parameters with the L-curve criterion leading 143 

to relaxation spectra derivation (Hansen, 2002; Kontogiorgos, 2010; Kontogiorgos, Jiang, & 144 

Kasapis, 2009; Wendlandt, 2005). In the following section, we utilize the most recent version 145 

of the program ReSpect v 2.0, which is available with a standalone graphic user interface in 146 

MATLAB (Takeh & Shanbhag, 2013) to revisit the relaxation spectra of high-solid 147 

hydrocolloid samples from dynamic data in shear.  148 

 149 

3. Structural relaxation spectra of high-solid hydrocolloid systems 150 

A common approach to increase the experimental timeframe of observation is by 151 

constructing the master curve of viscoelasticity at a reference temperature within the glass 152 

transition region. This process results in a plot that depicts the effect of molecular motions on 153 

the viscoelastic functions for several decades, i.e. beyond the operational frequency range 154 

achieved with current instrumentation (typically 0.628 <ω< 628 rad/sec).  In the present work, 155 

we have re-analysed the relaxation spectra of selected high-solid polysaccharides, proteins 156 

and their mixed systems in an effort to identify relaxation phenomena.  157 

All systems have been prepared using high levels of co-solute (glucose syrup, sucrose or 158 

mixtures thereof) and industrially relevant amounts of κ-carrageenan, gellan (Kasapis & 159 

Sworn, 2000), pectin at pH 3.0 or 7.0 (Alba, Kasapis, & Kontogiorgos, 2015), gelatin or 160 

gelatin/carrageenan mixtures (Kasapis & Al-Marhoobi, 2005), and whey protein (unpublished 161 
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data). Calculations were performed using the Tikhonov regularization to extract the 162 

continuous relaxation spectrum from ω, G΄(ω) and G΄΄(ω) datasets. The strict criterion for the 163 

range of relaxation times was imposed (i.e., eπ/2ω-1
max< ω-1<e-π/2ω-1

min) and regularisation 164 

parameters were calculated with the L-curve method. 165 

Figure 1 shows the outcome of the aforementioned calculations for several high-solid 166 

samples. Besides the small-molecule co-solute system of 85% glucose syrup, all hydrocolloid 167 

based matrices extend the relaxation to several decades of the predicted timeframe. A 168 

qualitative similarity emerges in structural patterns for the high-solid macromolecular 169 

networks, and below a characteristic relaxation time of about 0.01 s predicted mechanical 170 

spectra seem to converge regardless of physicochemical fingerprint. This characteristic time, 171 

usually indicated as τo, marks the passage to a short time behavior at the onset of the glassy 172 

state and reflects the local segmental motions of the macromolecule following completion of 173 

the extended Rouse motions at the end of the glass transition region. In practice, the glassy 174 

relaxation of hydrocolloids is negligible and independent of fine structure. This behaviour is 175 

also observed in linear and flexible synthetic polymers in the short time regime (Baumgaertel, 176 

Schausberger, & Winter, 1990).  177 

Above τo, samples enter a power law relaxation regime (Figure 1, inset) revealing a non-178 

exponential behaviour whose segmental motions should depend on structural fingerprints and 179 

molecular interactions in the condensed matrix (Baumgaertel, et al., 1990; Winter & 180 

Chambon, 1986; Winter & Mours, 1997). Power law relaxation has also been observed in 181 

low-solid (40%, w/w) gluten composites (Kontogiorgos, Shah, & Bills, 2016; Ng & 182 

McKinley, 2008) that follows kinetics characteristic of that non-hydrocolloid system. 183 

Discrepancies in spectral decay are observed well into the long-time window of observation in 184 
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Figure 1. It appears that samples containing monodisperse protein chains relax slower than 185 

their polydisperse counterparts of polysaccharides. In the ensuing section, a theoretical 186 

framework will be discussed as an avenue of addressing the relationship between structure 187 

and physicochemical environment in the relaxation spectrum of hydrocolloid networks. 188 

 189 

4. Theoretical considerations of structural relaxation in relation to molecular 190 

interactions 191 

As mentioned earlier, stress relaxation spectra can be used to establish the roadmap of the 192 

mechanical glassy state and glass transition region by varying the experimental timescale or 193 

frequency of observation. The properties of vitrified materials are associated with changes in 194 

free energy, volume, or enthalpy relaxations and a common reference can be made to these 195 

quantities in an effort to obtain results with physical meaning (Ferry, 1980). In early 196 

investigations of amorphous synthetic polymers and, more recently, in high-solid 197 

hydrocolloids, the approach used extensively to develop a fundamental understanding of the 198 

mechanical glass transition region is based mainly on the concept of free volume.  199 

Free volume is a useful semi quantitative, although somewhat poorly defined, concept 200 

closely related to the hole theory of liquids. The total volume per mole, u, is pictured as the 201 

sum of the free volume, uf, and an occupied volume, uo. Ferry takes uo as including not only 202 

the van der Waals radii but also the volume associated with local vibrational motion of atoms 203 

(Ferry, 1991). The free volume is therefore that extra volume required for larger scale 204 

vibrational motions than those found between consecutive atoms of the same chain. Flexing 205 

over several atoms, that is, transverse string-like vibrations of a chain rather than longitudinal 206 

or rotational vibrations will obviously require extra room. The free volume concept is popular 207 
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partly due to it being intuitively appealing. Often but not invariably, it is able to explain 208 

observed trends correctly in synthetic polymers, low molecular weight organic liquids, 209 

inorganic compounds, high solid hydrocolloid/co-solute preparations, and is easy for workers 210 

in materials science coming from many different backgrounds. 211 

The free volume framework that has been incorporated within the Williams, Landel and 212 

Ferry (WLF) equation can be used to describe structural relaxation processes for the glass 213 

transition region according to the following form (Levine, 2002):    214 

  log aT = log [G(t)(T) / G(t)(To)] = -
oo

oo
 

T - T + )/(f
)T - )(T(B/2.303f

fα
     (2) 215 

At any reference temperature, To, equation (2) can include two constants, which relate to the 216 

free volume theory as follows: 217 

   C1
o = B / 2.303fo       and            C2

o = fo / α f   (3) 218 

where, the fractional free volume, fo, is the ratio of free to total volume of the molecule, αf  is 219 

the thermal expansion coefficient, and B is usually set to one. Application of the WLF 220 

equation to stress relaxation spectra in the glass transition region amounts to more than curve 221 

fitting since it is able to predict the mechanical glass transition temperature. This is a turning 222 

point where large configurational vibrations requiring free volume in the glass transition 223 

region cease to be of overriding importance. At lower temperatures, i.e., below Tg, the need to 224 

overcome an energetic barrier for the occurrence of local rearrangements from one state to the 225 

other becomes of primary importance, which is known as the glassy state. Progress of 226 

viscoelasticity within the glassy state is then described by the predictions of the reaction rate 227 

theory as seen in the modified Arrhenius equation (Kasapis, 2008). 228 
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Recently, there has been a certain opposition in the use of free volume, since, in physics 229 

of the densely packed systems intermolecular interactions determine volume but not vice 230 

versa. Thus interactions appear to be more fundamental and the ultimate determining factor of 231 

molecular dynamics in these materials. A new concept, “the molecular coupling model”, has 232 

been put forward to overcome the oversimplification associated with the application of free 233 

volume to the entirety of the glass transition region (Ngai, 2000). In spite of the postulates of 234 

the free volume theory that vitrification phenomena are not associated with specific details of 235 

chemical structure, it is likely, that in order to follow the development of properties within the 236 

(broad) transition region, the theory has been unable to pinpoint the intermolecular 237 

cooperative dynamics responsible for the diffusional mobility around the glass transition 238 

temperature.  239 

To move from a qualitative debate of the appropriateness of theoretical treatment, the 240 

stress relaxation modulus, G(t), at constant deformation is used in order to expedite estimation 241 

of the relaxation time within the temperature domain of vitrification. Experimental data 242 

obtained at different temperatures are superposed by shifting horizontally along the 243 

logarithmic time axis to implement the so-called method of reduced variables or time-244 

temperature superposition principle (TTS). Superposition is centred on round (centred "on" or 245 

"around" but NOT "round", please keep my edit and don't revert it again to "centred round" 246 

which an incorrect phrasal verb) the arbitrary choice of a reference temperature, To, a choice 247 

that is inconsequential as long as it is confined within the glass transition region (Paramita, 248 

Bannikova, & Kasapis, 2015). The empirical superposition of data yields a composite (or 249 

master) curve, and good matching of the shapes of adjacent curves must be achieved, a 250 

criterion that is critical for the applicability of the method of reduced variables.  251 
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Superposed values of the stress relaxation modulus, Gp(t), do not change much with time 252 

in the rubbery and glassy states, but they do rapidly in the glass transition region, i.e., up to 253 

four or five orders of magnitude. Shifting of data generates a set of shift factors, aT, which are 254 

the numerical parameters describing the extent of data reduction, as follows (Mansfield, 255 

1993):  256 

    Gp(t) = G(t) Toρo/Tρ     vs.     t/aT     (4) 257 

where, ρo is the density of the material at To. In practice, satisfactory matching of adjacent 258 

curves is achieved without the vertical shift of the temperature and density factors, since 259 

logarithmic density changes of hydrocolloid matrices are relatively small with experimental 260 

temperature compared to the rapid changes in viscoelastic functions. 261 

An example of stress-relaxation data superposition is reproduced in Figure 2 for part of 262 

the composite curve of a gelatin/co-solute sample, which constitutes the extreme short-time 263 

segment of the rubber to glass transition (Kasapis, 2006). The approach overcomes the 264 

drawbacks of analyzing, with a single model, the entirety of the rubber-to-glass dispersion, 265 

which encompasses broad temperature or time domains that activate molecular motions 266 

emanating from residual amino acids (monomers) to polymeric segments of considerable 267 

length. The gelatin/co-solute system appears to be thermorheologically simple (TS) implying 268 

that the major relaxation processes producing the master curve in Figure 2 have the same 269 

temperature dependence. This is not a universal observation and, indeed, thermorheological 270 

complexity (TC) has been reported on the superposition of stress relaxation spectra in a 271 

number of amorphous materials and epoxy resins (Ngai & Plazek, 1995). It has been reported, 272 

however, that TC is more pronounced on low molecular weight materials, with the high 273 
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molecular weight counterparts, as the present gelatin fraction (Mn = 67,200), exhibiting good 274 

superposition of mechanical data hence leading to thermorheological simplicity. 275 

The analysis becomes more explicit considering that even in thermorheologically simple 276 

systems the “softening dispersion” of the transition zone unveils a variety of mechanisms 277 

from the Gaussian submolecular motions of the extended Rouse model to the local segmental 278 

motions. At best, the former accounts for the long time portion of the glass transition region. 279 

Interesting physical phenomena, however, leading to the completion of vitrification with 280 

decreasing temperature, for example, are related to local segmental motions within the 281 

Gaussian submolecule (Huang, Szleifer, & Peppas, 2002). Tobolsky and co-workers first dealt 282 

with the motions, which were found to deviate from the predictions of the extended Rouse 283 

model, in the vitrification of synthetic polymers (Tobolsky &  Aklonis, 1964). Subsequently, 284 

it became apparent that the relaxation pattern of these sub-Rouse and local segmental modes 285 

at high frequencies or short times of the glass transition region depended on the chemical 286 

structure of the macromolecule. For example, the contrasting behaviour of the master curves 287 

of polystyrene and polyisobutylene constitute focal points of discussion in this respect. 288 

 The nature of the local segmental motions is responsible for the glass transition 289 

temperature of an individual system, as monitored using several well-established techniques. 290 

In particular, the extent of interactions between neighbouring segments relates to the 291 

distribution of relaxation times, and can be followed by the so-called stretched exponential 292 

function of Kohlrausch, Williams and Watts (KWW) in the time domain (Ngai & Roland, 293 

2002): 294 

     φ(t) = exp[- (t / τ)β]    (5)          295 

 296 
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where, τ is the relaxation time. The stretch exponent β can take values between 0 and 1.0 thus 297 

imparting a non-exponential character to the kinetics of structural relaxation of synthetic 298 

glasses. At the times appropriate for mechanical measurements, equation (5) recasts for the 299 

stress relaxation modulus of the present investigation as follows (Ngai, Magill, & Plazek, 300 

2000):  301 

    G(t) = (Gg – Ge) exp[– (t / τ)1-n] + Ge   (6) 302 

where, Gg is the unrelaxed glassy modulus, Ge is the relaxed or equilibrium modulus of the 303 

local segmental motions and t is the time after the application of a fixed strain. The coupling 304 

constant, n (β = 1 - n), ranges from 0 to 1.0 and reflects the intensity of interactions (coupling) 305 

between the primitive (underlying) relaxation and the physicochemical environment of the 306 

surrounding materials.  307 

The KWW function of equation (6) was utilised to fit the stress relaxation data of the 308 

gelatin/co-solute sample in Figure 2 at the glass transition temperature (Tg = - 30°C) where, 309 

besides the local segmental motions, other molecular mechanisms should have a minimal 310 

contribution to the relaxation spectrum. Equation (6) is applicable to relaxation patterns 311 

reflecting segmental mobility and, therefore, values of experimental functions should fall 312 

within the range: Gg > G(t) > Ge. Secondary (β) relaxations would be responsible for the 313 

region G(t) > Gg, whereas extended Rouse-like modes are expected to dominate at G(t) < Ge. 314 

Values of Gg and Ge were taken to be about 1.5 x 1010 and 3.5 x109 Pa, respectively. This is in 315 

accordance with experience from the synthetic polymer research, e.g., results on unplasticized 316 

and plasticized poly(vinyl chloride), where the unrelaxed to relaxed modulus ratio is between 317 

4.0 and 4.5, and modeling provides an adequate fit of the short-time section of the normalized 318 

spectrum (Ngai, 1999).  319 
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As shown in Figure 3, the two-parameter KWW function follows well the progression of 320 

superposed stress relaxation data reflecting the local segmental motion and returns τ and n 321 

values of ≈ 0.2 x 10-4 s and 0.57 for the gelatin/co-solute preparation at – 30 °C. The higher 322 

the value of n, the stronger the intermolecular coupling, which originates from the chemical 323 

structure of the macromolecule and its surrounding environment. Experimentally, it was 324 

found that the n values of strongly interlinking or sterically interfering chains of synthetic 325 

materials range between 0.66 and 0.77 (e.g., poly(vinyl chloride), poly(methylmethacrylate)) 326 

(Hutchinson, 1995). Work on the biological glass of gelatin/co-solute estimates a coupling 327 

constant of 0.57 (Kasapis, 2006). This is reasonable, in view of the non-aggregating nature of 328 

the gelatin molecule, and the recent finding in the literature that a decrease in the surface of 329 

contact between the protein and polyhydroxyl co-solute is necessary to induce 330 

thermodynamically favourable conditions in the mixture. 331 

Treating a single molecular-weight fraction of gelatin with the combined framework of 332 

coupling theory/non-exponential KWW equation encouraged further explorations in the 333 

structural properties of biological glasses. A logical sequel of the aforementioned approach 334 

was to examine its applicability to the first four extracts of the protein from a single batch of 335 

cowhide produced by alkaline hydrolysis of collagen (type B). These are noted here as PC1, 336 

PC2, PC3 and PC4, with the weight average molecular weights (Mw) of the four fractions 337 

from PC1 to PC4 being 317.7, 283.6, 228.9 and 197.4 kD, respectively. Fitting the master 338 

curves of superposed stress relaxation modulus with the KWW equation allows estimation of 339 

coupling constants, which range from 0.549 to 0.582 (Jiang, Kasapis, & Kontogiorgos, 2012). 340 

This treatment of mechanical data via KWW modeling is shown in Figure 3, which produces 341 

increasingly higher values of the coupling constant with gelatin molecular weight. 342 
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That was the first demonstration of a specific relationship between coupling constant and 343 

molecular weight of a high-solid hydrocolloid preparation. The higher the value of coupling 344 

constant the stronger the intermolecular coupling, an outcome which invites comparison with 345 

data from other systems found in the literature. This is facilitated by considering the structural 346 

properties of the glass dispersion in high-solid gelling polysaccharides. Work was carried out 347 

in systems of 2.0% agarose plus 78.0% glucose syrup, 0.5% κ-carrageenan plus 79.5% 348 

glucose syrup at 10 mM added KCl, and 1.0% deacylated gellan plus 79.0% glucose syrup at 349 

7.5 mM added CaCl2. KWW modeling of stress relaxation data for the three polysaccharide 350 

samples at their short-time end of the glass transition region yielded n values between 0.59 351 

and 0.64 (Jiang, et al., 2011). Therefore, the estimates for gelatin, in terms of the increasing 352 

values of the coupling constant with molecular weight that facilitates structure formation, are 353 

reasonable compared to the corresponding n values for vitrified polysaccharide matrices. 354 

Polysaccharides have highly persistent backbone geometry, in comparison to the flexible 355 

and non-aggregating gelatin chain, which should enhance interactions between adjacent 356 

macromolecules (Kasapis, 2005). In addition, polysaccharides exhibit distinct topology from 357 

that of gelatin, which micro phase separates in mixture with polyxydroxyl compounds, with 358 

their networks effectively being dissolved within the saturated co-solute environment 359 

(Kasapis, Al-Marhoobi, Deszczynski, Mitchell, & Abeysekera, 2003). Such distinct topology 360 

should further enhance interactions between macromolecules and surrounding 361 

physicochemical environment in polysaccharide/co-solute mixtures seen in higher values of 362 

the coupling constant, as compared to the estimates for the gelatin/co-solute system. 363 

 364 

 365 
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5. Conclusions 366 

We have reviewed structural relaxation spectra from the literature in an effort to evaluate 367 

the application of current theoretical frameworks to mechanical variation recorded through the 368 

rubber to glass transition region. Discussion focused mainly on gelling polysaccharide/co-369 

solute systems, four distinct molecular fractions of gelatin in mixture with co-solute and whey 370 

protein samples in comparison with corresponding work from amorphous synthetic polymers. 371 

This type of analysis is obviated by the broad range of experimental times of stress relaxation 372 

recorded in isothermal tests over temperatures that traverse the softening dispersion. 373 

Utilization of the method of reduced variables proved successful in superposing experimental 374 

data to yield master curves of mechanical profiles that separate the basic functions of time and 375 

temperature in hydrocolloid relaxation.  376 

Fundamental insights into the local segmental motions responsible for intermolecular 377 

interactions in the vicinity of the glass transition temperature were gained by calculation of 378 

the stress relaxation spectra. Interactions with the surrounding physicochemical environment 379 

yield relaxation times below 0.01 sec, an outcome that reflects the rapid local segmental 380 

motions of hydrocolloid chains. The molecular coupling theory of cooperativity was used to 381 

predict the extent of coupling in adjacent interactions, which was found to increase with 382 

molecular weight of high-solid gelatin fractions. Comparisons were afforded with the 383 

coupling constants of other macromolecules (gelling polysaccharides and amorphous 384 

synthetics) based on backbone conformational mobility or pendant-group rotational mobility. 385 

It remains to be seen if comparable levels of understanding achieved for the gelatin/co-solute 386 

mixture can be reached in relation to the molecular weight of polysaccharides, which exhibit 387 
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distinct three-dimensional morphology from that of the protein in condensed mixtures with 388 

co-solute. 389 
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 535 

FIGURE LEGENDS 536 

 537 

Figure 1: Relaxation spectra of high-solid hydrocolloid systems, which are divided into two 538 

regions: a short-time glassy regime where relaxation is insignificant and a power law glass-539 

transition region that depends on hydrocolloid structure, with the inset depicting an idealized 540 

schematic with the relaxation time of local segmental motions.  541 

 542 

Figure 2: Short-time part of the stress-relaxation master curve for 15% gelatin, 31.5% 543 

glucose syrup and 31.5% sucrose at the reference temperature of -30°C, with the solid line 544 

following the predictions of the stretched exponential KWW function (with permission from 545 

Kasapis, 2006). 546 

 547 

Figure 3: Coupling constant variation plotted against weight-average molecular weight for 548 

four gelatin fractions (PC1 to PC4) of 15% protein and 65% glucose syrup (with permission 549 

from Jiang, Kasapis & Kontogiorgos, 2012). 550 

 551 
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