
University of Huddersfield Repository

Qin, Yongrui, Yao, Lina and Sheng, Quan Z.

Approximate Semantic Matching Over Linked Data Streams

Original Citation

Qin, Yongrui, Yao, Lina and Sheng, Quan Z. (2016) Approximate Semantic Matching Over Linked
Data Streams. In: Database and Expert Systems Applications: 27th International Conference,
DEXA 2016, Porto, Portugal, September 58, 2016, Proceedings, Part II. Lecture Notes in Computer
Science, 9828 . Springer International Publishing, pp. 3751. ISBN 9783319444055

This version is available at http://eprints.hud.ac.uk/29137/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or notforprofit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/74211024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Approximate Semantic Matching Over
Linked Data Streams

Yongrui Qin†, Lina Yao‡, and Quan Z. Sheng§

†University of Huddersfield, United Kingdom
y.qin2@hud.ac.uk

‡University of New South Wales, Australia
lina.yao@unsw.edu.au

§The University of Adelaide, Australia
michael.sheng@adelaide.edu.au

Abstract. In the Internet of Things (IoT), data can be generated by all kinds
of smart things. In such context, enabling machines to process and under-
stand such data is critical. Semantic Web technologies, such as Linked
Data, provide an effective and machine-understandable way to represent
IoT data for further processing. It is a challenging issue to match Linked
Data streams semantically based on text similarity as text similarity com-
putation is time consuming. In this paper, we present a hashing-based ap-
proximate approach to efficiently match Linked Data streams with users’
needs. We use the Resource Description Framework (RDF) to represent
IoT data and adopt triple patterns as user queries to describe users’ data
needs. We then apply locality-sensitive hashing techniques to transform
semantic data into numerical values to support efficient matching between
data and user queries. We design a modified k nearest neighbors (kNN) al-
gorithm to speedup the matching process. The experimental results show
that our approach is up to five times faster than the traditional methods
and can achieve high precisions and recalls.

Keywords: Internet of Things, Linked Data, Semantic Matching, kNN
classification

1 Introduction

The Semantic Web was first described by Berners-Lee et al. in 2001 [1]. It is
considered as an evolution of the existing Web. Before Semantic Web, Web infor-
mation was mainly produced for, and consumed by, humans. Most information
on the World Wide Web was linked by hypertext. In this way information was
presented in a convenient way for humans to access. Meanwhile, information
available on the Web has been exploding as time goes on. People are creating
photos, articles, videos, and many other kinds of information. Such information
needs to be processed automatically. The Semantic Web was designed to make
up for this situation.

The Semantic Web stores information in a designed format so that the in-
formation is given well-defined meanings. However, the Semantic Web is not

2 Yongrui Qin et al.

Fig. 1. Smart City Model

only about putting data on the Web. It is about links that make data easy for
people/machines to explore and study [1]. Linked Data is such a technology that
describes information, data and knowledge on the Semantic Web. The Resource
Description Framework (RDF) is one of the most popular languages used to
represent Linked Data.

In many domains, scientists have growing needs of integrating information
and data. For example, computer science researchers would need integration
of hardware knowledge and software knowledge in order to design systems.
Environment scientists are looking for integration of hydrology, climatology,
ecology and so on [2]. The Semantic Web is able to fulfill these needs as it
provides “a common framework that allows data to be shared and reused
across application, enterprise, and community boundaries” [3].

Furthermore, the Internet of Things (IoT) makes it possible to connect physi-
cal things to the Internet. Thus people are able to access remote sensing data and
control the physical world from a distance [4]. Data that has been collected from
IoT could be in various formats. IoT data could also be in large amount, which
makes it difficult and costly for people to process manually [5]. This calls for the
use of Semantic Web technologies to process data generated in the coming IoT
era. One promising application scenario of Linked Data techniques is smart city.
Figure 1 shows the structure of a smart city model based on Linked Data. In this
system, data and information are collected via various kinds of devices, such as
mobile phones, cars, cameras, sensors and so on. Sensing data is transformed to
Linked Data streams in order to be processed automatically by machines. Then
Linked Data streams are processed by the matching engine. Matching engine
is the core component of the system. It combines different functionalities such
as data processing, semantic query processing, matching algorithms, and so on.
Further descripton of this scenario can be found in [6].

With the help of this smart city system, all the terminal devices are con-
nected. Information about things and environments around the city, including
temperature, humidity, traffic status, air pollution, and other information, is sent
to the matching engine in the format of Linked Data. In the meantime, queries
coming from individuals, companies, devices or any other systems are sent to
the matching engine as well. With a set of matching procedures, information

Approximate Semantic Matching Over Linked Data Streams 3

that is best matched to the user queries will be returned to corresponding query
senders.

However, in the Semantic Web, Linked Data in the RDF format cannot allow
us to explore deeper into the semantic relations between different entries of
data. The reason of this situation is that data in format of string does not support
semantic matching efficiently. In IoT, we envision that data consumers are not
likely to have complete knowledge and therefore supporting semantics-based
matching is required in order to deliver relevant data to assorted consumers. In
addition, semantic data is difficult to process due to the fact that different words
might have similar underlying meanings. For instance, “master student” has a
similar meaning with “PhD candidate” as they both refer to higher education
students. However, they are completely different phrases in terms of texts.
Machines could hardly find out their relationship efficiently based on the texts.

To address such problem, in this paper we adopt Locality Sensitive Hashing
(LSH) techniques [7] to map semantic data into hashing values. LSH makes
it possible to map different semantic data entries into a space based on their
linguistic relations. In the same space, a word or phrase is closer to those that
are more linguistic related to them. Using LSH, we are able to calculate semantic
similarities of each pair of words/phrases based on their numerical values only.
In other words, information can be semantically matched to specific queries
based on their semantic hashing mappings. Specifically, in this work, we propose
an approximate matching method, which modifies the naive k nearest neighbors
(kNN) approach in order to make the matching process more efficient.

The main contributions of this paper are as follows. Firstly, we adapt the ex-
isting Locality Sensitive Hashing techniques to transform Linked Data streams
and user queries into numerical values. We then develop a novel index construc-
tion approach for fast semantic matching based on the naive kNN classification
approach. Finally, we conduct extensive experiments using a real-world dataset
from DBPedia. The results show that our proposed system can disseminate
Linked Data at a faster speed compared with the straightforward matching
approach with thousands of registered queries.

The rest of this paper is organized as follows. In Section 2, we review the
related work. We present some background knowledge, the framework and
the technical details of our approach in Section 3. In Section 4, we report the
results of our experimental study. Finally, we present some concluding remarks
in Section 5.

2 Related Work

A large body of work has been done in the area of RDF based stream processing,
such as Streaming SPARQL [8], Continuous Query Evaluation over Linked
Streams [9], Sparkwave pattern [10], and EP-SPARQL language[11]. However,
their focus is on exact matching over Linked Data streams, but not semantic
matching. Further, they do not support large-scale query evaluation but focus

4 Yongrui Qin et al.

on the evaluation of a single query or a small number of parallel queries over
the streaming Linked Data.

Recent work on data summaries on Linked Data such as the work in [12]
transforms RDF triples into a numerical space. Then data summaries are built
upon numerical data instead of strings as summarizing numbers is more effi-
cient than summarizing strings. In order to transform triples into numbers, hash
functions are applied on the individual components (s, p, o) of triples. Thus
a derived triple of numbers can be considered as a 3D point. Data summaries
are designed mainly for indexing various Linked Data sources and used for
identifying relevant sources for a given query. However, the data summaries
approach does not support approximate matching. This is because in the data
summaries approach, the hash functions are not locality sensitive. Other existing
work introduced in [13, 6] focuses on exact pattern matching, but not semantic
matching.

The work in [7] presents an algorithm based on LSH to improve the perfor-
mance of event detection system. It mainly focuses on first story detection (also
known as new event detection). An algorithm based on LSH is developed to
speed up the event detection process in order to efficiently detect new stories
from Twitter posts. The challenge is that there are too many posts on Twitter
which are not actual events. The focus in that work is processing Tweets, which
is different from Linked Data and the Twitter event detection approach cannot
be directly applied in matching over Linked Data streams.

3 Approximate Semantic Matching

In this section, we first briefly provide some necessary background knowledge
on user queries and word vector representation. We then describe our approxi-
mate semantic matching approach in detail.

3.1 Preliminaries

User Queries. Similar to [14, 15], triple patterns are adopted as the basic units
of user queries in our system. A triple pattern is an expression of the form
(s, p, o) where s and p are URIs or variables, and o is a URI, a literal or a
variable. The eight possible triple patterns are: 1) (#s, #p, #o), 2) (?s, #p,
#o), 3) (#s, ?p, #o), 4) (#s, #p, ?o), 5) (?s, ?p, #o), 6) (?s, #p, ?o), 7)
(#s, ?p, ?o), and 8) (?s, ?p, ?o). Here, ? denotes a variable while # denotes
a constant.

Words Vector Representation. Mikolov et al. proposed an efficient method to
achieve vector representations for English words [16]. They proposed two new
models for machine learning of word representations. More specific, they used
numerical values (vectors) to represent words and compare semantic relations.
The cosine similarity between two words can be approximated by the cosine
similarity between their corresponding vectors. Such vector representations

Approximate Semantic Matching Over Linked Data Streams 5

preserve the locality of words in the original text space and hence belong to the
category of LSH techniques [7]. Based on the reported results, the accuracy of
predicting semantic similarities between words based on vector representations
could reach up to 70% [17].

3.2 System Overview

Figure 2 shows the structure overview of the system. Linked Data collected from
the real world will be sent to the system. Then the data will be hashed using LSH
techniques. Meanwhile, users can send queries to the system. These queries are
also hashed into numerical values. The core component of the system, Matching
Engine, matches Linked Data streams against the queries and returns results to
users.

Fig. 2. System Overview

3.3 Linked Data Processing

In the following, we focus on how to efficiently process Linked Data and support
the semantic matching procedure.

Extract Last Terms. Each triple in the Linked Data streams contains either URI
(like “http://example.org/example#John”) or prefix (like “xmlns : name”). The prefix
components are used to identify the resource, but they are not relevant to the
major semantic meaning of the triple. In order to closely reflect the semantic
meaning of the triple, we need to remove these prefix parts to get the last terms.
Figure 3 shows an example of this procedure.

Fig. 3. Extract Last Terms of Triples

6 Yongrui Qin et al.

Fig. 4. Split up Complex Last Terms

In real world applications, to describe complex information, people need
to deliver more information in a single triple. The triple in Figure 3 is such an
example. It has a phrase “ChineseRiver” as the last term. In this case, the last
term is a composition of multiple words. The two words of the phrase in this
example can be split up and the result is shown in Figure 4. Below are some
rules to extract and split the last terms:

– For those properties consisting of hash symbol “#”, truncate the string by
“#”, then leave parts after hash “#”.

– For those properties that do not consist of hash symbols, separate the whole
string by slash “/”, then leave the substring after the very last slash.

– After removing the URI prefixes, if the last term consists of underline symbol
“ ”, separate the last term by underline symbols and return all the separate
words.

– If the last term does not consist of underline symbols, check whether it
contains capital letters. If so, separate each word starting with a capital
letter.

– Apply any other known rules to split the last terms.

Hashing Semantic Data. Once we extract and split the last terms, we can hash
these terms into numerical values using existing LSH techniques. Transforming
Linked Data into numerical values has two main benefits:

– Numerical values can achieve faster speed in the comparing process than
strings.

– Using numerical values to represent Linked Data provides convenience to
compare the similarity between different words approximately and directly.

We choose the Google News dataset in the word2vec project [18] from Google
as our LSH foundation. In this dataset, part of Google News data (about 100
billion words) [18] is selected and trained to build an LSH model for mappings
between words and vectors. The final LSH model contains vectors for 3 million
words, and each word is represented by a 300-dimensional vector. This means
we can hash a single word to a 300-dimensional vector.

For phrases and compositions of words, according to [17], we simply use the
addition of their vectors as their vector representations. For instance, we will
have the vector for “ChineseRiver” to be the sum of two vectors of “Chinese”
and “River”:

“V(ChineseRiver) = V(Chinese) + V(River) ”

Approximate Semantic Matching Over Linked Data Streams 7

Fig. 5. Hashing Example

An example of hashing triples is shown in Figure 5. In this figure, the triple
contains only the last terms without prefixes. Each word of the triple could
be represented as a 300-dimensional vector, so finally the whole triple can be
represented by a 900-dimensional vector.

3.4 Index Construction

Next, we build an index for user queries, which are triple patterns. Since a triple
pattern also contains subject, predicate, object, matching a triple pattern to a query
is actually comparing these three parts. In this work, all these parts have been
transformed to numerical values. As in the Google word2vec project, where
we obtain the Google News dataset, the measurement for testing similarity
between two words is cosine similarity, we need to build the index based on
cosine similarity.

Basically, the larger the cosine similarity is, the smaller the cosine distance
is, and the two words are more related [19]. Here we are building a query index
that is actually a kNN pre-trained data classification model for a given query
set. To build the model, we need to classify all the data entries (queries) in this
query set. The query index is built with a threshold θ, which defines the smallest
value of cosine similarity that two queries in one classification should have, and
a set of queries. Algorithm 1 shows the pseudocode of this step.

In order to improve the performance of our system, we select the represen-
tatives of queries in each class of queries. For each class, we simply take the first
query as its representative. After processing with this algorithm, we success-
fully build an index of queries. In our system, this index contains vectors of the
query patterns, class labels of all query patterns, and a representative query set.

8 Yongrui Qin et al.

Algorithm 1 Pseudocode of Classifying Queries
Input: a set of queries Q, threshold of cosine similarity θ
Output: Classification result U, and representative queries RQ

U← ∅
RQ← ∅
for all q ∈ Q do

for all rq ∈ RQ do
if cosine(q, rq) > θ then

q.label← rq.label
end if

end for
if q.label = null then

q.label← new label
RQ← RQ ∪ {q}

end if
U← U ∪ {q}

end for

3.5 Matching Data to Queries

Note that, the naive matching algorithm has a large timing cost since it has to
compare the incoming triple with all user queries. If we use the naive matching
method, we will find out all semantically matched results (under some given
threshold θ) because the naive method will compare the triple against all the
user queries in a brute force way. The problem is that the matching process is
inefficient. To improve the performance of our system, we propose to adapt the
kNN approach, which aims to find out the most semantically matched queries
at a higher speed. The tradeoff is to sacrify some matching quality, such as with
slightly lower recall and F1 scores (detailed definitions of these terms will be
provided in Section 4).

In our adapted kNN approach, once we have built the kNN classification
model (the query index), we are able to complete the “Matching Engine” shown
in the system overview (Figure 2) by implementing semantic matching logic on
top of this model. The main idea is that, when we receive a newly incoming
triple in the Linked Data stream, the system will identify k nearest classes to
that triple. To obtain these k nearest classes, we first compute cosine similarity
between the triple and each representative query in RQ, and then select k classes
whose representative queries achieve top k cosine similarities. Then the triple
will be matched against all the queries inside these k classes to find out all
the queries that semantically match this triple. Since we only compare with k
nearest classes of queries, not all queries in all classes, the matching process can
be significantly accelerated and completed with high matching quality.

An example of this matching process is shown in Figure 6. Q is the collection
of the queries. Suppose in order to build the query index, these queries are
classified into four classifications: C1, C2, C3 and C4. There is one representative
query, drawn in yellow and circled, in each class.

Approximate Semantic Matching Over Linked Data Streams 9

Fig. 6. Modified kNN Classification Method

When a triple t arrives at the system, the system computes the cosine sim-
ilarities between t and all representative queries in RQ. Then we obtain top k
(suppose k = 2) representative queries as the results. Assuming in this case,
C1 and C3 are the two classes whose representative queries achieve best cosine
similarity. We match triple t with all the queries in C1 and C3 by computing
cosine similarity of each query and t. If the cosine similarity of a query q and
t is greater than threshold θ, q will be a semantically matched query. After all
queries in C1 and C3 are examined, we will obtain the final matching results.
The core matching logic is shown in the following equation:

ResultkNN = ∀q ∈ C1 ∪ C3 ∧ cosine(q, t) > θ

To sum up, our approximate semantic matching consists of two main steps:
classification and matching. The classification step has a time complexity of O(d×
|RQ|2), where |RQ| is the number of classes and d is the number of dimensions
of a word vector. Meanwhile, the matching step has a time complexity of O(k ×
d × |Q|/|RQ|), where k is the parameter for matching and |Q|/|RQ| is the average
number of queries in a class.

4 Performance Evaluation

The experiments have been conducted using real-world data, which is a set
of events extracted from DBpedia, provided by the authors of the work in
[20]. We used these events in RDF format to form a Linked Data stream so as
to simulate the sensing data streaming process in the smart city scenario. The
event set contains resources of type dbpedia-owl:Event. Each event is a triple of
the form <eventURI, rdf:type, dbpedia-owl:Event>. Examples of various
event types that can be found in the event set are: “Football Match”, “Race”,
“Music Festival”, “Space Mission”, “Election”, “10th-Century BC Conflicts”,
“Academic Conferences”, “Aviation Accidents and Incidents in 2001”, etc. The
experimental machine was running Windows 7, with Intel’s Core i5 CPU and 8
GB RAM.

To the best of our knowledge, this is the first attempt to support semantic
matching over Linked Data streams. To evaluate the performance of our system,

10 Yongrui Qin et al.

a set of experiments were conducted to evaluate time, recall and F1 score by
comparing with the naive matching approach:

– Evaluate the speed performance by comparing times with the naive match-
ing approach (the average time required for processing every 300 triples).

– Evaluate the accuracy performance by comparing recall and F1 score with
naive kNN approach.

– There are three parameters in these experiments: k, Threshold and Query
Number.

In the following, we briefly introduce the two measurements used in our
experiments, namely recall and F1 score:

– Recall is the percentage of the number of matched queries in our system di-
vided by the number of all matched queries in the naive matching approach.
Recall can be calculated using:

Recall =
Numbermatched queries

Numbernaive matched queries
(1)

– F1 score is also a measurement of matching accuracy, which can be calculated
by using:

F1 = 2 ·
recall · precision
recall + precision

(2)

In this work, the precision is always 100% since our system matches triples
and queries in the same way as the naive approach does (note that our system
only selects queries that have cosine(q, t) > θ in the top k classes, and the naive
method also returns all the queries that have cosine(q, t) > θ). Therefore, any
matched query of our results must be a matched query in the naive method’s
matching results as well.

In each experiment, we changed one parameter and kept the other two at
their default values, so we had three group of experiments. Note that the time
used in our system consists of two parts. The first part is the classification
time, and the second part is the time used to find all matched queries during the
matching process on top of the classification model, which we call the matching
time.

4.1 Experimental Results—Parameter: k

The results with change of k are illustrated in Figure 7 and Figure 8. In this set
of experiments, we set the number of queries as 1,500, and threshold as 0.6. We
set the default threshold to 0.6 as this value can best balance matching speed
and matching quality. We tested k in the range of [1, 5]. From the results we
can observe that the classification time does not change too much while the
matching time has an obvious increasing trend. Our approach is about 4 times
faster than the naive approach when k = 1 and is about 3 times faster when
k = 5. In terms of Recall and F1 score, both of them increase gradually when
increasing the value of k. In most cases, Recall and F1 score are higher than 85%.
This indicates that our approach can achieve high matching quality.

Approximate Semantic Matching Over Linked Data Streams 11

Fig. 7. Experiment: Time—k

Fig. 8. Experiment: Recall & F1 Score — k

4.2 Experimental Results—Parameter: Threshold

The results with change of threshold are illustrated in Figure 9 and Figure 10.
In this set of experiments, we set the number of queries as 1,500, and k = 3,
because when the query number is 1,500, we can observe the normal perfor-
mance gain that our approach can achieve and when k = 3, our approach shows
a good balance between matching speed and matching quality. Meanwhile, the
threshold increases from 0.5 to 0.8. From the results we can see that in terms of
the time cost, our approach outperforms the naive approach by several times.
When the threshold is 0.5, the matching time cost is high due to the formation
of large query classes under low similarity threshold. This is also confirmed
by the larger proportion of matching time cost obtained when threshold is 0.5
or 0.6. When threshold is larger, such as at 0.8, it is expected that the average
size of each class is small. Therefore, we observe small matching cost compared

12 Yongrui Qin et al.

Fig. 9. Experiment: Time — Threshold

Fig. 10. Experiment: Recall & F1 Score — Threshold

with classification time. In terms of matching quality, both recall and F1 score
are higher than 85% in most cases. This demonstrates that our approach is very
robust under different similarity thresholds.

4.3 Experimental Results—Parameter: Query Number

The results with change of query number are illustrated in Figure 11 and Figure
12. In this set of experiments we set preconditions as: k = 3, Threshold = 0.6.
The query number is ranging from 500 to 3,000. The total matching time costs
of both approaches are increasing approximately in a linear manner against
the increasing number of queries to be matched. But the total time cost of the
naive approach is observed to increase at a faster rate. Meanwhile, the matching
quality is also improved with more queries. This should be because better
classification results can be obtained with more queries. But after the number
increases to and above 1,500, the matching quality stays quite stable.

Approximate Semantic Matching Over Linked Data Streams 13

Fig. 11. Experiment: Time — Query Number

Fig. 12. Experiment: Recall & F1 Score — Query Number

4.4 Discussion

By conducting the above three sets of experiments, we can summarize the effects
that the three parameters have on the system performance. Table 1 shows the
effects that each parameter has on the performance. In this table, “Positive”
means it either accelerates the matching speed or improves the recall ratio and
F1 score. “Negative” means the opposite way of “Positive”. “N/A” means that
this parameter does not affect the corresponding performance feature.

To sum up, our system has obvious advantage in the matching speed than
the naive approach. Increasing the three parameters (i.e., k, threshold, query
number) will normally cause higher matching time cost of the system. Mean-
while, increasing k has a positive effect on the recall ratio and F1 score. Through
all the experiments, we demonstrate that our system has enhanced the match-

14 Yongrui Qin et al.

Table 1. Parameters’ Effects on Performance

Performance k Threshold Query Number
Classification Time N/A Negative N/A

Matching Time Negative Positive Negative
Total Time Negative Negative Negative

Recall & F1 Score Positive N/A Negative

ing speed significantly. In the meantime, the recall ratio and F1 score are greater
than 85% for most of the time. This indicates that our approach can achieve very
high matching quality.

5 Conclusion

The Semantic Web is more and more popular in the big data era. Using ma-
chines to read, understand, and process semantic data can provide significant
benefits. In this work, we have focused on enabling semantic matching during
Linked Data streams processing. Locality-sensitive hashing techniques have
been adapted to support semantic matching with high quality and better ac-
celeration in the matching process. A set of experiments have been conducted.
The results show that our matching system can speedup the matching process
significantly with high matching quality.

In the future, we are going to extend our work from the following aspects.
First, we plan to further speedup the matching process. One possible solution
is to adopt more advanced classification methods to achieve better classifica-
tion results, which may reduce the average number of candidate queries for
matching a given RDF triple with high quality. Second, we plan to develop a
new type of query language to support query generation in semantic matching.
It is interesting to see how we can generate appropriate and fewest queries to
reflect users’ information needs possibly described in plain text in the semantic
matching scenarios.

Acknowledgments

Authors would like to thank Zheng Jing for the implementation of the matching
system and thank anonymous reviewers for their valuable comments.

References

1. Tim Berners-Lee, James Hendler, and Ora Lassila et al. The Semantic Web. 2001.
2. Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. The Semantic Web Revisited.

IEEE Intelligent Systems, 21(3):96–101, 2006.
3. Marja-Riitta Koivunen and Eric Miller. W3c Semantic Web Activity. Semantic Web

Kick-Off in Finland, pages 27–44, 2001.

Approximate Semantic Matching Over Linked Data Streams 15

4. Hermann Kopetz. Internet of Things. In Real-time Systems, pages 307–323. Springer,
2011.

5. Yongrui Qin, Quan Z. Sheng, Nickolas J. G. Falkner, Schahram Dustdar, Hua Wang,
and Athanasios V. Vasilakos. When things matter: A survey on data-centric Internet
of Things. J. Network and Computer Applications, 64:137–153, 2016.

6. Yongrui Qin, Quan Z. Sheng, and Edward Curry. Matching Over Linked Data
Streams in the Internet of Things. IEEE Internet Computing (INTERNET), 19(3):21–27,
2015.

7. Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Streaming First Story Detection
with Application to Twitter. In Proceedings of Human Language Technologies: Conference
of the North American Chapter of the Association of Computational Linguistics (HLT-
NAACL), pages 181–189, 2010.

8. Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming SPARQL - Extending
SPARQL to Process Data Streams. In Proceedings of the 5th European Semantic Web
Conference (ESWC), pages 448–462, 2008.

9. Danh Le Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred Hauswirth.
A Native and Adaptive Approach for Unified Processing of Linked Streams and
Linked Data. In Proceedings of the 10th International Semantic Web Conference (ISWC),
Part I, pages 370–388, 2011.

10. Srdjan Komazec, Davide Cerri, and Dieter Fensel. Sparkwave: Continuous schema-
enhanced pattern matching over rfd data streams. In Proceedings of the 6th ACM
International Conference on Distributed Event-Based Systems (DEBS), pages 58–68, 2012.

11. Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. EP-SPARQL:
A Unified Language for Event Processing and Stream Reasoning. In Proceedings of
the 20th International Conference on World Wide Web (WWW), pages 635–644, 2011.

12. Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe Sattler, and
Jürgen Umbrich. Data Summaries for On-Demand Queries over Linked Data. In
Proceedings of the 19th International Conference on World Wide Web (WWW), pages
411–420, 2010.

13. Yongrui Qin, Quan Z. Sheng, Nickolas J. G. Falkner, Ali Shemshadi, and Edward
Curry. Towards Efficient Dissemination of Linked Data in the Internet of Things.
In Proceedings of the 23rd ACM Conference on Information and Knowledge Management
(CIKM), pages 1779–1782, Shanghai, China, 2014.

14. Andy Seaborne. RDQL - A Query Language for RDF. In W3C Member Submission,
2001.

15. Erietta Liarou, Stratos Idreos, and Manolis Koubarakis. Evaluating Conjunctive
Triple Pattern Queries over Large Structured Overlay Networks. In Proceedings of the
5th International Semantic Web Conference (ISWC), pages 399–413, 2006.

16. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of
Word Representations in Vector Space. CoRR, abs/1301.3781, 2013.

17. Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed Representations of Words and Phrases and Their Compositionality. In
Proceedings of the 27th Annual Conference on Neural Information Processing Systems
(NIPS)., pages 3111–3119, 2013.

18. Tomas Mikolov et al. The word2Vec Project.
https://code.google.com/p/word2vec/,Retrieved December 2015.

19. Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive Datasets,
2nd Ed. Cambridge University Press, 2014.

20. Souleiman Hasan, Seán O’Riain, and Edward Curry. Towards unified and native
enrichment in event processing systems. In Proceedings of the 7th ACM International
Conference on Distributed Event-Based Systems (DEBS), pages 171–182, 2013.

