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ABSTRACT 

Modelling of vehicle/track/ground dynamic interaction is an important issue for railway design. Better 

understanding of how the moving dynamic loads are distributed through the track components to the ground can 

be derived from these numerical results to improve the stability of the moving train and decrease the cost of the 

maintenance. Nonlinear models of the ground may be required due to the large displacements induced by 

heavier and/or high-speed trains. The aim of this research is to develop a general modelling approach for 

predicting the dynamic behaviour for a variety of situations. 

A three-dimensional vehicle/track/ground approach in the time domain is presented. The finite element method 

is used to model the track/ground vibration. The equations of motion of a multi-body vehicle are implemented to 

couple with the ground/track system. An alternative approach to the commonly used infinite elements is 

proposed for modelling the far-field, based on the use of mass-proportional damping to suppress the reflections 

from model edges. Improved results are shown and better efficiency can be found compared to the results from 

models with infinite elements. Furthermore, two different geometries for the ground model, a hemispherical and 

a cuboid one, are discussed. The issue of transients developed by the moving load is discussed and it is shown 

that long models are required for load speeds close to the wavespeed in the ground to allow the results to 

achieve steady state. Finally, the results are benchmarked against the results from a wavenumber FE/BE model. 
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1. Introduction  

To achieve better understanding of the ground-borne vibration induced by high-speed trains, 

numerical simulation has become very important, allowing investigations of the dynamic behaviour of 

the track/ground system when the train is passing. Assessment of critical speed, ballast and soil 

degradation, and environmental impact all rely on results from such simulations. To prevent spurious 

reflections from the domain boundaries, a semi-infinite domain model is required for the soil. Several 

numerical methods have been developed recently that incorporate absorption at the boundary. 

Boundary elements (BE) directly include the infinite medium and these can be combined with finite 

elements (FE) either in a fully three-dimensional FE/BE method [1], or in a so-called 2.5D FE/BE 

method [2]-[5]. However, these methods mostly operate in the frequency domain and consequently 

cannot account for the nonlinear behaviour that may occur due to heavy axle loads or higher train 

speeds. Therefore, an alternative scheme has become common for modelling ground vibration 

induced by moving loads in which the FE domain is bounded by infinite elements [6]–[9]. Infinite 

elements form a typical local boundary method that uses viscous dashpots to absorb the incident 

waves at the boundary. They are defined based on the following equation 
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where cNi and cTi are the damping values for the normal and tangential direction, respectively. ρ is the 

material density and cp, cs are the wave speeds of the P-wave (longitudinal wave) and the S-wave 

(shear wave). However, infinite element method does not generally have perfect absorption at the 

boundary. The absorption efficiency of the infinite elements relies on the domain geometry and the 

incident wave field. Usually they should be located in the far field and orientated perpendicular to the 

incident waves. The aim of the present study is to investigate the limitations of the use of infinite 

elements and to determine the optimum modelling approach for track/ground vibration induced by 

moving dynamic loads. Comparisons are made with a 2.5D FE/BE approach [5]. 

 

2. Numerical models 

The purpose of the study is to investigate critical velocity effects, when the load speed approaches the 

speed of waves in the ground. First, however, the model is considered for a stationary harmonic load. 

Two different geometries for the ground model are used for modelling the soil: a hemispherical one 

(Fig. 1(a)) and a cuboid one (Fig. 1(b)). Infinite elements are applied around the boundary of the 

hemispherical model. Even though a hemispherical model can show better absorption efficiency of 

outgoing waves, incorrect artificial displacements of the whole model occur due to the fact that the 

infinite elements are statically unconstrained [10]. The cuboid model therefore has a fixed bottom to 

avoid this incorrect displacement. Fixed boundaries are also used at the ends of the model while along 

the sides infinite elements are considered as an alternative to fixed boundaries. In all cases symmetry 

of the model is used along the track centreline. Furthermore, when the load speed approaches the 

critical speed, a relatively long model is required to allow the results to achieve steady state, 

especially for homogeneous soil models [10]. As a result, the cuboid model is preferred for the 

moving load problem as the required geometry can be generated relatively easily.  

A viscous damping model, based on Rayleigh damping, is used here for the calculations with the FE 

model. The Rayleigh damping is based on two parameters  and , which allow the damping matrix 

C to be determined from the mass and stiffness matrices, M and K: 

C = M + K (2) 

This allows the equivalent loss factor  or damping ratio  to be obtained as a function of frequency: 

 
2 2 2
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where  is the circular frequency at which the loss factor   applies. For a plane harmonic wave at 

circular frequency  propagating in an elastic medium at a constant wave speed c, the wavenumber k 

is given by k = /c. In the presence of damping with a damping ratio  the wavenumber becomes 

complex with the form (1 )k k i  . The imaginary part is related to the decay with distance which 

can be expressed in dB/m as  

  1020log 8.69Im( ) 8.69ikD e k k      (4) 

From Eq. (3), the decay with distance for stiffness-proportional damping is proportional to the square 

of the frequency, 
24.34 /D c  . So, for example, for  = 0.000636 (equivalent to  = 0.05 at 

12.5 Hz) the decay with distance is around 0.002 dB/m at 1 Hz rising to 5 dB/m at 50 Hz. For the case 

of a constant loss factor  = 2, the decay with distance is found to be 4.34 /D c  which 

increases in proportion to the frequency. For mass-proportional damping D is independent of 

frequency, 4.34 /D c . Thus, e.g. for  = 0.98, D is 0.075 dB/m for all frequencies. As a result it 

can be expected that mass-proportional damping will be equally effective at suppressing reflections 

from the domain boundaries at all frequencies. 

Fig. 2 shows the point receptance of the rail due to a harmonic load for the various different ground 

models shown above. The soil is a homogeneous half-space with shear wave speed 60 m/s. The 

hemispherical domain has a radius 40 m; the cuboid models have a length of 80 m and width of 40 m 

for the case without the infinite elements and 20 m width for the one with infinite elements. In each 



 

case the force is applied at the centre of the rail. Two different viscous damping models are used: 

stiffness-proportional damping with =0 and =0.000636 and mass-proportional damping with 

=0.98 and =0. The results from a 2.5D FE/BE model are shown for comparison, in this case with 

constant loss factor  = 0.05. This shows that the hemispherical model with infinite elements gives 

much better results than the cuboid model particularly at low frequency. Furthermore, the results with 

mass-proportional damping agree better than the results with stiffness-proportional damping. Even 

though the results from the cuboid model with infinite elements show less fluctuation than those 

without the infinite elements, some small oscillations still can be found. The cuboid model without 

infinite elements is preferred as, although the model with infinite elements gives improved results, it 

is much less efficient for the moving load problem. For example, for a load speed of 57m/s, the 40 m 

wide cuboid model requires 7.8 hr calculation time compared with 19 hr for the 20 m wide model 

with infinite elements and 12.5 hr for the 40 m radius hemispherical model.   

 
(a) (b) 

Figure 1. Ground model; (a) hemispherical ground model; (b) cuboid ground model 

 
 (a) (b) 

Figure 2. Point receptance on the rail for homogeneous half-space; (a) stiffness-proportional damping; (b) mass-

proportional damping 

Finally, results are shown from a time-domain analysis for various speeds. Fig. 3 shows results for the 

homogeneous half-space (shear wave speed 60 m/s) whereas Fig. 4 shows results for a layered half-

space with a 2 m deep upper layer of the same soft soil overlying a stiffer soil with a shear wave speed 

of 120 m/s. Good agreement can be seen with the results from the wavenumber FE/BE model [5], 

except close to the critical speed 57 m/s (equal to the Rayleigh wave speed in the ground) as shown in 

Fig. 3a. On the other hand, for the results from the layered half-space good agreement is seen even 

close to the critical speed (which here is around 85 m/s).   

 

 
Figure 3. Comparison between the results from FE model and the results from wavenumber FE/BE for 

homogeneous half-space; (a) V=57 m/s; (b) V=80 m/s 



 

 
Figure 4. Comparison between the results from FE model and the results from wavenumber FE/BE for layered 

half-space; (a) V=50 m/s; (b) V=100 m/s 

 

3. Conclusion 

An investigation has been presented of the use of the time-domain finite element approach to 

represent a load moving along a railway track on a flexible ground. The results from a hemispherical 

model with infinite elements show better absorption efficiency than a cuboid model. However, 

incorrect displacements are found due to the infinite elements. A cuboid model with fixed boundaries 

with mass-proportional damping is recommended for modelling the moving load problem due to its 

relatively accuracy and efficiency. Although the results shown are for linear soil models, the time-

domain approach can be readily extended to consider nonlinear soil models. 
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