
University of Huddersfield Repository

Shemshadi, Ali, Sheng, Quan Z., Qin, Yongrui and Alzubaidi, Ali

CEIoT: A Framework for Interlinking Smart Things in the Internet of Things

Original Citation

Shemshadi, Ali, Sheng, Quan Z., Qin, Yongrui and Alzubaidi, Ali (2016) CEIoT: A Framework for
Interlinking Smart Things in the Internet of Things. In: The 12th anniversary of the International
Conference on Advanced Data Mining and Applications (ADMA 2016), 1215 December, 2016,
Gold Coast, Australia. (Unpublished)

This version is available at http://eprints.hud.ac.uk/29757/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or notforprofit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CEIoT: A Framework for Interlinking
Smart Things in the Internet of Things

Ali Shemshadi1, Quan Z. Sheng1, Yongrui Qin2, and Ali Alzubaidi3

1 School of Computer Science
The University of Adelaide, SA 5005, Australia

{ali.shemshadi, michael.sheng}@adelaide.edu.au
2 School of Computing and Engineering, University of Huddersfield

yongrui.qin@hud.ac.uk
3 College of Computer Science - Al Lith, Umm Al-Qura University

aakzubaidi@uqu.edu.sa

Abstract. In the emerging Internet of Things (IoT) environment, things
are interconnected but not interlinked. Interlinking relevant things offers
great opportunities to discover implicit relationships and enable poten-
tial interactions among things. To achieve this goal, implicit correlations
between things need to be discovered. However, little work has been done
on this important direction and the lack of correlation discovery has in-
evitably limited the power of interlinking things in IoT. With the rapidly
growing number of things that are connected to the Internet, there are
increasing needs for correlations formation and discovery so as to sup-
port interlinking relevant things together effectively. In this paper, we
propose a novel approach based on Multi-Agent Systems (MAS) archi-
tecture to extract correlations between smart things. Our MAS system
is able to identify correlations on demand due to the autonomous be-
haviors of object agents. Specifically, we introduce a novel open-sourced
framework, namely CEIoT, to extract correlations in the context of IoT.
Based on the attributes of things our IoT dataset, we identify three types
of correlations in our system and propose a new approach to extract and
represent the correlations between things. We implement our architec-
ture using Java Agent Development Framework (JADE) and conduct
experimental studies on both synthetic and real-world datasets. The re-
sults demonstrate that our approach can extract the correlations at a
much higher speed than the naive pairwise computation method.

Keywords: Internet of Things, Correlation, Multi-Agent System

1 Introduction

With advances in the enabling technologies, such as Radio Frequency Identi-
fication (RFID), sensors, power harvest and IPv6, nowadays people can easily
connect their everyday objects to the Internet. Thus, the paradigm of Internet
of Things is a compelling and shifting vision of the future Internet. In the re-
cent years, this paradigm has been tremendously growing. It is predicted that

2 Ali Shemshadi, Quan Z. Sheng, Yongrui Qin, Ali Alzubaidi

Descriptive

Features

Sensor reading

visualization

Action Buttons

Fig. 1. Example of Web mashup from ThingSpeak platform

by 2020, billions of devices will be connected to the Internet [7]. Even at the
present time, numerous cloud based platforms are providing services for con-
necting and managing smart things. Taking advantage of the mashup paradigm,
IoT data is commonly visualized and presented through simple Web mashups.
For instance, Figure 1 shows an example of Web of Things mashup from the
ThingSpeak platform 4. As shown, none of the parts of the present mashup is
referring to other mashups or correlated things on the Web. As a result, correla-
tions remain implicit and IoT resources may remain isolated from each other if
they are not interlinked. Interlinking relevant smart things will trigger improved
user navigation as well as providing means for future IoT search engines. This
is a very critical issue which resembles the role of hyperlinks in the Web.

A hyperlink is a reference to Web resources that the reader can directly follow
by clicking on it. Usually, hyperlinks are associated with a textual description
about their target, which is called hypertext. They play a key role in interlink-
ing Web resources and provide navigation between different Web pages for users.
Web crawlers are navigated using those hyperlinks in Web-based documents [3].
To enable the interlinking between resources in the context of interconnected net-
works of things, one eminent issue is that the traditional approach of interlinking
Web documents, cannot fully unravel the benefits of interlinking IoT. Table 1
summarizes the differences between interlinking IoT resources vs. hyperlinks in
the traditional Web.

Table 1. Requirements of traditional WWW hyperlinks vs. novel IoT-links

Hyperlinks IoT-Links

Establishment manual and static automatic and on-demand

Term long-lasting and fixed short term and highly dynamic

Connection Types simple (single type) various types

Weighted No Yes

Node Types web pages heterogeneous resources

Users human users and crawlers smart things, human users and crawlers

4 https://thingspeak.com/channels/38629

CEIoT: Interlinking Smart Things in the Internet of Things 3

Due to the highly dynamic and heterogeneous nature of IoT, correlations
between entities may quickly become outdated due to the frequent changes in
the status of things. Thus, one eminent issue is how to effectively and efficiently
establish and maintain the links to the correlated resources. As the above Table
shows, IoT-links have different requirements from hyperlinks in the traditional
Web. Automatic maintenance of IoT-links requires a solid understanding of the
implicit correlations between IoT resources in the physical world.

Although every pair of smart things around the world could potentially be
correlated, in the context of IoT, correlations may not necessarily share the same
type or the same weight.Thus, several types of correlations can be identified
between interconnected things [2]. For instance, the type of the correlation that
exists between two things that belong to the same person (owned by correlation)
can be different from the correlation between two objects that are present in the
same physical area (co-located correlation). Moreover, correlations of the same
type, may not necessarily have the same weight. For example, the weight of co-
located things may vary based on their distance from each other.

In this paper we propose the CEIoT (Correlations Extractor for IoT), a
framework to facilitate automated correlation extraction for smart things in
IoT. We use Multi-Agent System (MAS) architecture to design and implement
our approach in order to be able to simulate the behaviors of smart things
in real-world. We use MAS architecture mainly due to enable the solution to
benefit from autonomous behaviors of the agents. Our framework regulates the
extraction of different types of correlations. The correlation types that we cover
in this paper are defined as follows [2]:

– Ownership object relationship (OOR): correlates objects with the same owner.

– Co-location object relationship (CLOR): correlates objects that are physi-
cally close to each other.

– Category based object relationship (CBOR): correlates objects which have
the same describing tags.

We select the above correlation types mainly due to the nature and the
structure of the IoT data that we have crawled using the ThingSeek crawler
engine [11]. Each record in our dataset contains descriptive fields and sensor
output fields. The sensor output in our dataset is includes the data stream field
and the descriptive fields in our dataset include service description tags (which
are defined by the owner and contain tags, data stream unit, data stream sym-
bol, type and etc.), location (latitude and longitude) and owner (user). Due to
diversity of the sensors in IoT and the lack of an standard ontology that corre-
lates readings of various types of sensors, we cannot easily compare the values of
sensor readings. For example, if sensor A reports the temperature as 12◦C and
sensor B reports it as 12◦F sharing the same value 12 does not imply that their
reading is similar. Thus, we opt out Sensor Reading Similarity [13] and rather
focus on the descriptive fields.

In our CEIoT framework, we provide correlations with normalized weights
to enable our model to represent more details from the real-world. Thus, our

4 Ali Shemshadi, Quan Z. Sheng, Yongrui Qin, Ali Alzubaidi

approach employs a weighted undirected graph to model the heterogeneous net-
work of things. In this paper, we assume that each thing is registered only to one
network and belongs to one user only. We only focus on the publicly available
things. We design a distributed and scalable framework to support the correla-
tion extraction and use Open Linked Data to present the extracted correlations.
Our contributions are summarized as follows:

– We propose our CEIoT framework to extract correlations in IoT. We support
correlations with different types. We use a distributed architecture to enable
our CEIoT framework to estimate the weights. To the best of our knowledge,
existing approaches are limited in terms of the diversity and scale.

– We define the process of correlation discovery for IoT. We propose two novel
algorithms for extracting and one algorithm for integrating the extracted
correlations. In the CEIoT framework, we localize CBORs and estimate the
weights of correlations for CLORs to increase the efficiency of the correlation
extraction process. We increase the efficiency of correlation extraction and
integration using a distributed architecture.

– We conduct experiments to evaluate our approach. We crawl an IoT platform
to obtain the real-world data. We use both synthetic and real-world datasets
to demonstrate the efficiency and effectiveness of our framework.

Our paper is organized as follows.

2 The CEIoT Approach

In this section, we present the details of our CEIoT architecture for automated
extraction and representation of the correlations between things in IoT.

2.1 Correlation Discovery Process

Today, there are many online IoT platforms such as Xively5 and Paraimpu6.
Despite of their large scale and complexity, no means has been deployed to
analyze or present the correlations between things. This includes the correlations
of things of both inter and intra data sources.

We define correlation discovery as the process of extraction and representa-
tion of correlations of any types that exist between the resources in the IoT.
Figure 2(a) illustrates the process of correlation discovery for the IoT consisting
of four different phases: Collection, Extraction, Integration and Presentation. In
the first phase, things’ data is collected via RESTful application interfaces and
maintained on a server. In the next step, Extraction, the similarity of given ob-
ject pairs is examined based on different measures and criteria to extract the
correlations. During the Integration phase, all of the extracted correlations are
integrated to form a Things Correlations Graph (TCG) [12], which resembles
the graphs in the traditional social networks. Finally, in the last phase, the edges
of the TCG are converted into IoT hyperlinks.

5 https://xively.com
6 https://www.paraimpu.com

CEIoT: Interlinking Smart Things in the Internet of Things 5

Data Collection

Correlation
Extraction

Correlation
Integration

Correlation
Representation

Adam's Fridge
Adam's Car
Chelsea's Fridge
Neighbour's Oven

OOR CLOR CBOR

(a)

service

description

manages

negotiates

store

Service Agent

service

description

Object Agent

RESTful API

service

description

Object Agent

federation

ACL messages

DF Agent
Correlations DB

uses

Correlation

Management

Behavior

+ OOR: TCG

+ CLOR: TCG

+ CBOR: TCG

other

platforms

IoT Cloud SensorSensor/Actuator

(b)

Fig. 2. (a) Different phases of the correlation discovery process in IoT; and (b) The
CEIoT framework

2.2 Framework Architecture and System Entities

Our CEIoT framework architecture is inspired by MAS framework. We design
and implement a set of agent classes with built-in behaviors which facilitate the
simulation of important entity types and their interactions in IoT correlation
extraction problem. In the next step, agents are instantiated and deploy pre-
designed communication protocols to interact and submit/receive messages. An
overview of the CEIoT framework is shown in Figure 2(b). Each platform in
our framework operates independently from other platforms as IoT platforms
operate in the real-world. The figure shows the main types of agents in each
platform and how their instances interact with other parts of the system such
as smart things, database and other platforms. Each platform maintains its own
correlation database and Data Facilitator (DF) Service. As shown, agent classes
include Service Agent, Object Agent and DF Agent. Due to the huge complexity
of the nature of human user behaviors, we do not simulate them in our system
and leave it for future works in this area. Existing agent classes and their roles
are described in the following.

Object Agent. Object Agents are the main building block of the system; the
smart things. These agents maintain the characteristics of the “things” that
are connected to IoT and contain necessary behaviors to facilitate interconnec-
tions with other agents such as updating characteristics/readings and service
registration. These agents constitute the largest number of agents in the sys-
tem as each Object Agent is launched for one “thing” only. Each Object Agent
models Ao

i = (t, dt, lat, lon, u) such that t ⊂ T , dt ∈ R, lat ∈ b−90, 90e and
lon ∈ b−180, 180e, u ∈ U where T is the set of descriptive tags, dt is the latest
datastream reading, u is the owner of the smart thing and lat, lon are the lati-
tude and longitude of the object, respectively. Also, the Object Agent contains at
least three default behaviors. One is to register their descriptive tags (t) into DF
service. Two other behaviors are for updating location and other characteristics.

6 Ali Shemshadi, Quan Z. Sheng, Yongrui Qin, Ali Alzubaidi

Service Agent. A Service Agent represents an IoT service provider (IoT plat-
form) which facilitates the management of Object Agents. There is only one
service agent per platform. It is responsible for coordinating and managing all
agents present in its container as well as correlation discovery. These agents
maintain all of the necessary information about their corresponding IoT plat-
form. This includes host URL, port, Agent Communication Channel’s address,
platform ID and the DF Agent. Moreover, the Service Agent can launch, sus-
pend or destroy Object Agents if required. The main responsibility of the Service
Agent is to enquire other agents and update the correlation database frequently.

DF Agent. DF service facilitates the address book of each platform. Intra-
platform agents can enquire the DF service to find agents with the specified
services. The DF Agent stores tuples of services and agent URIs in the form of
{(t, a)} such that t ∈ T and a ∈ A where T is the set of descriptive tags and A
is the set of all agents in the platform. Usually, DF service is provided only for
the platform agents internally and is not designed to be shared across multiple
platforms. Hence, inter-platform agent communication cannot be established in
this situation. To avoid having a number of isolated MAS platforms, we devise
a medium to share DF data across authorized platforms.

2.3 Correlation Extraction

Correlation extraction is the key step in the IoT correlation discovery process.
In this step, our aim is to set up a efficient approach to extract the three types of
correlations discussed earlier. As each type of correlation is discovered indepen-
dently, firstly, we propose a separate approach for each correlation type. Then
secondly, we investigate how we can integrate the process and the results.

CLOR. Given a pair of Object Agents (Ao
i , A

o
j) and a threshold t ∈ (0, 1],

CLOR can be defined as follows:

clor(Ao
i , A

o
j) =

{
∆(Ao

i .l,A
o
j .l)

max{∆(Ao.l,Ao.l)} if ∆(Ao
i .l, A

o
j .l) ≥ t;

0 otherwise

where ∆ : (latitude, longitude)2 → R returns the distance between two points
(Manhattan, Euclidean, Haversine and etc.).

A naive approach for extracting CLORs would require mutual comparison
between every pair of things. Therefore, the complexity for extracting the CLORs
for N things using a naive approach is O(N2), which is not suitable for a
large number of things as in IoT. We introduce a weight estimation strategy
for CLORs. We use R-Tree data structure and capping the distance granularity
to extract CLORs. For distance granularity limit, we consider the area of the
parent rectangle (T) with a diagonal length D(T) in which the distance of objects
is bounded by 0 ≤ d ≤ D(T). Thus, if we limit the granularity of the distance to
D(T) (means that the distance can only be 0 or D(T)), then the CLOR between

CEIoT: Interlinking Smart Things in the Internet of Things 7

Algorithm 1: EXTRACT CLOR

input : Granularity level l, max level lm, current sub-tree rectangle T , global
adjacency matrix M , set of object agents A

1 if |Ao ∈ T |≥ 2 then

2 ∀(Ao
i , A

o
j) ∈ T : M(Ao

i , A
o
j) = M(Ao

i , A
o
j) + 2lm

D(t)

3 if l ≤ lm then
4 T ′ = subtrees(T)
5 foreach t ∈ T ′ do if |Ao ∈ t|≥ 2 then
6 call EXTRACT CLOR(l + 1, lm,M)
7

all objects located in T form a complete graph GT = (V,E,w) where V is the
set of objects, E = V × V is the set of edges defined between all objects in T
and w = D(T). For a better precision of the weights w, we can divide the area
T and strengthen the weights of edges in the same sub-areas. Thus, objects in
the same sub-area t ∈ T ′, will have a maximum distance of D(t) yielding a cor-

relation which is D(T)
D(t) stronger. For example, objects surrounded by a rectangle

with 1km diagonal have a correlation twice stronger than objects surrounded by
a larger rectangle with a 2km diagonal. Figure 3(a) depicts this idea.

Algorithm 1 describes our approach in further details. The Extract CLOR is
a recursive algorithm to estimate the strength of correlations between object
agents. In the first level, the algorithm is launched with initial adjacency matrix
M = {0}m,m where m is the number of object agents. In each recursion round
(level l), the algorithm assigns correlation weights to all object agents included
in the target area T . Thereafter, the algorithm would stop recursion for empty
areas or if it reaches to the maximum level of granularity. The order of the
algorithm would mainly depend on the distance granularity level rather than
the number of object agents.

OOR. Given a pair of object agents (Ao
i , A

o
j), they have an OOR if and only if

oor(Ao
i , A

o
j) =

{
1 if Ao

i .u = Ao
j .u;

0 otherwise

where oor : Ao×Ao → [0, 1] is the OOR score function. To obtain the correlation
defined above, each Service Agent can reach the federated DFs and enquire the
existing agents as well as their owners. The result set can be sorted based on
the owners using a quick sort algorithm. Thus, OORs can be constructed for
agents with the same owners which are in the same group. The complexity of
such algorithm would be O(n) if a hashmap is used. The results are indexed by
Service Agent to accelerate the retrieval.

CBOR. As defined earlier, each Object Agent Ao is assigned a set of textual
tags Ao.t = {t1, t2, ..., tk} where each tag denotes a descriptive feature of the

8 Ali Shemshadi, Quan Z. Sheng, Yongrui Qin, Ali Alzubaidi

object such as its functionality or datastream unit. For instance, an Air Quality
Egg which is designed to measures the indoor air quality and temperature, can
be assigned textual tags such as “oC”, “air quality” and “indoor”. The tags are
assigned by the users of the IoT platform and thus, can vary significantly based
on their count, keyword selection, dictation and used symbols. We assume that
the tag set for each object can be used for the purpose of categorization. For a
given pair of Object Agents (Ao

i , A
o
j), a text similarity function σ : T 2 → [0, 1]

and a similarity threshold τ ∈ (0, 1] we define the CBOR as follows:

cbor(Ao
i , A

o
j) =

{∏
σ(Ao

i .t, A
o
j .t) if σ(Ao

i .t, A
o
j .t) > τ ;

0 otherwise

where cbor : A2 → [0, 1] is the weight function of the CBOR correlation be-
tween (Ao

i , A
o
j). Algorithm 2 shows our approach to identify and extract CBORs

amongst a set of given Object Agents. Using a naive approach for finding the
similarity between all pairs of object agents is time consuming and complex.
Due to limiting the recursions and through the use of dynamic programming,
the runtime of this algorithm would be linear. Thereupon, the three scenarios of
searching for similar objects using CBOR are:

– There is no matching result and a Null value returned.
– The number of objects in the list ≤ Max results. Thus, all objects in the list

are returned.
– The number of objects exceeds the max criterion. Provided that the list is

descendingly sorted, a sub list with size of Max results is cut from the first
element and retrieved as an answer for the query indicating that there is high
potentiality to connect, correlate, cooperate, and any action can be taken
with these objects.

2.4 Correlation Integration

In the Integration phase, different TCGs are merged to form a universal graph. In
the Aggregated Correlations Graph (ACG), each edge has a weight that indicates
the strength of their correlation. For a given set of Object Agents A, we assume
that the result of the correlation extraction process in all types of correlations
maintain the same format and size. Thus, the result of CLOR, OOR and CBOR
correlations are modelled asML

|A|×|A|,M
O
|A|×|A| andMB

|A|×|A|, respectively. In the
simplest form of integration, TCGs of different types can be integrated through
a weighted matrix integration as follows:

M =
1

3

∑
M∈{ML,MO,MB}

wi.M (1)

where wi ∈ [0, 1] is the weight that is assigned to each correlation and
∑
wi = 3.

However, this kind of correlation may result in the loss of correlation types and
not very suitable for cases in which the type of each correlation is important.

CEIoT: Interlinking Smart Things in the Internet of Things 9

Algorithm 2: EXTRACT˙CBOR

Input : Requester ID, Type, Sensor set, Actuators set, Max results
Output: Results-list : List of relevant objects agents

1 Results = Search DF based on Type
2 if Results 6= ∅ then
3 foreach Object ∈ result do
4 if Sensors 6= ∅ || Actuators 6= ∅ then
5 S = {Sensors}
6 A = {Actuators}
7 S SIM(Sensor set, S) = dSensor set ∩ Se/dSensor set ∪ Se
8 A SIM(Actuators set, A) =

dActuators set ∩Ae/dActuators set ∪Ae
9 Similarity = S SIM + A SIM

10 Assign Similarity to Object
11 Add Object to Results-list

12 Sort Results-list descendingly
13 if {Results− list} ≥Max results then
14 Shrink the result by excluding elements from Max results until the end

of the list
15 return Results-list

16 else
17 return Null

2.5 Correlation Representation

Correlation representation is a part of the process in which all extracted cor-
relations are presented in a standard format. We use RDF to represent corre-
lations in IoT. Thus, we can maintain the connections between things while a
large portion of them are quickly evolving. Through the use of specifically de-
signed ontologies along with RDF correlations, our approach can be deployed
to empower pattern queries for IoT search engines. In this regard, we use triple
space computing (TSC) to facilitate the communication and store relationships
triples. Figure 3(b) depicts an example of how things can be correlated using
RDF triples, where each object is considered as a resource. Each statement is
identified via a unique URI. A statement consists of three elements: subject, pred-
icate, and object. A subject (a thing) is linked with an object (another thing).
The connection between two objects is called a predicate. The predicate explains
the relationship between the subject and the object of the statement.

Two objects will have OOR if and only if they have the same owner. The
result is retrieved from federated DFs as graph of RDF triples similar to the
Listing 1.1. In this type of relationships, we point out the possibility of connecting
objects under different regimes based on a criterion such as a common owner.

10 Ali Shemshadi, Quan Z. Sheng, Yongrui Qin, Ali Alzubaidi

(a)

given:VCard

Aliceby: Manufacturer

CBOR:Manufacturer

OOR: Alice

Smart Fridge

by:Manufacturer Smart Oven

Smart TV

SAMSUNG http://somehost:port/Alice

(b)

Fig. 3. (a) The surrounding rectangular area recursively breaks into four rectangles;
and (b) An example of 2 types of relationships established among objects A, B, and C
based on their common owners (OOR) and common tags for production batch (CBOR)

Listing 1.1. Example of OOR correlated object agents
<rd f :RDF

xmlns : rd f=”http ://www.w3 . org /1999/02/22 rdf syntax ns#”
xmlns :RT=”http :// uqucs . com/RT”
xmlns : vcard=”http ://www.w3 . org /2001/ vcard rd f /3.0#”
xmlns : dc=”http :// pur l . org /dc/ elements /1 .1/ ” >

<rd f : Desc r ip t i on rd f : about=”http :// uqucs . com/objectAgent10@Platform2”>
<RT:OOR>objectAgent43@Platform2</RT:OOR>
<RT:OOR>objectAgent18@Platform2</RT:OOR>
<RT:OOR>objectAgent5@Platform1</RT:OOR>
<RT:OOR>objectAgent61@Platform2</RT:OOR>
<RT:OOR>objectAgent42@Platform2</RT:OOR>
<RT:OOR>objectAgent29@Platform1</RT:OOR>
<RT:OOR>objectAgent48@Platform2</RT:OOR>
<vcard :N>Tahani</vcard :N>

</rd f : Descr ipt ion>
</rd f :RDF>

3 Experimental Results

In this section, we present the evaluation results for the proposed CEIoT frame-
work. We conduct the experiments on a PC with a Core i7 2.20 GHz, 4 GB
memory and Windows 7 64-bit. The details of the used datasets are as follows:

1. Synthetic dataset: we simulate a set of four IoT service providers where
each service provider is supplied with one Service Agents and 1,000 Ob-
ject Agents. Furthermore, each service provider is initialized on a separate
platform, which can run on an independent machine or share the same ma-
chine with other service providers. We use this simulation to evaluate the
framework on a distributed infrastructure and for multiple service providers.
Figure 4(a) shows four RMA GUIs visualizing all four platforms.

2. Real-world dataset: we crawled the datastream of public sensors on Xively7

using the ThingSeek crawler [11], previously known as Pachube, which is a
pioneering IoT platforms on the Internet with one of the largest collections
of publicly available sensors. The dataset contains around 67,000 things and
their most recent sensor readings. However, after filtering records with in-
complete data, only 11,894 records remain in our dataset. A primary analysis
of the tag sets reveals that the tags are scattered (Figure 5(a)) but densely

7 https://xively.com/

CEIoT: Interlinking Smart Things in the Internet of Things 11

(a) (b)

Fig. 4. (a) RMA view of launched platforms for each service agent; (b) Sniffed com-
munications between two object agents

focused on some tags (Figure 5(b)). Moreover, only less than 10% of the
tags have been assigned to more than 60% of things (Figure 5(c)). Thus, a
single label based approach without considering location based correlations
will not be helpful in application.

We use tools provided by RMA GUI such as Sniffer and Dummy for debug-
ging and testing purposes. Dummy agent is used to communicate with agents in
the platform and command them to execute specific behaviors. We prepare the
agents with Cyclic behaviors that are responsible for receiving these commands
and their execution. Otherwise, these behaviors are blocked until a command
is received to prevent infinite loop. Blocking the behaviors in agents does not
block the entire agent. Additional aim of implementing agents behaviors and
communication is to use them as self-explained examples of how agents can be
communicated and commanded by end users of the framework using third-party
agent such as Dummy agent.

3.1 System Performance

Due to the scale and dynamics of the IoT, the overall performance of the system
is important. Mainly, the following steps are paved by the system: i) launching all
independent platforms; ii) launching all agents mentioned above; iii) federating
DF service; iv) communication for exchanging stetting information; v) generating
RDFs and message de/serialization; and vi) R-tree insertion. Using the fixed
parameters with an RMA launched for each platform, it takes the system roughly
25 seconds to perform all the mentioned key tasks. This is due to that each
Service Agent waits for about 10 seconds to ensure all platforms are established,
as well as additional 10 seconds for federation. The 20 seconds delay is used to
prepare all platforms for the experiment.

We launch 4,000 object agents which are distributed over four different plat-
forms. For the experiment, each object agent has a cycle behavior that receives

12 Ali Shemshadi, Quan Z. Sheng, Yongrui Qin, Ali Alzubaidi

0 2000 6000 10000

0
2

0
0

0
5

0
0

0

Things (#)

T
a

g
s
 (

#
)

(a)

0 1000 2000 3000 4000

0
4

0
0

8
0

0

Things (#)

T
a

g
s
 (

fr
e

q
.)

(b)

0 1000 2000 3000 4000

0
.2

0
.6

1
.0

Tags (#)

P
ro

b
a

b
ili

ty

(c)

500 1000 1500 2000

0
5

0
0

1
5

0
0

Input Size

T
im

e
 (

s
e

c
)

Naive
CEIoT

(d)

Total Centralized

0
5

0
0

0
1

5
0

0
0

(e) (f) (g)

Fig. 5. (a) Things and tags relation; (b) Tags frequency; (c) Probability of reusing a
tag; (d) Runtime; (e) Transacted messages for the synthetic dataset; and (e),(f) CLOR
graph for things with different thresholds

a message with a Request per-formative act. It recognizes commands OOR, and
CBOR. Otherwise, it responds with a non-understood message associated with
commands which it can understand. If the commands are understood, it complies
with them to search for other agents matching the type in the command.

The communication with Object Agent is performed as expected (Figure 4(b)).
The figure shows the UML sequence for sending relationship requests by the
dummy agent (d0) to an object agent. Agent d0 is used in our experiment for
requesting object agents to perform a relationship on demand which are OOR
or CBOR. Lines 1-4 shows that sending the OOR request, the agent received
the request, then it searches the DF in Line 2, and DF returns the results to
the agent in Line 3. Finally, the agent confirms to the dummy agent the success
of the relationship establishment. Additionally, there should appear the RDF
description for the relationships of the object agent. The same process is done
with CBOR in lines 5-8. In OOR relationships extraction, it takes 200 millisec-
onds to retrieve the results and correlate them with the requester object as an
RDF triple. However, in the CBOR it took approximately 1,300 milliseconds.
For CLOR correlation, we observe the proposed system’s response under a vary-
ing number of input sizes to ensure the system’s scalability. We compare our
approach with the naive method. As Figure 5(d) shows, the naive approach may
take less time for results with small sizes. However, as the size of the input in-
creases, for inputs with 500 or more things, our algorithm’s runtime outperforms
the naive approach. We find out that using the naive approach for an input size
with the real-world dataset would be impractical, particularly when we consider
the scope and the dynamics of the IoT.

CEIoT: Interlinking Smart Things in the Internet of Things 13

3.2 Things Correlation Graph

For Algorithm 1, we apply different thresholds to simulate a search engine har-
vesting the graph. For example, it can be interesting in relationship matching
a certain criteria. Thus, the threshold is used to reduce the search space and
to limit it to connections with values equal or larger than the threshold. We
visualize this by passing the symmetric weighted graph to the GraphVis class.
The graph is the file holding all CLOR relationships among the Object Agents
resulted from Algorithm 1. The higher the value of a threshold, the smaller is the
search space. Figures 5(f) and 5(g) illustrates the samples of graphs produced
based on different thresholds, respectively.

3.3 Message Volume

One of the key factors is to minimize the number of transacted messages between
the machines. In our CEIoT framework, the messages that should be transacted
between different platforms are summarized. Thus, we expect a dramatic reduc-
tion in the number of transacted messaged compare to a centralized scenario.
Figure 5(e) shows the number of both internal and external messages which are
transacted between agents during the experiment on the synthetic dataset. In
this Figure, the As it is shown, although the red stack (top) shows the number
of inter-platform messages and the blue (bottom) shows the number of intra-
platform messages in our experiment. As shown, despite the fact that using
the CEIoT approach in a distributed mode increases the number of transacted
messages by a small amount, it may enhance the total throughput of the sys-
tem by reducing the ratio of inter-platform messages which are quite expensive.
Moreover, in the distributed mode the messages are being processed by a larger
number of machines than the centralized approach.

4 Related Work

There are some studies which promote that the IoT can be implemented as the
Internet of agents [16]. This is due to the ability of agents to mimic human
activities such as willingness to achieve certain goals, and the social ability to
interact with each other and with human as well. In a proposal by Fortino
et al [5], MAS is also used in developing smart environments for objects. The
heterogeneity and disparity can intensify the problem of dealing with smart
things in an effective way. Things data is never under centralized control. Hence,
datasets are usually stored in distributed locations. Using central location for
data storage is an obstacle for materializing an effective solution. The diversity
of sensors infrastructures means that, data are structured and documented in
different ways, which complicates combining their datasets in an easy way. Thus,
one of the solutions called Concinnity [9] takes the advantage of Semantic Web
technologies such as RDF, Ontology, and SPARQL.

There is an interesting paradigm called Triple Space Computing [4] that has
the potential to facilitate storage and communication in the Internet of Things

14 Ali Shemshadi, Quan Z. Sheng, Yongrui Qin, Ali Alzubaidi

context. It is basically a dedicated Web for machines, which is combined of space-
based computing and the Semantic Web. It uses RDF triples for data represen-
tation to exchange knowledge using shared space, just like HTML representation
in human-driven Web [6]. TSC provides asynchronous communication such that
consumers neither need to recognize each other through identifiers, nor need to
concurrently consume data.

A provisional approach is the Social Internet of Things (SIoT) [2, 1, 8]. To
socialize things in the IoT, unlike the solutions for socializing smart things that
depend totally on their owners relationships, this approach seeks a solution to
enable smart things to be interlinked by themselves. Objects have their own
profiles and IDs, so they can discover other objects of interest and establish a
friendship with each other according to their owners constraints. Additionally,
this approach defines some types of relationships established among objects. For
instance, Parental Object Relationship (POR), Co-Location Object relationship
(CLOR), Co-work Object Relationship (C-WOR), and Social Object Relation-
ship (SOR). However, no realistic and scalable solution given on how to identify
and extract these relationships. Correlating things in IoT has various benefits
such as better navigability experience, query result diversification and matters
of an interest can be effectively discovered with the least effort possible [12]. As
discussed before, Atzori et al. [2] discuss the characteristics of Social Internet
of Things and define polices for relationships establishment among connected
things. Unlike the approaches that socializes things according to what relation-
ships their owners [8, 10], this approach is more focused on things as key players
in relationships establishment, which limits the roles of their owners to managing
them and setting appropriate rules for their relationships. However, to the best
of our knowledge, this vision has not been implemented yet. Additionally, cur-
rently no technical details have been given on how to automate the establishment
of relationships between objects when they are aware of each other. Automated
correlation extraction is limited to one type of correlation for a small number of
objects [15, 14].

5 Conclusion

One of the missing components in the IoT is something similar to hyperlinks in
the World Wide Web. Unlike the traditional Web, establishing correlations in
IoT can be challenging as it must be automated. In this paper, we have proposed
the CEIoT framework for extraction and representation of correlations between
things in the IoT. The framework is implemented in Java and is open-sourced.
We have used a distributed architecture and local correlation filtering to stabilize
the performance of the library in different conditions. One of the limitations of
our work is dismissing incomplete and uncertain data entries. We plan to extend
the CEIoT framework to support incomplete and uncertain data to address a
large portion of the records in our dataset.

CEIoT: Interlinking Smart Things in the Internet of Things 15

References

1. Atzori, L., Iera, A., Morabito, G.: Siot: Giving a social structure to the internet of
things. Communications Letters 15(11), 1193–1195 (2011)

2. Atzori, L., Iera, A., Morabito, G., Nitti, M.: The social internet of things (siot)–
when social networks meet the internet of things: Concept, architecture and net-
work characterization. Computer Networks 56(16), 3594–3608 (2012)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: Proc. of the 7th Intl. World-Wide Web Conf. (WWW) (1998), http://ilpubs.
stanford.edu:8090/361/

4. Fensel, D., Krummenacher, R., Shafiq, O., Kuehn, E., Riemer, J., Ding, Y., Draxler,
B.: Tsc–triple space computing. e & i Elektrotechnik und Informationstechnik
124(1-2), 31–38 (2007)

5. Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development.
In: Proc. of the 16th Intl. Conf. onComputer Supported Cooperative Work in
Design (CSCWD 2012). pp. 907–912. IEEE (2012)

6. Gómez-Goiri, A., López-de Ipiña, D.: On the complementarity of triple spaces and
the web of things. In: Proc. of the 2nd Intl. Workshop on Web of Things. p. 12.
ACM (2011)

7. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (iot): A
vision, architectural elements, and future directions. Future Generation Computer
Systems 29(7), 1645–1660 (2013)

8. Guinard, D., Fischer, M., Trifa, V.: Sharing using social networks in a composable
web of things. In: Proc. of the 8th IEEE Intl. Conf. on Pervasive Computing and
Communications Workshops (PERCOM 2010). pp. 702–707. IEEE (2010)

9. Lee, C.H., Birch, D., Wu, C., Silva, D., Tsinalis, O., Li, Y., Yan, S., Ghanem, M.,
Guo, Y.: Building a generic platform for big sensor data application. In: Proc. of
2013 IEEE Intl. Conf. on Big Data (IEEE BigData). pp. 94–102. IEEE (2013)

10. Pintus, A., Carboni, D., Piras, A.: The anatomy of a large scale social web for
internet enabled objects. In: Proc. of the 2nd Intl. Workshop on Web of Things.
p. 6. ACM (2011)

11. Shemshadi, A., Sheng, Q.Z., Qin, Y.: Thingseek: A crawler and search engine for
the internet of things. In: Proc. of the 39th Intl. ACM SIGIR Conf. on Research
and Development in Information Retrieval (SIGIR). pp. 1149–1152. ACM (2016)

12. Shemshadi, A., Yao, L., Qin, Y., Sheng, Q.Z., Zhang, Y.: Ecs: A framework for
diversified and relevant search in the internet of things. In: Proc. of the 16th
Intl. Conf. on Web Information Systems Engineering (WISE 2015), pp. 448–462.
Springer (2015)

13. Truong, C., Römer, K., Chen, K.: Sensor similarity search in the web of things.
In: 2012 IEEE Intl. Symposium on World of Wireless, Mobile and Multimedia
Networks (WoWMoM). pp. 1–6. IEEE (2012)

14. Yao, L., Sheng, Q.Z.: Correlation discovery in web of things. In: Proc. of the 22nd
international Conf. on World Wide Web Companion (WWW 2013). pp. 215–216.
Intl. World Wide Web Conf.s Steering Committee (2013)

15. Yao, L., Sheng, Q.Z., Gao, B.J., Ngu, A.H., Li, X.: A model for discovering corre-
lations of ubiquitous things. In: Proc. of 13th Intl. Conf. on Data Mining (ICDM
2013). pp. 1253–1258. IEEE (2013)

16. Yu, H., Shen, Z., Leung, C.: From internet of things to internet of agents. In:
Proc. of the 2013 IEEE Intl. Conf. on Green Computing and Communications
(GreenCom). pp. 1054–1057. IEEE (2013)

