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Abstract: The complex [Os(btzpy)2][PF6]2 (1, btzpy = 2,6-bis(1-phenyl-1,2,3-triazol-4-yl)pyridine) has
been prepared and characterised. Complex 1 exhibits phosphorescence (λem = 595 nm, τ = 937 ns,
φem = 9.3% in degassed acetonitrile) in contrast to its known ruthenium(II) analogue, which is
non-emissive at room temperature. The complex undergoes significant oxygen-dependent quenching
of emission with a 43-fold reduction in luminescence intensity between degassed and aerated
acetonitrile solutions, indicating its potential to act as a singlet oxygen sensitiser. Complex 1
underwent counterion metathesis to yield [Os(btzpy)2]Cl2 (1Cl), which shows near identical optical
absorption and emission spectra to those of 1. Direct measurement of the yield of singlet oxygen
sensitised by 1Cl was carried out (φ (1O2) = 57%) for air equilibrated acetonitrile solutions. On the
basis of these photophysical properties, preliminary cellular uptake and luminescence microscopy
imaging studies were conducted. Complex 1Cl readily entered the cancer cell lines HeLa and U2OS
with mitochondrial staining seen and intense emission allowing for imaging at concentrations as
low as 1 µM. Long-term toxicity results indicate low toxicity in HeLa cells with LD50 >100 µM.
Osmium(II) complexes based on 1 therefore present an excellent platform for the development of
novel theranostic agents for anticancer activity.

Keywords: triazole; osmium; photophysics; complexes; ligands; anticancer; oxygen sensitizer

1. Introduction

Oligopyridyl complexes of kinetically inert d6 metals, e.g., Ru(II), Os(II), have attracted enormous
interest in recent decades due to their attractive photophysical properties [1–4]. These complexes
typically exhibit relatively long-lived triplet metal-to-ligand charge transfer (3MLCT) states.
These states may undergo deactivation through a number of routes including phosphorescence or
energy/electron transfer which enables the potential application of these complexes in light-emitting [5]
and photovoltaic technologies [6]. Key to the development of complexes for these applications is the
design of the ligands supporting these metals. We, and others, have paid particular attention to the
use of copper-catalysed coupling of alkynes and azides to form 1,2,3-triazole-based ligands [7–10] and
have investigated the photophysical properties of their resultant complexes. A significant number of
reports have appeared detailing the photophysical and photochemical properties of triazole-based
complexes of Re(I), Ru(II) and Ir(III) [11–25]. Examples of triazole-containing complexes of osmium(II)
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are, however, comparatively rare. We have recently reported the synthesis and characterization of
deep-red/near-IR emissive osmium(II) bitriazolyl (btz) complexes and demonstrated their use in
light-emitting electrochemical cells [19].

Of recent and growing interest has been the use of luminescent complexes in biological
applications [26–28]. Since phosphorescence is longer-lived than the autofluorescence from
biological organic compounds, emissive complexes are amenable to use in time-gated imaging
microscopy [29–31]. Osmium(II) complexes, however, often exhibit lower energy spin-forbidden direct
3MLCT optical absorption bands of moderate extinction coefficient due to the high spin-orbit coupling
constant for the osmium centre [32,33]. This offers the advantage of enabling efficient excitation
at lower energies that therefore avoids potential cellular damage and negates autofluorescence
and the necessity of the added expense of time-gated apparatus. These absorption and emission
bands at wavelengths closer to the red in comparison to those of common iridium(III) complexes,
and therefore in a more biologically transparent region of the spectrum, will also enable greater
depth of penetration for excitation and imaging. Complexes of osmium(II) are also typically highly
inert to ligand photosubstitution making them highly robust [34] (although the unprecedentedly
facile ligand photoejection in the complex [Os(btz)3]2+ was recently reported [35]). The intensity of
phosphorescence is, however, sensitive to the presence of oxygen resulting in quenching through
conversion of ground state 3O2 to reactive 1O2, thus enabling exploitation in photodynamic therapy
(PDT) [36]. These combined properties thus present significant opportunities for the development of
unique dual-mode theranostic agents.

We report here the synthesis and characterization of the orange-emissive bis(terdentate)
osmium(II) complex [Os(btzpy)2]2+ (btzpy = 2,6-bis(1-phenyl-1,2,3-triazol-4-yl)pyridine) as its
hexafluorophosphate (1) and chloride (1Cl) salts. The complex shows significant dependence of
emission intensity on the presence of oxygen. The water soluble chloride salt 1Cl has been subjected to
preliminary cellular uptake and luminescence imaging studies and relevant results are reported.

2. Results & Discussion

Complex 1 was prepared by reaction of two equivalents of the ligand btzpy [37,38] with
[OsCl6][NH4]2 in refluxing ethylene glycol (Scheme 1). After being left to cool, the complex
was isolated as an orange powder, its hexafluorophosphate salt, through treatment with NH4PF6.
The 1H-NMR spectrum of 1 exhibits a characteristic singlet resonance for four equivalent triazole
ring protons at δ 9.13, which is deshielded relative to the corresponding signal for the free
ligand by 0.16 ppm. The protons of the central pyridine ring give rise to doublet and triplet
resonances at δ 8.36 and 8.01, respectively, with those for the phenyl substituents resulting in
multiplets between δ 7.50 and 7.60. For spectroscopic comparison the complex [Os(tolterpy)2][PF6]2

(2, tolterpy = 4′-p-tolyl-2,2′:6′,2′ ′-terpyridine) was also prepared.
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Scheme 1. Synthesis of [Os(btzpy)2][PF6]2 (1).

The electrochemical properties of 1 were investigated by cyclic voltammetry (CV) and reveal
a reversible Os(II)/Os(III) oxidation at +0.64 V (vs Fc/Fc+ = 0.0 V). This is close to that exhibited
by the known model complex 2 (Eox = +0.49 V) and other related osmium(II) complexes [39–41]
indicating that the highest occupied molecular orbital (HOMO) has primarily metallic 5d orbital
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character. Unlike in the CV trace for 2, no ligand-based reductions are observed for 1 within the
available electrochemical window (−2.0 to +1.2 V), which is indicative of the higher energy lowest
unoccupied molecular orbital (LUMO) localized on the btzpy ligand compared to that for the tolterpy
complex. This LUMO destabilisation is consistent with previously reported data on the ruthenium(II)
analogue of 1 versus [Ru(terpy)2]2+ (terpy = 2,2′:6′,2′ ′-terpyridine) [42–44].

UV-visible absorption spectra were recorded for 1 and 2 in acetonitrile solutions at room
temperature (Figure 1a and Table 1). The spectrum of 1 exhibits a strong absorption at 297 nm
assigned to ligand-centred π→π* transitions localized on the btzpy ligand along with a broad band
between 350 and 400 nm assigned to 1MLCT transitions. This is significantly blue-shifted relative
to that observed for 2 (491 nm) consistent with the btzpy ligand, and hence its complex, having
a much higher energy LUMO as indicated from the CV data described above. Similarly to the data
for 2, complex 1 also exhibits absorptions of lesser intensity at longer wavelengths corresponding to
spin-forbidden direct 3MLCT excitations (λmax = 526 nm) from the singlet ground state enabled by the
large spin-orbit coupling constant associated with the osmium centre [32,33].
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Figure 1. (a) UV-visible absorption spectra for 1 and 2 in acetonitrile solutions and 1Cl in aqueous
solution at room temperature; (b) normalized emission spectra of complexes 1 and 2 in de-aerated
acetonitrile solutions and 1Cl in aerated aqueous solution at room temperature (solid lines) and
complexes 1 and 2 in 4:1 EtOH/MeOH glasses at 77 K (dashed lines).

Table 1. Summarised photophysical data for 1, 1Cl and 2 in acetonitrile.

Complex λabs/nm 1 (ε/dm3·mol−1·cm−1) λem/nm 1 τ/ns 2,3 φem/% 2,4 λem/nm 5

1 526 (3025), 434 (5700), 382 (19,500),
337 (13,500), 297 (68,500), 288 (49,000) 595 6 937 ± 12 9.3 564, 606 6

1Cl 534 (3315), 438 (5800), 390 (24,750),
345 (17,350), 297 (90,800), 287 (62,500)

599 6

(589) 6,8
884 ± 6

(273 ± 3) 8
9.7 (5.4)

8 -

2 669 (5070), 645 (4600), 491 (1930), 406
(7520), 314 (54,300), 286 (48,000) 738 7 339 ± 4 3.2 718, 795 7

1 RT, acetonitrile solutions; 2 Degassed MeCN at RT; 3 λex = 405 nm; 4 Relative to [Ru(bpy)3][PF6]2 φem = 0.018 in
aerated MeCN [45]; 5 77 K, 4:1 EtOH/MeOH glass; 6 λex = 500 nm; 7 λex = 600 nm; 8 Aerated aqueous solution.

In stark contrast to its ruthenium(II) analogue, 1 is emissive at room temperature in de-aerated
acetonitrile solutions, with the emission being characterized by a broad featureless band at 595 nm
(λex = 500 nm) and a lifetime of 937 ns (Figure 1b and Table 1) attributed to an emissive 3MLCT state.
Bis(tridentate) complexes of ruthenium(II) typically show little or no emission at room temperature
as the deviation from an ideal octahedral-like coordination geometry results in stabilization of triplet
metal-centred (3MC) states relative to the 3MLCT state [46,47]. As such, 3MC states are efficiently
populated from photoexcited 3MLCT states thereby quenching emission. The observed emission
for 1 must therefore arise from the destabilization of the 3MC states due to the typically larger
ligand-field splitting associated with the 5d metal centre over its 4d counterpart, such that non-radiative
depopulation of the emissive 3MLCT state is comparatively disfavoured. Mirroring the UV-visible
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absorption data, the emission spectra of 1 are significantly blue-shifted relative to those of 2 by 143 nm
(3260 cm−1) indicative of the comparatively destabilized LUMO for 1, and hence also its 3MLCT state.
The emission spectrum was also recorded at 77 K in a 4:1 EtOH/MeOH glass matrix and shows a
structured emission band that is blue-shifted relative to the spectrum at room temperature due to
rigidochromic effects.

Emission intensity from 1 is dramatically affected by the presence of oxygen (Figure 2) and is
quenched by approximately 43-fold when recorded in air compared to deaerated conditions. The long
lifetime of emission combined with the oxygen sensitivity confirms the assignment of a 3MLCT-based
emissive state. This significant quenching of emission by oxygen thus presents the possibility of
utilizing complexes based on 1 as potential 1O2 sensitizers for photodynamic therapeutic applications.
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at λmax for the degassed solution and solution at the partial pressure of oxygen at which emission is
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Complex 1 was also studied by density functional theory (DFT) calculations to confirm the nature,
localisation and relative energies of the frontier orbitals as well as to simulate the optical absorption
spectrum. The data reveal that the HOMO is localized primarily on the osmium(II) centre as expected
(Figure 3a) but with a small contribution from the π-systems of the four triazole rings. The LUMO is
localized on one of the btzpy ligands, predominantly on the central pyridine ring and with a lesser
contribution from the triazole rings (Figure 3b) but also a metallic d-orbital contribution. The HOMO of
1 is slightly stabilized (−10.63 eV) relative to that of 2 (−10.35 eV) in agreement with the experimental
electrochemical data. The LUMO (−6.95 eV) on the other hand is significantly destabilized relative
to that of 2 (−7.32 eV) due to the smaller π-system associated with the btzpy ligand compare to
tolterpy and due to the electron rich triazole moieties. This results in a larger HOMO–LUMO gap for
1 of 3.68 eV compared to that for 2 (3.03 eV) mirroring the significantly blue-shifted absorption and
emission data.
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Time-dependent DFT was used to calculate the lowest energy 30 singlet state vertical excitations
at the ground state geometry along with the lowest energy 10 spin-forbidden triplet excitations
for 1. The data agree well with the experimental spectra (Supporting Information) but with a
slight overestimation of the energies of transitions compared to bands in the UV-visible absorption
spectrum. The S1 state is calculated to have an energy of 2.74 eV (452 nm) and is primarily HOMO
→ LUMO 1MLCT in character. The first major transition (S7, 374 nm) is predominantly composed of
a HOMO → LUMO+2 transition and is similarly of 1MLCT character confirming our experimental
assignment of the band in this region of the UV-visible absorption spectrum. The T1 transition is
calculated to be at 512 nm (2.42 eV), is of mixed HOMO-2 → LUMO+1 and HOMO-1 → LUMO
character and is therefore in agreement with the assignment of the lesser intensity absorptions between
450 and 550 nm as arising from spin-forbidden direct 3MLCT transitions.

The lowest lying triplet state of 1 was optimized starting from the optimized ground state
geometry and is calculated to lie 2.40 eV above the energy of the ground state. The spin density was
plotted and is presented in Figure 3c. It reveals unpaired electron density on both the metal and one
of the btzpy ligands confirming the 3MLCT character of this T1 state. Curiously, unlike in the case
of 2, the T1 state of 1 undergoes a puckering like distortion of the btzpy ligand on which the unpaired
electron density is localized. Such distortions have been observed, however, in theoretical calculations
of the T1 states of bis(tridentate) ruthenium(II) cyclometalated complexes [48] and [Os(terpy)2]2+ [49].

Conversion to the chloride salt, [Os(btzpy)2]Cl2 (1Cl), was achieved by stirring a suspension of 1
in methanol with Amberlite IRA-400 ion-exchange resin (chloride form) before filtering, removal of
solvent and freeze-drying from aqueous solution. Removal of the hexafluorophosphate couterion was
confirmed by the lack of the corresponding resonances in the 19F- and 31P-NMR spectra. The UV-visible
absorption spectrum of 1Cl (Figure 1) in aqueous solution is near identical to that of its analogous
hexafluorophosphate salt 1 in acetonitrile. The complex is also emissive in aerated aqueous solution
with an emission maximum at 589 nm, very slightly blue-shifted relative to that of 1 in acetonitrile.

Based on the highly encouraging photophysical data reported above we decided to carry out
preliminary studies on cell uptake and toxicity. Complex 1Cl was seen to localise to the mitochondria
in the cancer cell lines HeLa (cervical cancer) and U2OS (osteosarcoma) following a short incubation
time of 4 h and with clear phosphorescence seen at concentrations as low as 1 µM. Colocalisation with
the mitochondrial stain MitoView 633 was seen under confocal microscopy (Figure 4), giving Pearson′s
correlation coefficients of r = 0.85 and 0.7 for HeLa and U2OS cells respectively. A Pearson′s correlation
coefficient of 1 indicates complete concurrence of the stains, while 0 indicates no concurrence hence
these values indicate that complex 1Cl preferentially localises to the mitochondria.

Molecules 2016, 21, 1382 5 of 12 

 

Time-dependent DFT was used to calculate the lowest energy 30 singlet state vertical excitations 
at the ground state geometry along with the lowest energy 10 spin-forbidden triplet excitations for 1. 
The data agree well with the experimental spectra (Supporting Information) but with a slight 
overestimation of the energies of transitions compared to bands in the UV-visible absorption 
spectrum. The S1 state is calculated to have an energy of 2.74 eV (452 nm) and is primarily HOMO → 
LUMO 1MLCT in character. The first major transition (S7, 374 nm) is predominantly composed of a 
HOMO → LUMO+2 transition and is similarly of 1MLCT character confirming our experimental 
assignment of the band in this region of the UV-visible absorption spectrum. The T1 transition is 
calculated to be at 512 nm (2.42 eV), is of mixed HOMO-2 → LUMO+1 and HOMO-1 → LUMO 
character and is therefore in agreement with the assignment of the lesser intensity absorptions 
between 450 and 550 nm as arising from spin-forbidden direct 3MLCT transitions. 

The lowest lying triplet state of 1 was optimized starting from the optimized ground state 
geometry and is calculated to lie 2.40 eV above the energy of the ground state. The spin density was 
plotted and is presented in Figure 3c. It reveals unpaired electron density on both the metal and one 
of the btzpy ligands confirming the 3MLCT character of this T1 state. Curiously, unlike in the case of 
2, the T1 state of 1 undergoes a puckering like distortion of the btzpy ligand on which the unpaired 
electron density is localized. Such distortions have been observed, however, in theoretical 
calculations of the T1 states of bis(tridentate) ruthenium(II) cyclometalated complexes [48] and 
[Os(terpy)2]2+ [49]. 

Conversion to the chloride salt, [Os(btzpy)2]Cl2 (1Cl), was achieved by stirring a suspension of 1 
in methanol with Amberlite IRA-400 ion-exchange resin (chloride form) before filtering, removal of 
solvent and freeze-drying from aqueous solution. Removal of the hexafluorophosphate couterion 
was confirmed by the lack of the corresponding resonances in the 19F- and 31P-NMR spectra. The UV-
visible absorption spectrum of 1Cl (Figure 1) in aqueous solution is near identical to that of its 
analogous hexafluorophosphate salt 1 in acetonitrile. The complex is also emissive in aerated aqueous 
solution with an emission maximum at 589 nm, very slightly blue-shifted relative to that of 1 in 
acetonitrile. 

Based on the highly encouraging photophysical data reported above we decided to carry out 
preliminary studies on cell uptake and toxicity. Complex 1Cl was seen to localise to the mitochondria 
in the cancer cell lines HeLa (cervical cancer) and U2OS (osteosarcoma) following a short incubation 
time of 4 hours and with clear phosphorescence seen at concentrations as low as 1 μM. Colocalisation 
with the mitochondrial stain MitoView 633 was seen under confocal microscopy (Figure 4), giving 
Pearson′s correlation coefficients of r = 0.85 and 0.7 for HeLa and U2OS cells respectively. A Pearson′s 
correlation coefficient of 1 indicates complete concurrence of the stains, while 0 indicates no 
concurrence hence these values indicate that complex 1Cl preferentially localises to the mitochondria.  

 
Figure 4. Confocal images of complex 1Cl (green) following 4 h incubation in HeLa and U2OS cells co-
localised with Mitoview 633 (red) with central overlaid image, scale bars 20 μm. 

H
eL

a 
C

el
ls

 

Complex 1 (1μM) Mitoview 633 Merge 

U
2O

S
 C

el
ls

 

Figure 4. Confocal images of complex 1Cl (green) following 4 h incubation in HeLa and U2OS cells
co-localised with Mitoview 633 (red) with central overlaid image, scale bars 20 µm.
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The cellular viability of HeLa cells following incubation with complex 1Cl at concentrations up
to 100 µM was assessed by MTT assay (Figure 5). In addition, long-term survival was assessed
using clonogenic assays and indicated an LD50 > 100 µM in dark conditions. This shows that
at a concentration effective for luminescence imaging microscopy the complex is non-cytotoxic,
lending support to potential use as a PDT agent where non-toxicity in the dark is desired.
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Figure 5. (A) MTT and (B) Clonogenic survival assays following incubation of HeLa cells with
increasing concentrations of complex 1Cl in the dark. In each case, mean and standard deviation of at
least 3 independent repeats is shown.

The yield of singlet oxygen generation, φ (1O2), of complex 1Cl was measured in air-equilibrated
acetonitrile against the standard perinaphthenone. A φ (1O2) of 57% was determined by direct
measurement of the 1∆g state emission from 1O2 in the NIR (λem 1275 nm) under 355 nm irradiation by
a pulsed Nd:YAG laser as described previously [50]. It is proposed that apoptotic cell death after light
treatment is associated with localisation of photosensitizers to mitochondria [51]. Thus the sub-cellular
localisation, long-term survival following treatment of cancer cells with complex 1Cl in the dark and
the high singlet oxygen yield of 57% indicate the potential for this complex as a photosensitizer for PDT
theranostic applications. We recognize that the wavelengths of absorption for 1Cl are at relatively high
energy compared to the ideal for a PDT agent and thus are not at the optimum position for maximum
tissue penetration for excitation. However, modification of the basic design of the complex by making
the ligand more electron-withdrawing, for example, should be a relatively easy task. Stabilisation of the
LUMO, thus decreasing the HOMO-LUMO gap, would shift the electronic absorption of the complexes
into the desired lower energy region of the spectrum. Based on these encouraging results, work is
currently underway to fully determine the anticancer activity of 1Cl and for the further development
of 1Cl and analogues thereof as a new class of potential PDT agents.

3. Conclusions

We have reported the synthesis, characterisation and photophysical properties of a novel
luminescent osmium(II) triazole-based complex. The complex has been shown to exhibit significant
quenching of luminescence intensity in the presence of oxygen and a high quantum yield for singlet
oxygen sensitization as its chloride salt, indicating potential applications in photodynamic therapy
as well as luminescence imaging microscopy. The water soluble chloride form of the complex was
subjected to preliminary cellular uptake and luminescence imaging microscopy studies. The results
from these studies reveal that the complex is successfully taken up by two cancer cell lines with
mitochondrial localization and low dark toxicity.

The use of CuAAC coupling in ligand synthesis opens up diverse avenues for tailored
derivitisation and bioconjugation that would enable the optimisation of cellular uptake and a wider
scope for organelle targeting within cells. Combined with the attractive photophysical properties, the
complex described in this contribution represents a highly versatile platform for the development of
dual-mode luminescence imaging/singlet oxygen sensitisation photodynamic theranostic complexes.
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Plans to pursue these studies are in progress and results from these studies will be published elsewhere
in due course.

4. Experimental Section

4.1. General Methods

Ammonium hexachloroosmate(IV) was purchased from Alfa Aesar (Ward Hill, MA, USA) whilst
all other reagents were purchased from Sigma-Aldrich (Saint Louis, MO, USA), Acros Organics
(Thermo Fisher Scientific, Geel, Belgium) or Fluorochem (Hadfield, UK) and used as supplied.
The ligand btzpy [37] and complex 2 [52] were prepared by literature procedures. NMR spectra
were recorded on a Bruker Ascend 400 MHz spectrometer (Billerica, MA, USA), with all chemical shifts
being quoted in ppm referenced relative to the residual solvent signal (MeCN, 1H: δ = 1.94, 13C: 1.32,
118.26; DMSO, 1H: δ = 2.50, 13C: 39.52 ). High-resolution mass spectrometry was performed on an
Agilent 6210 TOF instrument (Santa Clara, CA, USA) with a dual ESI source. UV-visible absorption
spectra were recorded on an Agilent Cary 60 spectrophotometer whilst emission spectra were recorded
on a Fluoromax 4 spectrophotometer (aerated and degassed in acetonitrile and data at 77 K in a
4:1 EtOH/MeOH glass). Lifetime measurements were performed using an Edinburgh instruments
Mini-Tau spectrometer (Edinburgh, UK). Emission quantum yields (φem) were measured for degassed
MeCN solutions, with degassing carried out via three repeat freeze-pump-thaw cycles. Quantum
yields are quoted relative to [Ru(bpy)3][PF6]2 in aerated MeCN, with analyte solutions being excited
at a single wavelength at a point of common optical density. Thus, φem values are determined from
the ratio of integrated area under the corrected peaks, with an assumed experimental uncertainty of
±20%. Cyclic voltammograms were recorded using an Autolab PGSTAT100N potentiostat with NOVA
electrochemical software (version 1.10.1.9). Analyte solutions were prepared using nitrogen saturated
dry acetonitrile, freshly distilled from CaH2. All measurements were conducted at room temperature
under a stream of dry nitrogen at potential scan rates ranging from 20 to 500 mV·s−1. [NBu4][PF6]
was used as a supporting electrolyte, being recrystallised from ethanol and oven dried prior to use,
with a typical solution concentration of 0.2 mol dm−3. The working electrode was a platinum disc,
with platinum wire utilised as the counter electrode. The reference electrode was Ag/AgCl, being
chemically isolated from the analyte solution by an electrolyte containing bridge tube tipped with a
porous frit. Ferrocene was employed as an internal reference, with all potentials quoted relative to the
Fc+/Fc couple

4.2. Synthesis of [Os(btzpy)2][PF6]2 (1)

Ammonium hexachloroosmate(IV) ([(NH4)2OsCl6], 150 mg, 0.341 mmol) and 2.5 equivalents of
2,6-bis(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine (310 mg, 0.85 mmol) in ethylene glycol (25 cm3) was
heated at reflux overnight under nitrogen. The resulting mixture was then allowed to cool to room
temperature. 2.5 equivalents of aqueous NH4PF6 was added resulting in a dark brown precipitate
which was collected by filtration and washed with cold water and diethyl ether. This was then
redissolved in acetonitrile, cooled in the fridge overnight and filtered to remove unreacted ligand.
The solvent was removed from the filtrate and the residue recrystallized from dichloromethane/hexane
to give an orange powder. Yield = 185 mg, 45%; 1H-NMR (400 MHz, CD3CN): δ 9.13 (s, 4H); 8.36
(d, J = 8.0 Hz, 4H); 8.01 (t, J = 8.0 Hz, 2H); 7.49–7.60 (m, 20H). 13C-NMR (101 MHz, CD3CN): δ 153.26,
151.74, 138.26, 136.94, 131.12, 131.07, 124.98, 121.64, 120.18. ESI HRMS: calculated for [C42H30N14Os]2+

m/z = 461.1191; found m/z = 461.1195.

4.3. Synthesis of [Os(btzpy)2]Cl2 (1Cl)

A suspension of 1 (100 mg, 0.083 mmol) in methanol (25 cm3) was stirred with Amberlite IRA-400
ion-exchange resin (chloride form, 200 mg) for 24 h at R.T. in the dark. The resin was removed by
filtration and the solvent then removed by evaporation. The residue was then dissolved in water and
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the solution was freeze dried to yield 1Cl as an orange powder. Yield = 71 mg, 87 % 1H-NMR (400 MHz,
d6-DMSO): δ 10.15 (s, 4H); 8.58 (d, J = 8.0 Hz, 4H); 8.21 (t, J = 8.0 Hz, 2H); 7.66–7.72 (m, 8H); 7.47–7.57
(m, 12H). 13C-NMR (101 MHz, d6-DMSO): δ 152.01, 150.32, 137.57, 135.58, 130.08, 130.00, 125.27, 120.46,
119.31. ESI HRMS: calculated for [C42H30N14Os]2+ m/z = 461.1191; found m/z = 461.1192.

4.4. Computational Details

The geometries of cations for complexes 1 and 2 were optimized using DFT calculations at the
B3LYP [53,54] level of theory (20% Hartree-Fock). Phenyl substituents of the btzpy ligand were
simplified to methyl groups to reduce computational cost. The Stuttgart-Dresden relativistic small
core effective pseuopotential and basis set was used for osmium [55] and 6-311G* basis sets used for
all other atoms [56]. Optimised minima were confirmed through vibrational frequency calculations.
TDDFT calculations were carried out at the optimized ground state geometries to compute the vertical
excitation energies (lowest 30 singlet and 10 triplet roots) and hence the simulated optical absorption
spectra. The T1 states were also optimized and the spin density calculated and plotted. All calculations
were carried out using the NWChem 6.6 software package [57] with geometries, molecular orbital
surfaces and spin densities viewed and plotted using the ECCE graphical user interface.

4.5. Cell Culture

Both HeLa (human cervical cancer) and U2OS (human bone osteosarcoma) cell lines were
purchased from American Type Culture Collection–LGC partnership (Teddington, UK) and used
within 20 passages of purchase. Cells were cultured in Dulbecco′s modified Eagles Medium (DMEM)
(Lonza, Cambridge, UK) with 10% fetal calf serum (FCS) (Lonza, Cambridge, UK) and incubated at
37 ◦C under 5% CO2. Both cell lines were routinely checked for mycoplasma infection. Complex 1Cl

was stored as a stock solution at 10 mM in DMSO.

4.6. Luminescence Imaging and Colocalisation Studies

Cover glasses (22 × 22 mm) were sterilised (industrial methylated spirits, IMS) and placed flat
in 6-well plates. Cells were seeded at a density of ~1 × 105 cells per well and allowed to adhere
overnight in culture media. Complex 1Cl (1 µM) was added and incubated for 4 h, for co-localisation
studies MitoView™ 633 (Biotium) was added for the final 15 min, prior to cells being washed 3 times
in PBS and fixed in 4% paraformaldehyde solution in PBS at 4 ◦C for 20 min. Following a further wash
(PBS × 3) the coverslips were mounted to microscope slides (IMMU-MOUNT™, Life Technologies Ltd.,
Paisley, UK). The slides were imaged by confocal microscopy (Nikon A1 confocal) using a 60× lens
(CFI Plan Apochromat VC 60× oil, NA 1.4). An argon laser (405 nm and 561 nm) was used to excite
complex 1Cl and a diode laser (642 nm) was used to excite MitoView™ 633. Colocalisation indices were
calculated using the open source imaging software Fiji (based on ImageJ) and the coloc 2 colocalisation
tool. The threshold regression chosen was Bisection.

4.7. Cell Viability Assay-MTT

96-well plates were seeded with HeLa cells at 1000/well and incubated overnight. Wells were
treated with 0.1–100 µM complex 1Cl or DMSO control and incubated for 4 h before replacing with
fresh media. After 5 days further growth, 25 µL of 3 mg cm−3 thiazoyl blue (MTT) solution was added
to each well. Following incubation for 3 h the solution was removed from each well and 250 µL/well
DMSO added ensuring mixing of crystals. Optical density of wells at 540 nm was recorded on a plate
reader (Multiskan fc, Thermo Fisher Scientific, Warrington, UK).

4.8. Clonogenic Survival

Six-well plates were seeded with HeLa cells at 400 cells/well and incubated overnight. Wells were
treated with DMSO, 50 µM or 100 µM complex 1Cl for 4 h before replacing with fresh media. Plates were
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incubated for 8–10 days to form colonies before staining with 4% methylene blue in 70% methanol
and counting. Each colony was considered to represent a single surviving cell and survival fraction
calculated for each condition compared to DMSO control.

Supplementary Materials: The following are available online at www.mdpi.com/1420-3049/21/10/1382/s1,
Figure S1: 1H-NMR spectrum of 1 (CD3CN), Figure S2: 13C-NMR spectrum of 1 (CD3CN), Figure S3: ESI mass
spectrum of 1, Figure S4: 1H-NMR spectrum of 1Cl (d6-DMSO), Figure S5: 13C-NMR spectrum of 1Cl (d6-DMSO),
Figure S6: ESI mass spectrum of 1Cl, XYZ coordinates for the optimized geometries of the ground and lowest lying
triplet states of 1, Figure S7: Time-dependent DFT UV-visible absorption spectrum of 1, Table S1: Summarised
time-dependent DFT data for 1.
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