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Abstract

Finding optimal sampling strategy is a central problem in surface reconstruction. In this paper a sampling strategy on different scales of a free-form
surface is proposed. Non-Uniform Rational B-spline (NURBS) surfaces are used to represent the nominal shape; the decomposition is performed
through the orthogonal B-wavelet basis. A sampling based on each level of the shape decomposition is then proposed to detect the points of
interest that reflect the variations between different levels. The number of the samples is selected according to the complexity of the shape, which
is represented by the number of the internal knots.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 14th CIRP Conference on Computer Aided Tolerancing.
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1. Introduction

Finding optimal sampling strategy is a central problem in
surface reconstruction as well as in surface inspection. In this
paper we propose a sampling strategy based on the decompo-
sition of the curve or surface in different scales. Since Non-
Uniform Rational B-spline (NURBS) curves and surfaces are
widely used in Computer Aided Geometric Design (CAGD),
we propose to directly use these functions to represent the nom-
inal shape. We firstly propose to decompose the nominal object
at different approximation scales with the orthogonal B-wavelet
decomposition [1,2], a sampling according to the differences
between each level can then be computed. The NURBS func-
tions are used instead the triangular mesh in order to maintain
the exact geometry of the object. Representing the real object
through its NURBS representation has several advantages also
in finite element method simulation [3]. One of the advantages
of using the B-wavelets decomposition instead of using the dis-
crete wavelet transform is that the number of the levels of the B-
wavelets functions depend on the number of the internal knots
of the associated B-splines function, while those of the discrete
transform depend on the number of sampled points, and this
number can increase rapidly if the sampling rate is high. On
the contrary the reconstruction with the B-splines function can
bound the number of decomposition levels. A profile sampling
based on the decomposition with the discrete wavelets trans-
form has been proposed in [4]. In this paper the discrete wavelet
transform is used to obtain the curvature information of a sig-

nal. The samples are then allocated according to the curvature
distribution in different regions. In the proposed method we
use all the information coming from the different approxima-
tion scales.

The paper is structured as follows: in Section 2 we intro-
duce the NURBS functions and the B-wavelets transformation,
in Section 3 we present the decomposition algorithm, in Sec-
tion 4 we explain the sampling method and in Section 5 the
reconstruction performance.

2. B-wavelets decomposition

Before introducing the B-wavelets decomposition [1], we
briefly recall the construction of B-splines and NURBS func-
tions [5]. Given a non decreasing sequence of knots t =

(ti)n+r+1
i=1 , the B-splines base Bi,r(x) = Bi,r,t(x) of degree r > 0

with support [ti, ti+1] is defined by the De Boor’s algorithm by

Bi,r(t) =
t − ti

ti+r−1 − ti
Bi,r−1(t) +

ti+r − t
ti+r − ti+1

Bi+1,r−1(t) (1)

with

Bi,0(t) =

1 if ti 6 t < ti+1

0 otherwise.
(2)
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A r-th degree B-splines curve is defined as

r(t) =

n∑
i=0

Bi,r(t) pi t1 6 t 6 tn+r+1 (3)

where pi ∈ Rd are the control points.
In order to approximate conics, the r-th degree NURBS

curve has been introduced, it is defined as

r(t) =

∑n
i=0 wi Bi,r(t) pi∑n

i=0 wi Bi,r(t)
t1 6 t 6 tn+d+1 (4)

where wi are the weights of the i-th B-splines basis function.
A NURBS surface is defined through the tensor product of

two NURBS basis functions in two orthogonal directions u and
v. A NURBS surface of degree p in u direction and q in v
direction is a piecewise rational function

r(u, v) =

∑n
i=0

∑m
j=0 wi j Bi,p(u) B j,q(v) pi j∑n

i=0
∑m

j=0 wi j Bi,p(u) B j,q(v)

with u1 6 u 6 un+p+1, v1 6 v 6 vn+p+1

(5)

where {pi j} are the control points, wi j are the weights of the
product of the B-splines basis Bi(u) and B j(v), u and v are the
knots vectors of the B-spline basis in u and v direction.

The non-uniform B-wavelet transform has been introduced
in [1] and it has been extended to the NURBS space in [2]. The
B-wavelet transform is a mathematical tool designed to decom-
pose a B-spline function belonging to the space Vd through a
projection in two spaces Vd−1 and Wd−1. The space Wd−1 con-
sist of functions in Vd that are orthogonal to the functions of the
space Vd−1

Wd−1 = { fd ∈ Vd : 〈 fd, fd−1〉 = 0 ∀ fd−1 ∈ Vd−1} (6)

where 〈 f , g〉 is the inner product of the functions f and g defined
as

〈 f , g〉 =

∫
R

f (t) g(t) dt, (7)

while it is the following weighted product for the decomposi-
tion of the NURBS function

〈 f , g〉ω =

∫
R
ω2(t) f (t) g(t) dt, (8)

where

ω(t) =

n∑
i=0

wi Bi,d(t). (9)

The space Vd can therefore be written as the direct sum Vd =

Vd−1 ⊕ Wd−1 where Wd−1 is the orthogonal component of Vd−1
in Vd. By iterating the decomposition d time we get

Vd = Wd−1 ⊕Wd−2 ⊕ · · · ⊕W0 ⊕ V0. (10)

The functions in the spaces Wi are called wavelets, and the cor-
responding spaces are called wavelets spaces. B-wavelets are
wavelets function with minimal support [1]. In the remaining
of the paper we will refer to the B-wavelets basis function with
the letter ψi(t).

We now focus on the decomposition of the space Vi into the
spaces Vi−1 and Wi−1. The space Vi is spanned by the B-spline
basis functions identified by the knots vector ti, while the knots
vector of the B-splines in the space Vi−1 is ti−1 that is build by
deleting one or more internal knots from the vector ti.

Let φi =
(
Br,1, . . . , Br,ni

)T denote the vector of the B-spline
basis functions of the space Vi and ψi−1 =

(
ψ1, . . . , ψni−ni−1

)T the
vector of the B-wavelets basis function of the space Wi, a points
of the B-splines curve of the space Vi can be expressed as

ri(u) = φT
i (u) Ci (11)

where Ci =
[
pi,1, . . . , pi,ni

]T
(
Ci =

[
wi,1 pi,1, . . . ,wi,ni pi,ni

]T
)

is
the vector of the B-spline (NURBS) curve control points of the
i-th level. It is possible to rewrite the functions in the vectors φi
as a linear combinations of the functions φi−1 and ψi−1 as [1]

φi = Pφi−1 + Qψi−1 (12)

where P ∈ Rni×ni−1 is a knot insertion matrix that can be com-
puted through the Oslo algorithm [6], while Qi ∈ Rni×(ni−ni−1) is
a matrix that link the functions in the space Vi to the B-wavelets
function in Wi−1, it is possible to find the procedure to compute
the matrix in [1]. The matrix Q is computed such that the func-
tions in φi−1 are orthogonal to the functions in ψi−1, that is

〈φi−1, j, ψi−1,k〉 = 0, ∀ j = 1, . . . , ni−1, k = 1, . . . , ni − ni−1
(13)

It is possible to reconstruct the B-splines curve at level i as
the sum of the B-splines and the B-wavelets curve belonging to
the space i − 1

ri(u) = φT
i (u) Ci =

(
φT

i−i(u) PT + ψT
i−1(u) QT

)
Ci. (14)

If the surface is described as the vector product of two B-
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spline basis belonging to two spaces Vu,i and Vv,i, the decompo-
sition of the tensor product space is [1]

Vu,i × Vv,i =(Vu,i−1 × Vv,i−1) ⊕ (Vu,i−1 ×Wv,i−1)⊕
(Vv,i−1 ×Wu,i−1) ⊕ (Wu,i−1 ×Wv,i−1).

(15)

If we rearrange the control points of each dimension in a ma-
trix of size n × m, control points matrices of the level i can be
computed as

Ci, j =PuCi−1, j Pv + Pu D1, jQv + Qu D2, j Pu

+ Qu D3, jQv, j = 1, . . . , r
(16)

where Ci, j is the matrix of control points if the decomposed
surface is a NURBS. See [1] for more information on how to
compute the matrices Ci−1, j, D1, j, D2, j, D3, j.

3. Decomposition algorithm

The purpose of this paper is to decompose the original B-
splines curve or surface at different levels of approximation
and use these information to perform the sampling. In order
to project a B-splines form the space Vi into the sub-space Vi−1
we have to choose which interior knot, or knots, must be re-
moved. In [7] a simplification algorithm has been proposed to
incrementally decompose a B-spline curve. The initial step is to
rank the knots according to their importance in the representa-
tion of the curve, this value is computed through the supremum
norm

δ j =
∥∥∥∥ri(t) − r j

i−1(t)
∥∥∥∥
∞

(17)

where ri(t) is the original curve and r j
i−1(i) is the curve with-

out the j-th internal knots. The knots are then sorted according
to the values δ j and the knot with the minimum value, or knots
whose distances from the minimum are smaller than a threshold
ε, are removed. This process can be iterated until there are no
more internal knots. Since are removed the less important val-
ues the details of the curve are described by the first B-wavelets
curves.

A measurement method of the knot importance is also pro-
posed in [8], the authors proposed to compute the importance
of each knot as

δ j = max
j

{
dist

(
C j

i − {PiCi−1}
j
)}

(18)

where Ci−1 the matrix of the control points of the B-splines after
removing the knot j, • j is the j-th row of the matrix • and dist(•)
is a distance function [9]. This value compute the distance be-
tween the control points at different approximation levels, it de-
scribe the curve using only its control polygon. In this paper
we use the value in Equation (18) with the euclidean norm as
distance to compute the importance of each knots because it is
faster compared to the computation of the supremum norm.

An example of a B-splines decomposition is shown in Figure
1. The blue curve is the original curve and the orange curves
represent the simplified curves; after each iteration of the B-
wavelets decomposition some details of the curve are lost. The
last B-splines curve is a three degree curve without internal
knots.

(a) (b)

Fig. 1: (a) first decomposition level; (b) last decomposition level

The maximum number of the decomposition levels (func-
tions) can be checked through the number of the internal knots
of the NURBS parameter space. It is possible to increase the
number of B-wavelets basis functions modifying the number of
the knots with a refinement operation [5].

A NURBS surface is decomposed ranking pair of knots in u
and v direction. For each couple of knots the rank is based on
[8]

δkl = max
kl

{
dist

(
Ck,l

i, j −
{
Pu,iCi−1, j PT

v,i

}k,l
)}

(19)

where Ci−1, j the matrix of the control points of the NURBS after
removing the j-th knot, •k,l is the matrix entry in position kl and
dist(•) is a distance function, as for in the curve decomposition
we use the euclidean distance. An example of a surface [10]
decomposition is shown in Figure 2, where there is the initial
surface and the B-splines surface after the first iteration, the
colour represents the value of the B-wavelets surface.

Fig. 2: Surface decomposition example

4. Sampling strategy

In this Section we will explain the sampling strategy pro-
posed in this paper. In order to take into account both the length
of the curve and its complexity, we propose a sampling method
based on a curve parameterisation computed as a combination
between the arc length and the B-wavelets basis.

The arc length parameterisation of a parametric curve r(t),
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with t ∈ [t1, tn+1] can be computed as [11]

l(t) =

∫ t

t1
‖r′(u)‖ du. (20)

Since the difference between successive curve approximation
is measured by the value of the B-wavelets curve, we use the
square of the B-wavelets basis functions as measurement of the
complexity of the shape. The sum of the values at the i-th level
is

Ei(t) =

ni+1−ni∑
j=1

φ2
j (t). (21)

Since this value is a function on the B-splines curve r(t), the
cumulative integral of Ei(t) is computed

Ec
i (t) =

∫ t

t1
Ei(t) ‖r′(u)‖ du. (22)

This value represents the energy of of the B-wavelets basis
function along the curve. The values of the cumulative inte-
grals must be merged in a function to represent the complexity
of the decomposed curve; we compute this “mean” function as

Ē(t) =
1
n

n∑
i=1

Ec
i (t)

Ec
i (tn+1)

. (23)

The value of the i-th B-wavelets is divided by its maximum to
assign the same importance to each approximation scale. Once
both the cumulative arc length and the B-wavelets based func-
tion have been computed, the parameterisation based on a mix-
ture between these two quantities can be computed as

p(t) =
1
2

(
l(t)

l(tn+1)
+ Ē(t)

)
, (24)

where the arc length is coded in the range [0, 1] because we are
adding quantities with different measurement units, and also to
assign equal weight to both the values.

An example of the uniform sampling of 60 points with the
parameterisation in Equation (24) is shown in Figure 3. It is

Fig. 3: B-wavelets‘ sampling (60 points)

possible to observe that there are more points where there are
abrupt changes of the curve and on the two boundaries, while
on the flat zones the spacing between the samples increases.
The proposed surface sampling, as for the curve one, is based
on a re-parameterisation of the surface based on a combination
of its area and square of the value of the B-wavelets basis. The
area of a parametric surface can be computed as [11]

A =

∫ un+1

u1

∫ vm+1

v1

‖ru(u, v) × rv(u, v)‖ dudv (25)

where × is the cross product.
In order to measure the complexity of the surface, we com-

pute the sum of the square value of the B-wavelets basis func-
tions at the i-th level

Ei(u, v) =

ni+1−ni∑
j=1

mi+1−mi∑
k=1

φ2
j (u, v)φ2

k(u, v), (26)

so the cumulative integrals of the i-th B-wavelets basis func-
tions along the surface r(u, v) are

Ec
i,u(u) =

∫ u

u1

ds
∫ vm+1

v1

Ei(s, v) ‖rs(s, v) × rv(s, v)‖ dv (27)

Ec
i,v(v) =

∫ v

v1

ds
∫ un+1

u1

Ei(u, s) ‖ru(u, s) × rs(u, s)‖ du. (28)

We can compute the marginal cumulative areas, Au(u) and
Av(v), as the previous equations without the weights Ei(s, v).
The function representing the marginal complexity of the sur-
face are computed as

Ē•(•) =
1
n

n∑
i=1

Ec
i,•(•)

max• Ec
i,•(•)

(29)

where there is a normalisation to sum quantities of different ap-
proximation levels. We finally compute the marginal parame-
terisations as

pu(u) =
1
2

(
Au(u)

Au(um+1)
+ Ēu(u)

)
(30)

pv(v) =
1
2

(
Av(v)

Av(vn+1)
+ Ēv(v)

)
. (31)

where the areas are divided by their maximum values to give
to both quantities the same importance. Once we have com-
puted these two functions, a sampling method can be computed
through the vector product of two uniform sampling along the
parameterisations pu(u) and pv(v). An example of the proposed
sampling is shown in Figure 4. This sampling is uniformly dis-
tributed in the internal part of the surface, while the density of
the points is higher close to the boundary.
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5. Reconstruction results

In this Section we evaluate the performances of the sampling
strategy described in Section 4. The reconstruction of the pro-
file in Figure 3 and a profile based on the simulation of a man-
ufactured surface are firstly computed.

Fig. 4: B-wavelets surface sampling (20 × 20 points)

Then the performances of the proposed sampling method is
evaluated with the reconstruction of three free form surfaces.

We use the Root Mean Square Error (RMSE) as performance
indicator

RMSE =

√√√ n∑
i=1

d∑
j=1

(
ri j(s) − r̂i j(s)

)2
(32)

where n is the number of the points, d is the dimension of the
B-spline curve or surface, ri j(s) is the true, known, value and
r̂i j(s) is the estimated point with the reconstruction model.

5.1. Curve reconstruction

In the curve reconstruction test cases, we analyse four differ-
ent sampling strategies:

• uniform sampling on arc length parameterisation,
Arc length;

• uniform sampling according to the parameterisation in
Equation (24), B-wavelet;

• uniform on the parameter domain t, Uniform;
• random latin hypercue sampling [12], LHS.

The reconstruction algorithm used in this paper is the piece-
wise cubic spline interpolation implemented in MATLAB R©

[13] through the cubucinterp function. In this analysis we as-
sume that the true value of the parameter of the curve is known,
i.e. we don’t consider the point cloud parameterisation.

The values of the RMSEs as a function of the number of
samples of the curve in Figure 3 are shown in Figure 5; all the
methods, except the one based on the LHS sampling, achieve
comparable results. We now present a comparison based on
the reconstruction of a simulated manufactured profiles [14].
Starting form the measured points, we have reconstructed the
curve with a free knots spline regression, where the position of
the knots is set according to the changes of the profile [15].

The reconstructed profile with 100 sampled points is plotted
in Figure 6a, and the corresponding RMSEs values are shown in

Fig. 5: RMSEs as a function of the number of the samples

(a) (b)

Fig. 6: (a) B-wavelets sampling of a simulated milled profile (100 points), all
the values are in mm; (b) RMSEs of the compared sampling strategies

Figure 6b. The values of the arc length and the uniform param-
eterisation are very close, while the reconstruction with LHS
sampling sometimes achieve better results compared to the pre-
vious two. The proposed sampling outperforms other methods
with all the analysed sample sizes because it is able to add more
points where there are rapidly changes of the curve.

5.2. Surface reconstruction

The proposed sampling method is tested with the reconstruc-
tion of three surfaces, the free form surface in Figure 4, a struc-
tured surface and a surface with grooves where there are abrupt
changes along one coordinate. We analyse six different sam-
pling strategies:

• uniform sampling based on the cumulative marginal areas,
Area;

• uniform sampling based on the marginal parameterisations
in Equations (30-31), B-wavelets;

• uniform sampling on the parameters space u-v, Unif;
• Latin Hypercube Sampling, LHS;
• Hammersley sampling [16], Hammersley;
• Halton sampling [16], Halton.

Since we assume deterministic surfaces, i.e. without measure-
ment error, the reconstruction is performed through the piece-
wise cubic interpolation implemented in the fit function of
MATLAB R©.

The RMSEs of the reconstruction of the first surface are
shown in Figure 7; the area based sampling achieve better re-
sults when the sample size is small, while the proposed sam-
pling method has similar results when the number of samples is
equal or greater than 225 points. The proposed method has not
the same results of the area based method because the parame-
terisation adds more points close to the boundary of the domain
and when the sample size is small the reconstruction is good in
those parts, but the error is bigger elsewhere.

In Figure 8a is shown the second surface analysed along with
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a sampling of 40 × 40 points and its reconstruction. It is a C2

structured surface with a small radius of curvature on the edges.

Fig. 7: RMSEs of the compared sampling strategies

The corresponding RMSEs are shown in Figure 8b. In this
second test case the sampling based on the B-wavelet gets the
best performance, while the area based sampling has worst re-
sults also compared to the Unif and Hammersley samplings.

(a) (b)

Fig. 8: (a) B-wavelets sampling of a structured surface (40 × 40 points); (b)
RMSEs of the compared sampling strategies

The third surface analysed, see Figure 9a, is a surface with
three grooves, it has some abrupt changes of the surface along
the x direction. Since the complexity of the surface, that is
described by the internal knots, is different in the two directions,
we propose to use

n• =

⌊
nk
•

nk
u + nk

v
(ntot − 4)

⌉
+ 2 (33)

where nu and nv are the number of points in u and v directions,
bxe is the closest integer of x, nk

i is the number of the internal
knots in direction i and ntot = nu + nv is the total sample size in
the marginal directions. The RMSEs of this test case are shown
in Figure 9b, there are only the values of the Area, B-wavelts
and Unif sampling because the others are too high. Also in
this reconstruction scenario the proposed method achieves bet-
ter prediction results.

(a) (b)

Fig. 9: (a) B-wavelets sampling of surface with grooves (100 × 2 points); (b)
RMSEs of the compared sampling strategies

6. Conclusion

In this paper we have proposed a sampling method based on
a parameterisation that is the mean between the curvilinear ab-
scissa, or area in the surface case, and the square of the values
of the B-wavelets basis functions. This parameterisation has
been tested with other common sampling methods and in dif-
ferent test cases. It has been proved that it is able to achieve
better prediction results if the reconstructed shape is a profile.
If the shape to be reconstructed is a surface, the proposed sam-
pling method achieves better results if the analysed surface has
abrupt changes. If the analysed surface has slow changes, the
area based parameterisation ensures a better reconstruction er-
ror if the sample size is small. In this paper we have taken into
account the value of the basis function, but it is also possible to
build a parameterisation based on the differential property, such
as the curvature of the B-wavelets curves or surfaces at different
levels.
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